2 * Touchscreen driver for UCB1x00-based touchscreens
4 * Copyright (C) 2001 Russell King, All Rights Reserved.
5 * Copyright (C) 2005 Pavel Machek
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * 21-Jan-2002 <jco@ict.es> :
13 * Added support for synchronous A/D mode. This mode is useful to
14 * avoid noise induced in the touchpanel by the LCD, provided that
15 * the UCB1x00 has a valid LCD sync signal routed to its ADCSYNC pin.
16 * It is important to note that the signal connected to the ADCSYNC
17 * pin should provide pulses even when the LCD is blanked, otherwise
18 * a pen touch needed to unblank the LCD will never be read.
20 #include <linux/config.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/smp.h>
25 #include <linux/smp_lock.h>
26 #include <linux/sched.h>
27 #include <linux/completion.h>
28 #include <linux/delay.h>
29 #include <linux/string.h>
30 #include <linux/input.h>
31 #include <linux/device.h>
32 #include <linux/suspend.h>
33 #include <linux/slab.h>
34 #include <linux/kthread.h>
35 #include <linux/delay.h>
38 #include <asm/semaphore.h>
39 #include <asm/arch/collie.h>
40 #include <asm/mach-types.h>
46 struct input_dev *idev;
49 wait_queue_head_t irq_wait;
50 struct task_struct *rtask;
54 unsigned int restart:1;
55 unsigned int adcsync:1;
60 static inline void ucb1x00_ts_evt_add(struct ucb1x00_ts *ts, u16 pressure, u16 x, u16 y)
62 input_report_abs(ts->idev, ABS_X, x);
63 input_report_abs(ts->idev, ABS_Y, y);
64 input_report_abs(ts->idev, ABS_PRESSURE, pressure);
68 static inline void ucb1x00_ts_event_release(struct ucb1x00_ts *ts)
70 input_report_abs(ts->idev, ABS_PRESSURE, 0);
75 * Switch to interrupt mode.
77 static inline void ucb1x00_ts_mode_int(struct ucb1x00_ts *ts)
79 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
80 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
81 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
86 * Switch to pressure mode, and read pressure. We don't need to wait
87 * here, since both plates are being driven.
89 static inline unsigned int ucb1x00_ts_read_pressure(struct ucb1x00_ts *ts)
91 if (machine_is_collie()) {
92 ucb1x00_io_write(ts->ucb, COLLIE_TC35143_GPIO_TBL_CHK, 0);
93 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
94 UCB_TS_CR_TSPX_POW | UCB_TS_CR_TSMX_POW |
95 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
99 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_AD2, ts->adcsync);
101 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
102 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
103 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
104 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
106 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPY, ts->adcsync);
111 * Switch to X position mode and measure Y plate. We switch the plate
112 * configuration in pressure mode, then switch to position mode. This
113 * gives a faster response time. Even so, we need to wait about 55us
114 * for things to stabilise.
116 static inline unsigned int ucb1x00_ts_read_xpos(struct ucb1x00_ts *ts)
118 if (machine_is_collie())
119 ucb1x00_io_write(ts->ucb, 0, COLLIE_TC35143_GPIO_TBL_CHK);
121 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
122 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
123 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
124 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
125 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
126 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
128 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
129 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
130 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
134 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPY, ts->adcsync);
138 * Switch to Y position mode and measure X plate. We switch the plate
139 * configuration in pressure mode, then switch to position mode. This
140 * gives a faster response time. Even so, we need to wait about 55us
141 * for things to stabilise.
143 static inline unsigned int ucb1x00_ts_read_ypos(struct ucb1x00_ts *ts)
145 if (machine_is_collie())
146 ucb1x00_io_write(ts->ucb, 0, COLLIE_TC35143_GPIO_TBL_CHK);
148 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
149 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
150 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
151 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
152 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
153 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
156 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
157 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
158 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
162 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPX, ts->adcsync);
166 * Switch to X plate resistance mode. Set MX to ground, PX to
167 * supply. Measure current.
169 static inline unsigned int ucb1x00_ts_read_xres(struct ucb1x00_ts *ts)
171 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
172 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
173 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
174 return ucb1x00_adc_read(ts->ucb, 0, ts->adcsync);
178 * Switch to Y plate resistance mode. Set MY to ground, PY to
179 * supply. Measure current.
181 static inline unsigned int ucb1x00_ts_read_yres(struct ucb1x00_ts *ts)
183 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
184 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
185 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
186 return ucb1x00_adc_read(ts->ucb, 0, ts->adcsync);
189 static inline int ucb1x00_ts_pen_down(struct ucb1x00_ts *ts)
191 unsigned int val = ucb1x00_reg_read(ts->ucb, UCB_TS_CR);
192 if (machine_is_collie())
193 return (!(val & (UCB_TS_CR_TSPX_LOW)));
195 return (val & (UCB_TS_CR_TSPX_LOW | UCB_TS_CR_TSMX_LOW));
199 * This is a RT kernel thread that handles the ADC accesses
200 * (mainly so we can use semaphores in the UCB1200 core code
201 * to serialise accesses to the ADC).
203 static int ucb1x00_thread(void *_ts)
205 struct ucb1x00_ts *ts = _ts;
206 struct task_struct *tsk = current;
207 DECLARE_WAITQUEUE(wait, tsk);
211 * We could run as a real-time thread. However, thus far
212 * this doesn't seem to be necessary.
214 // tsk->policy = SCHED_FIFO;
215 // tsk->rt_priority = 1;
219 add_wait_queue(&ts->irq_wait, &wait);
220 while (!kthread_should_stop()) {
221 unsigned int x, y, p;
226 ucb1x00_adc_enable(ts->ucb);
228 x = ucb1x00_ts_read_xpos(ts);
229 y = ucb1x00_ts_read_ypos(ts);
230 p = ucb1x00_ts_read_pressure(ts);
233 * Switch back to interrupt mode.
235 ucb1x00_ts_mode_int(ts);
236 ucb1x00_adc_disable(ts->ucb);
240 ucb1x00_enable(ts->ucb);
243 if (ucb1x00_ts_pen_down(ts)) {
244 set_task_state(tsk, TASK_INTERRUPTIBLE);
246 ucb1x00_enable_irq(ts->ucb, UCB_IRQ_TSPX, machine_is_collie() ? UCB_RISING : UCB_FALLING);
247 ucb1x00_disable(ts->ucb);
250 * If we spat out a valid sample set last time,
251 * spit out a "pen off" sample here.
254 ucb1x00_ts_event_release(ts);
258 timeout = MAX_SCHEDULE_TIMEOUT;
260 ucb1x00_disable(ts->ucb);
263 * Filtering is policy. Policy belongs in user
264 * space. We therefore leave it to user space
265 * to do any filtering they please.
268 ucb1x00_ts_evt_add(ts, p, x, y);
272 set_task_state(tsk, TASK_INTERRUPTIBLE);
278 schedule_timeout(timeout);
281 remove_wait_queue(&ts->irq_wait, &wait);
288 * We only detect touch screen _touches_ with this interrupt
289 * handler, and even then we just schedule our task.
291 static void ucb1x00_ts_irq(int idx, void *id)
293 struct ucb1x00_ts *ts = id;
294 ucb1x00_disable_irq(ts->ucb, UCB_IRQ_TSPX, UCB_FALLING);
295 wake_up(&ts->irq_wait);
298 static int ucb1x00_ts_open(struct input_dev *idev)
300 struct ucb1x00_ts *ts = (struct ucb1x00_ts *)idev;
305 init_waitqueue_head(&ts->irq_wait);
306 ret = ucb1x00_hook_irq(ts->ucb, UCB_IRQ_TSPX, ucb1x00_ts_irq, ts);
311 * If we do this at all, we should allow the user to
312 * measure and read the X and Y resistance at any time.
314 ucb1x00_adc_enable(ts->ucb);
315 ts->x_res = ucb1x00_ts_read_xres(ts);
316 ts->y_res = ucb1x00_ts_read_yres(ts);
317 ucb1x00_adc_disable(ts->ucb);
319 ts->rtask = kthread_run(ucb1x00_thread, ts, "ktsd");
320 if (!IS_ERR(ts->rtask)) {
323 ucb1x00_free_irq(ts->ucb, UCB_IRQ_TSPX, ts);
333 * Release touchscreen resources. Disable IRQs.
335 static void ucb1x00_ts_close(struct input_dev *idev)
337 struct ucb1x00_ts *ts = (struct ucb1x00_ts *)idev;
340 kthread_stop(ts->rtask);
342 ucb1x00_enable(ts->ucb);
343 ucb1x00_free_irq(ts->ucb, UCB_IRQ_TSPX, ts);
344 ucb1x00_reg_write(ts->ucb, UCB_TS_CR, 0);
345 ucb1x00_disable(ts->ucb);
349 static int ucb1x00_ts_resume(struct ucb1x00_dev *dev)
351 struct ucb1x00_ts *ts = dev->priv;
353 if (ts->rtask != NULL) {
355 * Restart the TS thread to ensure the
356 * TS interrupt mode is set up again
360 wake_up(&ts->irq_wait);
365 #define ucb1x00_ts_resume NULL
372 static int ucb1x00_ts_add(struct ucb1x00_dev *dev)
374 struct ucb1x00_ts *ts;
376 ts = kzalloc(sizeof(struct ucb1x00_ts), GFP_KERNEL);
380 ts->idev = input_allocate_device();
387 ts->adcsync = adcsync ? UCB_SYNC : UCB_NOSYNC;
389 ts->idev->name = "Touchscreen panel";
390 ts->idev->id.product = ts->ucb->id;
391 ts->idev->open = ucb1x00_ts_open;
392 ts->idev->close = ucb1x00_ts_close;
394 __set_bit(EV_ABS, ts->idev->evbit);
395 __set_bit(ABS_X, ts->idev->absbit);
396 __set_bit(ABS_Y, ts->idev->absbit);
397 __set_bit(ABS_PRESSURE, ts->idev->absbit);
399 input_register_device(ts->idev);
406 static void ucb1x00_ts_remove(struct ucb1x00_dev *dev)
408 struct ucb1x00_ts *ts = dev->priv;
410 input_unregister_device(ts->idev);
414 static struct ucb1x00_driver ucb1x00_ts_driver = {
415 .add = ucb1x00_ts_add,
416 .remove = ucb1x00_ts_remove,
417 .resume = ucb1x00_ts_resume,
420 static int __init ucb1x00_ts_init(void)
422 return ucb1x00_register_driver(&ucb1x00_ts_driver);
425 static void __exit ucb1x00_ts_exit(void)
427 ucb1x00_unregister_driver(&ucb1x00_ts_driver);
430 module_param(adcsync, int, 0444);
431 module_init(ucb1x00_ts_init);
432 module_exit(ucb1x00_ts_exit);
434 MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
435 MODULE_DESCRIPTION("UCB1x00 touchscreen driver");
436 MODULE_LICENSE("GPL");