kmemleak: Allow the early log buffer to be configurable.
[linux-2.6] / mm / kmemleak.c
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/kmemleak.txt.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a priority search tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed
52  * - kmemleak_mutex (mutex): prevents multiple users of the "kmemleak" debugfs
53  *   file together with modifications to the memory scanning parameters
54  *   including the scan_thread pointer
55  *
56  * The kmemleak_object structures have a use_count incremented or decremented
57  * using the get_object()/put_object() functions. When the use_count becomes
58  * 0, this count can no longer be incremented and put_object() schedules the
59  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60  * function must be protected by rcu_read_lock() to avoid accessing a freed
61  * structure.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/module.h>
73 #include <linux/kthread.h>
74 #include <linux/prio_tree.h>
75 #include <linux/gfp.h>
76 #include <linux/fs.h>
77 #include <linux/debugfs.h>
78 #include <linux/seq_file.h>
79 #include <linux/cpumask.h>
80 #include <linux/spinlock.h>
81 #include <linux/mutex.h>
82 #include <linux/rcupdate.h>
83 #include <linux/stacktrace.h>
84 #include <linux/cache.h>
85 #include <linux/percpu.h>
86 #include <linux/hardirq.h>
87 #include <linux/mmzone.h>
88 #include <linux/slab.h>
89 #include <linux/thread_info.h>
90 #include <linux/err.h>
91 #include <linux/uaccess.h>
92 #include <linux/string.h>
93 #include <linux/nodemask.h>
94 #include <linux/mm.h>
95
96 #include <asm/sections.h>
97 #include <asm/processor.h>
98 #include <asm/atomic.h>
99
100 #include <linux/kmemleak.h>
101
102 /*
103  * Kmemleak configuration and common defines.
104  */
105 #define MAX_TRACE               16      /* stack trace length */
106 #define REPORTS_NR              50      /* maximum number of reported leaks */
107 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
108 #define MSECS_SCAN_YIELD        10      /* CPU yielding period */
109 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
110 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
111
112 #define BYTES_PER_POINTER       sizeof(void *)
113
114 /* GFP bitmask for kmemleak internal allocations */
115 #define GFP_KMEMLEAK_MASK       (GFP_KERNEL | GFP_ATOMIC)
116
117 /* scanning area inside a memory block */
118 struct kmemleak_scan_area {
119         struct hlist_node node;
120         unsigned long offset;
121         size_t length;
122 };
123
124 /*
125  * Structure holding the metadata for each allocated memory block.
126  * Modifications to such objects should be made while holding the
127  * object->lock. Insertions or deletions from object_list, gray_list or
128  * tree_node are already protected by the corresponding locks or mutex (see
129  * the notes on locking above). These objects are reference-counted
130  * (use_count) and freed using the RCU mechanism.
131  */
132 struct kmemleak_object {
133         spinlock_t lock;
134         unsigned long flags;            /* object status flags */
135         struct list_head object_list;
136         struct list_head gray_list;
137         struct prio_tree_node tree_node;
138         struct rcu_head rcu;            /* object_list lockless traversal */
139         /* object usage count; object freed when use_count == 0 */
140         atomic_t use_count;
141         unsigned long pointer;
142         size_t size;
143         /* minimum number of a pointers found before it is considered leak */
144         int min_count;
145         /* the total number of pointers found pointing to this object */
146         int count;
147         /* memory ranges to be scanned inside an object (empty for all) */
148         struct hlist_head area_list;
149         unsigned long trace[MAX_TRACE];
150         unsigned int trace_len;
151         unsigned long jiffies;          /* creation timestamp */
152         pid_t pid;                      /* pid of the current task */
153         char comm[TASK_COMM_LEN];       /* executable name */
154 };
155
156 /* flag representing the memory block allocation status */
157 #define OBJECT_ALLOCATED        (1 << 0)
158 /* flag set after the first reporting of an unreference object */
159 #define OBJECT_REPORTED         (1 << 1)
160 /* flag set to not scan the object */
161 #define OBJECT_NO_SCAN          (1 << 2)
162
163 /* the list of all allocated objects */
164 static LIST_HEAD(object_list);
165 /* the list of gray-colored objects (see color_gray comment below) */
166 static LIST_HEAD(gray_list);
167 /* prio search tree for object boundaries */
168 static struct prio_tree_root object_tree_root;
169 /* rw_lock protecting the access to object_list and prio_tree_root */
170 static DEFINE_RWLOCK(kmemleak_lock);
171
172 /* allocation caches for kmemleak internal data */
173 static struct kmem_cache *object_cache;
174 static struct kmem_cache *scan_area_cache;
175
176 /* set if tracing memory operations is enabled */
177 static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
178 /* set in the late_initcall if there were no errors */
179 static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
180 /* enables or disables early logging of the memory operations */
181 static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
182 /* set if a fata kmemleak error has occurred */
183 static atomic_t kmemleak_error = ATOMIC_INIT(0);
184
185 /* minimum and maximum address that may be valid pointers */
186 static unsigned long min_addr = ULONG_MAX;
187 static unsigned long max_addr;
188
189 /* used for yielding the CPU to other tasks during scanning */
190 static unsigned long next_scan_yield;
191 static struct task_struct *scan_thread;
192 static unsigned long jiffies_scan_yield;
193 static unsigned long jiffies_min_age;
194 /* delay between automatic memory scannings */
195 static signed long jiffies_scan_wait;
196 /* enables or disables the task stacks scanning */
197 static int kmemleak_stack_scan;
198 /* mutex protecting the memory scanning */
199 static DEFINE_MUTEX(scan_mutex);
200 /* mutex protecting the access to the /sys/kernel/debug/kmemleak file */
201 static DEFINE_MUTEX(kmemleak_mutex);
202
203 /* number of leaks reported (for limitation purposes) */
204 static int reported_leaks;
205
206 /*
207  * Early object allocation/freeing logging. Kmemleak is initialized after the
208  * kernel allocator. However, both the kernel allocator and kmemleak may
209  * allocate memory blocks which need to be tracked. Kmemleak defines an
210  * arbitrary buffer to hold the allocation/freeing information before it is
211  * fully initialized.
212  */
213
214 /* kmemleak operation type for early logging */
215 enum {
216         KMEMLEAK_ALLOC,
217         KMEMLEAK_FREE,
218         KMEMLEAK_NOT_LEAK,
219         KMEMLEAK_IGNORE,
220         KMEMLEAK_SCAN_AREA,
221         KMEMLEAK_NO_SCAN
222 };
223
224 /*
225  * Structure holding the information passed to kmemleak callbacks during the
226  * early logging.
227  */
228 struct early_log {
229         int op_type;                    /* kmemleak operation type */
230         const void *ptr;                /* allocated/freed memory block */
231         size_t size;                    /* memory block size */
232         int min_count;                  /* minimum reference count */
233         unsigned long offset;           /* scan area offset */
234         size_t length;                  /* scan area length */
235 };
236
237 /* early logging buffer and current position */
238 static struct early_log early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE];
239 static int crt_early_log;
240
241 static void kmemleak_disable(void);
242
243 /*
244  * Print a warning and dump the stack trace.
245  */
246 #define kmemleak_warn(x...)     do {    \
247         pr_warning(x);                  \
248         dump_stack();                   \
249 } while (0)
250
251 /*
252  * Macro invoked when a serious kmemleak condition occured and cannot be
253  * recovered from. Kmemleak will be disabled and further allocation/freeing
254  * tracing no longer available.
255  */
256 #define kmemleak_stop(x...)     do {    \
257         kmemleak_warn(x);               \
258         kmemleak_disable();             \
259 } while (0)
260
261 /*
262  * Object colors, encoded with count and min_count:
263  * - white - orphan object, not enough references to it (count < min_count)
264  * - gray  - not orphan, not marked as false positive (min_count == 0) or
265  *              sufficient references to it (count >= min_count)
266  * - black - ignore, it doesn't contain references (e.g. text section)
267  *              (min_count == -1). No function defined for this color.
268  * Newly created objects don't have any color assigned (object->count == -1)
269  * before the next memory scan when they become white.
270  */
271 static int color_white(const struct kmemleak_object *object)
272 {
273         return object->count != -1 && object->count < object->min_count;
274 }
275
276 static int color_gray(const struct kmemleak_object *object)
277 {
278         return object->min_count != -1 && object->count >= object->min_count;
279 }
280
281 /*
282  * Objects are considered referenced if their color is gray and they have not
283  * been deleted.
284  */
285 static int referenced_object(struct kmemleak_object *object)
286 {
287         return (object->flags & OBJECT_ALLOCATED) && color_gray(object);
288 }
289
290 /*
291  * Objects are considered unreferenced only if their color is white, they have
292  * not be deleted and have a minimum age to avoid false positives caused by
293  * pointers temporarily stored in CPU registers.
294  */
295 static int unreferenced_object(struct kmemleak_object *object)
296 {
297         return (object->flags & OBJECT_ALLOCATED) && color_white(object) &&
298                 time_is_before_eq_jiffies(object->jiffies + jiffies_min_age);
299 }
300
301 /*
302  * Printing of the (un)referenced objects information, either to the seq file
303  * or to the kernel log. The print_referenced/print_unreferenced functions
304  * must be called with the object->lock held.
305  */
306 #define print_helper(seq, x...) do {    \
307         struct seq_file *s = (seq);     \
308         if (s)                          \
309                 seq_printf(s, x);       \
310         else                            \
311                 pr_info(x);             \
312 } while (0)
313
314 static void print_referenced(struct kmemleak_object *object)
315 {
316         pr_info("referenced object 0x%08lx (size %zu)\n",
317                 object->pointer, object->size);
318 }
319
320 static void print_unreferenced(struct seq_file *seq,
321                                struct kmemleak_object *object)
322 {
323         int i;
324
325         print_helper(seq, "unreferenced object 0x%08lx (size %zu):\n",
326                      object->pointer, object->size);
327         print_helper(seq, "  comm \"%s\", pid %d, jiffies %lu\n",
328                      object->comm, object->pid, object->jiffies);
329         print_helper(seq, "  backtrace:\n");
330
331         for (i = 0; i < object->trace_len; i++) {
332                 void *ptr = (void *)object->trace[i];
333                 print_helper(seq, "    [<%p>] %pS\n", ptr, ptr);
334         }
335 }
336
337 /*
338  * Print the kmemleak_object information. This function is used mainly for
339  * debugging special cases when kmemleak operations. It must be called with
340  * the object->lock held.
341  */
342 static void dump_object_info(struct kmemleak_object *object)
343 {
344         struct stack_trace trace;
345
346         trace.nr_entries = object->trace_len;
347         trace.entries = object->trace;
348
349         pr_notice("Object 0x%08lx (size %zu):\n",
350                   object->tree_node.start, object->size);
351         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
352                   object->comm, object->pid, object->jiffies);
353         pr_notice("  min_count = %d\n", object->min_count);
354         pr_notice("  count = %d\n", object->count);
355         pr_notice("  backtrace:\n");
356         print_stack_trace(&trace, 4);
357 }
358
359 /*
360  * Look-up a memory block metadata (kmemleak_object) in the priority search
361  * tree based on a pointer value. If alias is 0, only values pointing to the
362  * beginning of the memory block are allowed. The kmemleak_lock must be held
363  * when calling this function.
364  */
365 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
366 {
367         struct prio_tree_node *node;
368         struct prio_tree_iter iter;
369         struct kmemleak_object *object;
370
371         prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
372         node = prio_tree_next(&iter);
373         if (node) {
374                 object = prio_tree_entry(node, struct kmemleak_object,
375                                          tree_node);
376                 if (!alias && object->pointer != ptr) {
377                         kmemleak_warn("Found object by alias");
378                         object = NULL;
379                 }
380         } else
381                 object = NULL;
382
383         return object;
384 }
385
386 /*
387  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
388  * that once an object's use_count reached 0, the RCU freeing was already
389  * registered and the object should no longer be used. This function must be
390  * called under the protection of rcu_read_lock().
391  */
392 static int get_object(struct kmemleak_object *object)
393 {
394         return atomic_inc_not_zero(&object->use_count);
395 }
396
397 /*
398  * RCU callback to free a kmemleak_object.
399  */
400 static void free_object_rcu(struct rcu_head *rcu)
401 {
402         struct hlist_node *elem, *tmp;
403         struct kmemleak_scan_area *area;
404         struct kmemleak_object *object =
405                 container_of(rcu, struct kmemleak_object, rcu);
406
407         /*
408          * Once use_count is 0 (guaranteed by put_object), there is no other
409          * code accessing this object, hence no need for locking.
410          */
411         hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
412                 hlist_del(elem);
413                 kmem_cache_free(scan_area_cache, area);
414         }
415         kmem_cache_free(object_cache, object);
416 }
417
418 /*
419  * Decrement the object use_count. Once the count is 0, free the object using
420  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
421  * delete_object() path, the delayed RCU freeing ensures that there is no
422  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
423  * is also possible.
424  */
425 static void put_object(struct kmemleak_object *object)
426 {
427         if (!atomic_dec_and_test(&object->use_count))
428                 return;
429
430         /* should only get here after delete_object was called */
431         WARN_ON(object->flags & OBJECT_ALLOCATED);
432
433         call_rcu(&object->rcu, free_object_rcu);
434 }
435
436 /*
437  * Look up an object in the prio search tree and increase its use_count.
438  */
439 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
440 {
441         unsigned long flags;
442         struct kmemleak_object *object = NULL;
443
444         rcu_read_lock();
445         read_lock_irqsave(&kmemleak_lock, flags);
446         if (ptr >= min_addr && ptr < max_addr)
447                 object = lookup_object(ptr, alias);
448         read_unlock_irqrestore(&kmemleak_lock, flags);
449
450         /* check whether the object is still available */
451         if (object && !get_object(object))
452                 object = NULL;
453         rcu_read_unlock();
454
455         return object;
456 }
457
458 /*
459  * Create the metadata (struct kmemleak_object) corresponding to an allocated
460  * memory block and add it to the object_list and object_tree_root.
461  */
462 static void create_object(unsigned long ptr, size_t size, int min_count,
463                           gfp_t gfp)
464 {
465         unsigned long flags;
466         struct kmemleak_object *object;
467         struct prio_tree_node *node;
468         struct stack_trace trace;
469
470         object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
471         if (!object) {
472                 kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
473                 return;
474         }
475
476         INIT_LIST_HEAD(&object->object_list);
477         INIT_LIST_HEAD(&object->gray_list);
478         INIT_HLIST_HEAD(&object->area_list);
479         spin_lock_init(&object->lock);
480         atomic_set(&object->use_count, 1);
481         object->flags = OBJECT_ALLOCATED;
482         object->pointer = ptr;
483         object->size = size;
484         object->min_count = min_count;
485         object->count = -1;                     /* no color initially */
486         object->jiffies = jiffies;
487
488         /* task information */
489         if (in_irq()) {
490                 object->pid = 0;
491                 strncpy(object->comm, "hardirq", sizeof(object->comm));
492         } else if (in_softirq()) {
493                 object->pid = 0;
494                 strncpy(object->comm, "softirq", sizeof(object->comm));
495         } else {
496                 object->pid = current->pid;
497                 /*
498                  * There is a small chance of a race with set_task_comm(),
499                  * however using get_task_comm() here may cause locking
500                  * dependency issues with current->alloc_lock. In the worst
501                  * case, the command line is not correct.
502                  */
503                 strncpy(object->comm, current->comm, sizeof(object->comm));
504         }
505
506         /* kernel backtrace */
507         trace.max_entries = MAX_TRACE;
508         trace.nr_entries = 0;
509         trace.entries = object->trace;
510         trace.skip = 1;
511         save_stack_trace(&trace);
512         object->trace_len = trace.nr_entries;
513
514         INIT_PRIO_TREE_NODE(&object->tree_node);
515         object->tree_node.start = ptr;
516         object->tree_node.last = ptr + size - 1;
517
518         write_lock_irqsave(&kmemleak_lock, flags);
519         min_addr = min(min_addr, ptr);
520         max_addr = max(max_addr, ptr + size);
521         node = prio_tree_insert(&object_tree_root, &object->tree_node);
522         /*
523          * The code calling the kernel does not yet have the pointer to the
524          * memory block to be able to free it.  However, we still hold the
525          * kmemleak_lock here in case parts of the kernel started freeing
526          * random memory blocks.
527          */
528         if (node != &object->tree_node) {
529                 unsigned long flags;
530
531                 kmemleak_stop("Cannot insert 0x%lx into the object search tree "
532                               "(already existing)\n", ptr);
533                 object = lookup_object(ptr, 1);
534                 spin_lock_irqsave(&object->lock, flags);
535                 dump_object_info(object);
536                 spin_unlock_irqrestore(&object->lock, flags);
537
538                 goto out;
539         }
540         list_add_tail_rcu(&object->object_list, &object_list);
541 out:
542         write_unlock_irqrestore(&kmemleak_lock, flags);
543 }
544
545 /*
546  * Remove the metadata (struct kmemleak_object) for a memory block from the
547  * object_list and object_tree_root and decrement its use_count.
548  */
549 static void delete_object(unsigned long ptr)
550 {
551         unsigned long flags;
552         struct kmemleak_object *object;
553
554         write_lock_irqsave(&kmemleak_lock, flags);
555         object = lookup_object(ptr, 0);
556         if (!object) {
557                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
558                               ptr);
559                 write_unlock_irqrestore(&kmemleak_lock, flags);
560                 return;
561         }
562         prio_tree_remove(&object_tree_root, &object->tree_node);
563         list_del_rcu(&object->object_list);
564         write_unlock_irqrestore(&kmemleak_lock, flags);
565
566         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
567         WARN_ON(atomic_read(&object->use_count) < 1);
568
569         /*
570          * Locking here also ensures that the corresponding memory block
571          * cannot be freed when it is being scanned.
572          */
573         spin_lock_irqsave(&object->lock, flags);
574         if (object->flags & OBJECT_REPORTED)
575                 print_referenced(object);
576         object->flags &= ~OBJECT_ALLOCATED;
577         spin_unlock_irqrestore(&object->lock, flags);
578         put_object(object);
579 }
580
581 /*
582  * Make a object permanently as gray-colored so that it can no longer be
583  * reported as a leak. This is used in general to mark a false positive.
584  */
585 static void make_gray_object(unsigned long ptr)
586 {
587         unsigned long flags;
588         struct kmemleak_object *object;
589
590         object = find_and_get_object(ptr, 0);
591         if (!object) {
592                 kmemleak_warn("Graying unknown object at 0x%08lx\n", ptr);
593                 return;
594         }
595
596         spin_lock_irqsave(&object->lock, flags);
597         object->min_count = 0;
598         spin_unlock_irqrestore(&object->lock, flags);
599         put_object(object);
600 }
601
602 /*
603  * Mark the object as black-colored so that it is ignored from scans and
604  * reporting.
605  */
606 static void make_black_object(unsigned long ptr)
607 {
608         unsigned long flags;
609         struct kmemleak_object *object;
610
611         object = find_and_get_object(ptr, 0);
612         if (!object) {
613                 kmemleak_warn("Blacking unknown object at 0x%08lx\n", ptr);
614                 return;
615         }
616
617         spin_lock_irqsave(&object->lock, flags);
618         object->min_count = -1;
619         spin_unlock_irqrestore(&object->lock, flags);
620         put_object(object);
621 }
622
623 /*
624  * Add a scanning area to the object. If at least one such area is added,
625  * kmemleak will only scan these ranges rather than the whole memory block.
626  */
627 static void add_scan_area(unsigned long ptr, unsigned long offset,
628                           size_t length, gfp_t gfp)
629 {
630         unsigned long flags;
631         struct kmemleak_object *object;
632         struct kmemleak_scan_area *area;
633
634         object = find_and_get_object(ptr, 0);
635         if (!object) {
636                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
637                               ptr);
638                 return;
639         }
640
641         area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
642         if (!area) {
643                 kmemleak_warn("Cannot allocate a scan area\n");
644                 goto out;
645         }
646
647         spin_lock_irqsave(&object->lock, flags);
648         if (offset + length > object->size) {
649                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
650                 dump_object_info(object);
651                 kmem_cache_free(scan_area_cache, area);
652                 goto out_unlock;
653         }
654
655         INIT_HLIST_NODE(&area->node);
656         area->offset = offset;
657         area->length = length;
658
659         hlist_add_head(&area->node, &object->area_list);
660 out_unlock:
661         spin_unlock_irqrestore(&object->lock, flags);
662 out:
663         put_object(object);
664 }
665
666 /*
667  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
668  * pointer. Such object will not be scanned by kmemleak but references to it
669  * are searched.
670  */
671 static void object_no_scan(unsigned long ptr)
672 {
673         unsigned long flags;
674         struct kmemleak_object *object;
675
676         object = find_and_get_object(ptr, 0);
677         if (!object) {
678                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
679                 return;
680         }
681
682         spin_lock_irqsave(&object->lock, flags);
683         object->flags |= OBJECT_NO_SCAN;
684         spin_unlock_irqrestore(&object->lock, flags);
685         put_object(object);
686 }
687
688 /*
689  * Log an early kmemleak_* call to the early_log buffer. These calls will be
690  * processed later once kmemleak is fully initialized.
691  */
692 static void log_early(int op_type, const void *ptr, size_t size,
693                       int min_count, unsigned long offset, size_t length)
694 {
695         unsigned long flags;
696         struct early_log *log;
697
698         if (crt_early_log >= ARRAY_SIZE(early_log)) {
699                 pr_warning("Early log buffer exceeded\n");
700                 kmemleak_disable();
701                 return;
702         }
703
704         /*
705          * There is no need for locking since the kernel is still in UP mode
706          * at this stage. Disabling the IRQs is enough.
707          */
708         local_irq_save(flags);
709         log = &early_log[crt_early_log];
710         log->op_type = op_type;
711         log->ptr = ptr;
712         log->size = size;
713         log->min_count = min_count;
714         log->offset = offset;
715         log->length = length;
716         crt_early_log++;
717         local_irq_restore(flags);
718 }
719
720 /*
721  * Memory allocation function callback. This function is called from the
722  * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
723  * vmalloc etc.).
724  */
725 void kmemleak_alloc(const void *ptr, size_t size, int min_count, gfp_t gfp)
726 {
727         pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
728
729         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
730                 create_object((unsigned long)ptr, size, min_count, gfp);
731         else if (atomic_read(&kmemleak_early_log))
732                 log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0);
733 }
734 EXPORT_SYMBOL_GPL(kmemleak_alloc);
735
736 /*
737  * Memory freeing function callback. This function is called from the kernel
738  * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
739  */
740 void kmemleak_free(const void *ptr)
741 {
742         pr_debug("%s(0x%p)\n", __func__, ptr);
743
744         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
745                 delete_object((unsigned long)ptr);
746         else if (atomic_read(&kmemleak_early_log))
747                 log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0);
748 }
749 EXPORT_SYMBOL_GPL(kmemleak_free);
750
751 /*
752  * Mark an already allocated memory block as a false positive. This will cause
753  * the block to no longer be reported as leak and always be scanned.
754  */
755 void kmemleak_not_leak(const void *ptr)
756 {
757         pr_debug("%s(0x%p)\n", __func__, ptr);
758
759         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
760                 make_gray_object((unsigned long)ptr);
761         else if (atomic_read(&kmemleak_early_log))
762                 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0);
763 }
764 EXPORT_SYMBOL(kmemleak_not_leak);
765
766 /*
767  * Ignore a memory block. This is usually done when it is known that the
768  * corresponding block is not a leak and does not contain any references to
769  * other allocated memory blocks.
770  */
771 void kmemleak_ignore(const void *ptr)
772 {
773         pr_debug("%s(0x%p)\n", __func__, ptr);
774
775         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
776                 make_black_object((unsigned long)ptr);
777         else if (atomic_read(&kmemleak_early_log))
778                 log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0);
779 }
780 EXPORT_SYMBOL(kmemleak_ignore);
781
782 /*
783  * Limit the range to be scanned in an allocated memory block.
784  */
785 void kmemleak_scan_area(const void *ptr, unsigned long offset, size_t length,
786                         gfp_t gfp)
787 {
788         pr_debug("%s(0x%p)\n", __func__, ptr);
789
790         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
791                 add_scan_area((unsigned long)ptr, offset, length, gfp);
792         else if (atomic_read(&kmemleak_early_log))
793                 log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length);
794 }
795 EXPORT_SYMBOL(kmemleak_scan_area);
796
797 /*
798  * Inform kmemleak not to scan the given memory block.
799  */
800 void kmemleak_no_scan(const void *ptr)
801 {
802         pr_debug("%s(0x%p)\n", __func__, ptr);
803
804         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
805                 object_no_scan((unsigned long)ptr);
806         else if (atomic_read(&kmemleak_early_log))
807                 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0);
808 }
809 EXPORT_SYMBOL(kmemleak_no_scan);
810
811 /*
812  * Yield the CPU so that other tasks get a chance to run.  The yielding is
813  * rate-limited to avoid excessive number of calls to the schedule() function
814  * during memory scanning.
815  */
816 static void scan_yield(void)
817 {
818         might_sleep();
819
820         if (time_is_before_eq_jiffies(next_scan_yield)) {
821                 schedule();
822                 next_scan_yield = jiffies + jiffies_scan_yield;
823         }
824 }
825
826 /*
827  * Memory scanning is a long process and it needs to be interruptable. This
828  * function checks whether such interrupt condition occured.
829  */
830 static int scan_should_stop(void)
831 {
832         if (!atomic_read(&kmemleak_enabled))
833                 return 1;
834
835         /*
836          * This function may be called from either process or kthread context,
837          * hence the need to check for both stop conditions.
838          */
839         if (current->mm)
840                 return signal_pending(current);
841         else
842                 return kthread_should_stop();
843
844         return 0;
845 }
846
847 /*
848  * Scan a memory block (exclusive range) for valid pointers and add those
849  * found to the gray list.
850  */
851 static void scan_block(void *_start, void *_end,
852                        struct kmemleak_object *scanned)
853 {
854         unsigned long *ptr;
855         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
856         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
857
858         for (ptr = start; ptr < end; ptr++) {
859                 unsigned long flags;
860                 unsigned long pointer = *ptr;
861                 struct kmemleak_object *object;
862
863                 if (scan_should_stop())
864                         break;
865
866                 /*
867                  * When scanning a memory block with a corresponding
868                  * kmemleak_object, the CPU yielding is handled in the calling
869                  * code since it holds the object->lock to avoid the block
870                  * freeing.
871                  */
872                 if (!scanned)
873                         scan_yield();
874
875                 object = find_and_get_object(pointer, 1);
876                 if (!object)
877                         continue;
878                 if (object == scanned) {
879                         /* self referenced, ignore */
880                         put_object(object);
881                         continue;
882                 }
883
884                 /*
885                  * Avoid the lockdep recursive warning on object->lock being
886                  * previously acquired in scan_object(). These locks are
887                  * enclosed by scan_mutex.
888                  */
889                 spin_lock_irqsave_nested(&object->lock, flags,
890                                          SINGLE_DEPTH_NESTING);
891                 if (!color_white(object)) {
892                         /* non-orphan, ignored or new */
893                         spin_unlock_irqrestore(&object->lock, flags);
894                         put_object(object);
895                         continue;
896                 }
897
898                 /*
899                  * Increase the object's reference count (number of pointers
900                  * to the memory block). If this count reaches the required
901                  * minimum, the object's color will become gray and it will be
902                  * added to the gray_list.
903                  */
904                 object->count++;
905                 if (color_gray(object))
906                         list_add_tail(&object->gray_list, &gray_list);
907                 else
908                         put_object(object);
909                 spin_unlock_irqrestore(&object->lock, flags);
910         }
911 }
912
913 /*
914  * Scan a memory block corresponding to a kmemleak_object. A condition is
915  * that object->use_count >= 1.
916  */
917 static void scan_object(struct kmemleak_object *object)
918 {
919         struct kmemleak_scan_area *area;
920         struct hlist_node *elem;
921         unsigned long flags;
922
923         /*
924          * Once the object->lock is aquired, the corresponding memory block
925          * cannot be freed (the same lock is aquired in delete_object).
926          */
927         spin_lock_irqsave(&object->lock, flags);
928         if (object->flags & OBJECT_NO_SCAN)
929                 goto out;
930         if (!(object->flags & OBJECT_ALLOCATED))
931                 /* already freed object */
932                 goto out;
933         if (hlist_empty(&object->area_list))
934                 scan_block((void *)object->pointer,
935                            (void *)(object->pointer + object->size), object);
936         else
937                 hlist_for_each_entry(area, elem, &object->area_list, node)
938                         scan_block((void *)(object->pointer + area->offset),
939                                    (void *)(object->pointer + area->offset
940                                             + area->length), object);
941 out:
942         spin_unlock_irqrestore(&object->lock, flags);
943 }
944
945 /*
946  * Scan data sections and all the referenced memory blocks allocated via the
947  * kernel's standard allocators. This function must be called with the
948  * scan_mutex held.
949  */
950 static void kmemleak_scan(void)
951 {
952         unsigned long flags;
953         struct kmemleak_object *object, *tmp;
954         struct task_struct *task;
955         int i;
956
957         /* prepare the kmemleak_object's */
958         rcu_read_lock();
959         list_for_each_entry_rcu(object, &object_list, object_list) {
960                 spin_lock_irqsave(&object->lock, flags);
961 #ifdef DEBUG
962                 /*
963                  * With a few exceptions there should be a maximum of
964                  * 1 reference to any object at this point.
965                  */
966                 if (atomic_read(&object->use_count) > 1) {
967                         pr_debug("object->use_count = %d\n",
968                                  atomic_read(&object->use_count));
969                         dump_object_info(object);
970                 }
971 #endif
972                 /* reset the reference count (whiten the object) */
973                 object->count = 0;
974                 if (color_gray(object) && get_object(object))
975                         list_add_tail(&object->gray_list, &gray_list);
976
977                 spin_unlock_irqrestore(&object->lock, flags);
978         }
979         rcu_read_unlock();
980
981         /* data/bss scanning */
982         scan_block(_sdata, _edata, NULL);
983         scan_block(__bss_start, __bss_stop, NULL);
984
985 #ifdef CONFIG_SMP
986         /* per-cpu sections scanning */
987         for_each_possible_cpu(i)
988                 scan_block(__per_cpu_start + per_cpu_offset(i),
989                            __per_cpu_end + per_cpu_offset(i), NULL);
990 #endif
991
992         /*
993          * Struct page scanning for each node. The code below is not yet safe
994          * with MEMORY_HOTPLUG.
995          */
996         for_each_online_node(i) {
997                 pg_data_t *pgdat = NODE_DATA(i);
998                 unsigned long start_pfn = pgdat->node_start_pfn;
999                 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1000                 unsigned long pfn;
1001
1002                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1003                         struct page *page;
1004
1005                         if (!pfn_valid(pfn))
1006                                 continue;
1007                         page = pfn_to_page(pfn);
1008                         /* only scan if page is in use */
1009                         if (page_count(page) == 0)
1010                                 continue;
1011                         scan_block(page, page + 1, NULL);
1012                 }
1013         }
1014
1015         /*
1016          * Scanning the task stacks may introduce false negatives and it is
1017          * not enabled by default.
1018          */
1019         if (kmemleak_stack_scan) {
1020                 read_lock(&tasklist_lock);
1021                 for_each_process(task)
1022                         scan_block(task_stack_page(task),
1023                                    task_stack_page(task) + THREAD_SIZE, NULL);
1024                 read_unlock(&tasklist_lock);
1025         }
1026
1027         /*
1028          * Scan the objects already referenced from the sections scanned
1029          * above. More objects will be referenced and, if there are no memory
1030          * leaks, all the objects will be scanned. The list traversal is safe
1031          * for both tail additions and removals from inside the loop. The
1032          * kmemleak objects cannot be freed from outside the loop because their
1033          * use_count was increased.
1034          */
1035         object = list_entry(gray_list.next, typeof(*object), gray_list);
1036         while (&object->gray_list != &gray_list) {
1037                 scan_yield();
1038
1039                 /* may add new objects to the list */
1040                 if (!scan_should_stop())
1041                         scan_object(object);
1042
1043                 tmp = list_entry(object->gray_list.next, typeof(*object),
1044                                  gray_list);
1045
1046                 /* remove the object from the list and release it */
1047                 list_del(&object->gray_list);
1048                 put_object(object);
1049
1050                 object = tmp;
1051         }
1052         WARN_ON(!list_empty(&gray_list));
1053 }
1054
1055 /*
1056  * Thread function performing automatic memory scanning. Unreferenced objects
1057  * at the end of a memory scan are reported but only the first time.
1058  */
1059 static int kmemleak_scan_thread(void *arg)
1060 {
1061         static int first_run = 1;
1062
1063         pr_info("Automatic memory scanning thread started\n");
1064
1065         /*
1066          * Wait before the first scan to allow the system to fully initialize.
1067          */
1068         if (first_run) {
1069                 first_run = 0;
1070                 ssleep(SECS_FIRST_SCAN);
1071         }
1072
1073         while (!kthread_should_stop()) {
1074                 struct kmemleak_object *object;
1075                 signed long timeout = jiffies_scan_wait;
1076
1077                 mutex_lock(&scan_mutex);
1078
1079                 kmemleak_scan();
1080                 reported_leaks = 0;
1081
1082                 rcu_read_lock();
1083                 list_for_each_entry_rcu(object, &object_list, object_list) {
1084                         unsigned long flags;
1085
1086                         if (reported_leaks >= REPORTS_NR)
1087                                 break;
1088                         spin_lock_irqsave(&object->lock, flags);
1089                         if (!(object->flags & OBJECT_REPORTED) &&
1090                             unreferenced_object(object)) {
1091                                 print_unreferenced(NULL, object);
1092                                 object->flags |= OBJECT_REPORTED;
1093                                 reported_leaks++;
1094                         } else if ((object->flags & OBJECT_REPORTED) &&
1095                                    referenced_object(object)) {
1096                                 print_referenced(object);
1097                                 object->flags &= ~OBJECT_REPORTED;
1098                         }
1099                         spin_unlock_irqrestore(&object->lock, flags);
1100                 }
1101                 rcu_read_unlock();
1102
1103                 mutex_unlock(&scan_mutex);
1104                 /* wait before the next scan */
1105                 while (timeout && !kthread_should_stop())
1106                         timeout = schedule_timeout_interruptible(timeout);
1107         }
1108
1109         pr_info("Automatic memory scanning thread ended\n");
1110
1111         return 0;
1112 }
1113
1114 /*
1115  * Start the automatic memory scanning thread. This function must be called
1116  * with the kmemleak_mutex held.
1117  */
1118 void start_scan_thread(void)
1119 {
1120         if (scan_thread)
1121                 return;
1122         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1123         if (IS_ERR(scan_thread)) {
1124                 pr_warning("Failed to create the scan thread\n");
1125                 scan_thread = NULL;
1126         }
1127 }
1128
1129 /*
1130  * Stop the automatic memory scanning thread. This function must be called
1131  * with the kmemleak_mutex held.
1132  */
1133 void stop_scan_thread(void)
1134 {
1135         if (scan_thread) {
1136                 kthread_stop(scan_thread);
1137                 scan_thread = NULL;
1138         }
1139 }
1140
1141 /*
1142  * Iterate over the object_list and return the first valid object at or after
1143  * the required position with its use_count incremented. The function triggers
1144  * a memory scanning when the pos argument points to the first position.
1145  */
1146 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1147 {
1148         struct kmemleak_object *object;
1149         loff_t n = *pos;
1150
1151         if (!n) {
1152                 kmemleak_scan();
1153                 reported_leaks = 0;
1154         }
1155         if (reported_leaks >= REPORTS_NR)
1156                 return NULL;
1157
1158         rcu_read_lock();
1159         list_for_each_entry_rcu(object, &object_list, object_list) {
1160                 if (n-- > 0)
1161                         continue;
1162                 if (get_object(object))
1163                         goto out;
1164         }
1165         object = NULL;
1166 out:
1167         rcu_read_unlock();
1168         return object;
1169 }
1170
1171 /*
1172  * Return the next object in the object_list. The function decrements the
1173  * use_count of the previous object and increases that of the next one.
1174  */
1175 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1176 {
1177         struct kmemleak_object *prev_obj = v;
1178         struct kmemleak_object *next_obj = NULL;
1179         struct list_head *n = &prev_obj->object_list;
1180
1181         ++(*pos);
1182         if (reported_leaks >= REPORTS_NR)
1183                 goto out;
1184
1185         rcu_read_lock();
1186         list_for_each_continue_rcu(n, &object_list) {
1187                 next_obj = list_entry(n, struct kmemleak_object, object_list);
1188                 if (get_object(next_obj))
1189                         break;
1190         }
1191         rcu_read_unlock();
1192 out:
1193         put_object(prev_obj);
1194         return next_obj;
1195 }
1196
1197 /*
1198  * Decrement the use_count of the last object required, if any.
1199  */
1200 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1201 {
1202         if (v)
1203                 put_object(v);
1204 }
1205
1206 /*
1207  * Print the information for an unreferenced object to the seq file.
1208  */
1209 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1210 {
1211         struct kmemleak_object *object = v;
1212         unsigned long flags;
1213
1214         spin_lock_irqsave(&object->lock, flags);
1215         if (!unreferenced_object(object))
1216                 goto out;
1217         print_unreferenced(seq, object);
1218         reported_leaks++;
1219 out:
1220         spin_unlock_irqrestore(&object->lock, flags);
1221         return 0;
1222 }
1223
1224 static const struct seq_operations kmemleak_seq_ops = {
1225         .start = kmemleak_seq_start,
1226         .next  = kmemleak_seq_next,
1227         .stop  = kmemleak_seq_stop,
1228         .show  = kmemleak_seq_show,
1229 };
1230
1231 static int kmemleak_open(struct inode *inode, struct file *file)
1232 {
1233         int ret = 0;
1234
1235         if (!atomic_read(&kmemleak_enabled))
1236                 return -EBUSY;
1237
1238         ret = mutex_lock_interruptible(&kmemleak_mutex);
1239         if (ret < 0)
1240                 goto out;
1241         if (file->f_mode & FMODE_READ) {
1242                 ret = mutex_lock_interruptible(&scan_mutex);
1243                 if (ret < 0)
1244                         goto kmemleak_unlock;
1245                 ret = seq_open(file, &kmemleak_seq_ops);
1246                 if (ret < 0)
1247                         goto scan_unlock;
1248         }
1249         return ret;
1250
1251 scan_unlock:
1252         mutex_unlock(&scan_mutex);
1253 kmemleak_unlock:
1254         mutex_unlock(&kmemleak_mutex);
1255 out:
1256         return ret;
1257 }
1258
1259 static int kmemleak_release(struct inode *inode, struct file *file)
1260 {
1261         int ret = 0;
1262
1263         if (file->f_mode & FMODE_READ) {
1264                 seq_release(inode, file);
1265                 mutex_unlock(&scan_mutex);
1266         }
1267         mutex_unlock(&kmemleak_mutex);
1268
1269         return ret;
1270 }
1271
1272 /*
1273  * File write operation to configure kmemleak at run-time. The following
1274  * commands can be written to the /sys/kernel/debug/kmemleak file:
1275  *   off        - disable kmemleak (irreversible)
1276  *   stack=on   - enable the task stacks scanning
1277  *   stack=off  - disable the tasks stacks scanning
1278  *   scan=on    - start the automatic memory scanning thread
1279  *   scan=off   - stop the automatic memory scanning thread
1280  *   scan=...   - set the automatic memory scanning period in seconds (0 to
1281  *                disable it)
1282  */
1283 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1284                               size_t size, loff_t *ppos)
1285 {
1286         char buf[64];
1287         int buf_size;
1288
1289         if (!atomic_read(&kmemleak_enabled))
1290                 return -EBUSY;
1291
1292         buf_size = min(size, (sizeof(buf) - 1));
1293         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1294                 return -EFAULT;
1295         buf[buf_size] = 0;
1296
1297         if (strncmp(buf, "off", 3) == 0)
1298                 kmemleak_disable();
1299         else if (strncmp(buf, "stack=on", 8) == 0)
1300                 kmemleak_stack_scan = 1;
1301         else if (strncmp(buf, "stack=off", 9) == 0)
1302                 kmemleak_stack_scan = 0;
1303         else if (strncmp(buf, "scan=on", 7) == 0)
1304                 start_scan_thread();
1305         else if (strncmp(buf, "scan=off", 8) == 0)
1306                 stop_scan_thread();
1307         else if (strncmp(buf, "scan=", 5) == 0) {
1308                 unsigned long secs;
1309                 int err;
1310
1311                 err = strict_strtoul(buf + 5, 0, &secs);
1312                 if (err < 0)
1313                         return err;
1314                 stop_scan_thread();
1315                 if (secs) {
1316                         jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1317                         start_scan_thread();
1318                 }
1319         } else
1320                 return -EINVAL;
1321
1322         /* ignore the rest of the buffer, only one command at a time */
1323         *ppos += size;
1324         return size;
1325 }
1326
1327 static const struct file_operations kmemleak_fops = {
1328         .owner          = THIS_MODULE,
1329         .open           = kmemleak_open,
1330         .read           = seq_read,
1331         .write          = kmemleak_write,
1332         .llseek         = seq_lseek,
1333         .release        = kmemleak_release,
1334 };
1335
1336 /*
1337  * Perform the freeing of the kmemleak internal objects after waiting for any
1338  * current memory scan to complete.
1339  */
1340 static int kmemleak_cleanup_thread(void *arg)
1341 {
1342         struct kmemleak_object *object;
1343
1344         mutex_lock(&kmemleak_mutex);
1345         stop_scan_thread();
1346         mutex_unlock(&kmemleak_mutex);
1347
1348         mutex_lock(&scan_mutex);
1349         rcu_read_lock();
1350         list_for_each_entry_rcu(object, &object_list, object_list)
1351                 delete_object(object->pointer);
1352         rcu_read_unlock();
1353         mutex_unlock(&scan_mutex);
1354
1355         return 0;
1356 }
1357
1358 /*
1359  * Start the clean-up thread.
1360  */
1361 static void kmemleak_cleanup(void)
1362 {
1363         struct task_struct *cleanup_thread;
1364
1365         cleanup_thread = kthread_run(kmemleak_cleanup_thread, NULL,
1366                                      "kmemleak-clean");
1367         if (IS_ERR(cleanup_thread))
1368                 pr_warning("Failed to create the clean-up thread\n");
1369 }
1370
1371 /*
1372  * Disable kmemleak. No memory allocation/freeing will be traced once this
1373  * function is called. Disabling kmemleak is an irreversible operation.
1374  */
1375 static void kmemleak_disable(void)
1376 {
1377         /* atomically check whether it was already invoked */
1378         if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1379                 return;
1380
1381         /* stop any memory operation tracing */
1382         atomic_set(&kmemleak_early_log, 0);
1383         atomic_set(&kmemleak_enabled, 0);
1384
1385         /* check whether it is too early for a kernel thread */
1386         if (atomic_read(&kmemleak_initialized))
1387                 kmemleak_cleanup();
1388
1389         pr_info("Kernel memory leak detector disabled\n");
1390 }
1391
1392 /*
1393  * Allow boot-time kmemleak disabling (enabled by default).
1394  */
1395 static int kmemleak_boot_config(char *str)
1396 {
1397         if (!str)
1398                 return -EINVAL;
1399         if (strcmp(str, "off") == 0)
1400                 kmemleak_disable();
1401         else if (strcmp(str, "on") != 0)
1402                 return -EINVAL;
1403         return 0;
1404 }
1405 early_param("kmemleak", kmemleak_boot_config);
1406
1407 /*
1408  * Kmemleak initialization.
1409  */
1410 void __init kmemleak_init(void)
1411 {
1412         int i;
1413         unsigned long flags;
1414
1415         jiffies_scan_yield = msecs_to_jiffies(MSECS_SCAN_YIELD);
1416         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1417         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1418
1419         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1420         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1421         INIT_PRIO_TREE_ROOT(&object_tree_root);
1422
1423         /* the kernel is still in UP mode, so disabling the IRQs is enough */
1424         local_irq_save(flags);
1425         if (!atomic_read(&kmemleak_error)) {
1426                 atomic_set(&kmemleak_enabled, 1);
1427                 atomic_set(&kmemleak_early_log, 0);
1428         }
1429         local_irq_restore(flags);
1430
1431         /*
1432          * This is the point where tracking allocations is safe. Automatic
1433          * scanning is started during the late initcall. Add the early logged
1434          * callbacks to the kmemleak infrastructure.
1435          */
1436         for (i = 0; i < crt_early_log; i++) {
1437                 struct early_log *log = &early_log[i];
1438
1439                 switch (log->op_type) {
1440                 case KMEMLEAK_ALLOC:
1441                         kmemleak_alloc(log->ptr, log->size, log->min_count,
1442                                        GFP_KERNEL);
1443                         break;
1444                 case KMEMLEAK_FREE:
1445                         kmemleak_free(log->ptr);
1446                         break;
1447                 case KMEMLEAK_NOT_LEAK:
1448                         kmemleak_not_leak(log->ptr);
1449                         break;
1450                 case KMEMLEAK_IGNORE:
1451                         kmemleak_ignore(log->ptr);
1452                         break;
1453                 case KMEMLEAK_SCAN_AREA:
1454                         kmemleak_scan_area(log->ptr, log->offset, log->length,
1455                                            GFP_KERNEL);
1456                         break;
1457                 case KMEMLEAK_NO_SCAN:
1458                         kmemleak_no_scan(log->ptr);
1459                         break;
1460                 default:
1461                         WARN_ON(1);
1462                 }
1463         }
1464 }
1465
1466 /*
1467  * Late initialization function.
1468  */
1469 static int __init kmemleak_late_init(void)
1470 {
1471         struct dentry *dentry;
1472
1473         atomic_set(&kmemleak_initialized, 1);
1474
1475         if (atomic_read(&kmemleak_error)) {
1476                 /*
1477                  * Some error occured and kmemleak was disabled. There is a
1478                  * small chance that kmemleak_disable() was called immediately
1479                  * after setting kmemleak_initialized and we may end up with
1480                  * two clean-up threads but serialized by scan_mutex.
1481                  */
1482                 kmemleak_cleanup();
1483                 return -ENOMEM;
1484         }
1485
1486         dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1487                                      &kmemleak_fops);
1488         if (!dentry)
1489                 pr_warning("Failed to create the debugfs kmemleak file\n");
1490         mutex_lock(&kmemleak_mutex);
1491         start_scan_thread();
1492         mutex_unlock(&kmemleak_mutex);
1493
1494         pr_info("Kernel memory leak detector initialized\n");
1495
1496         return 0;
1497 }
1498 late_initcall(kmemleak_late_init);