4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 bh->b_end_io = handler;
53 bh->b_private = private;
56 static int sync_buffer(void *word)
58 struct block_device *bd;
59 struct buffer_head *bh
60 = container_of(word, struct buffer_head, b_state);
65 blk_run_address_space(bd->bd_inode->i_mapping);
70 void fastcall __lock_buffer(struct buffer_head *bh)
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 TASK_UNINTERRUPTIBLE);
75 EXPORT_SYMBOL(__lock_buffer);
77 void fastcall unlock_buffer(struct buffer_head *bh)
79 smp_mb__before_clear_bit();
80 clear_buffer_locked(bh);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh->b_state, BH_Lock);
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
90 void __wait_on_buffer(struct buffer_head * bh)
92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
96 __clear_page_buffers(struct page *page)
98 ClearPagePrivate(page);
99 set_page_private(page, 0);
100 page_cache_release(page);
103 static void buffer_io_error(struct buffer_head *bh)
105 char b[BDEVNAME_SIZE];
107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 bdevname(bh->b_bdev, b),
109 (unsigned long long)bh->b_blocknr);
113 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
114 * unlock the buffer. This is what ll_rw_block uses too.
116 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
119 set_buffer_uptodate(bh);
121 /* This happens, due to failed READA attempts. */
122 clear_buffer_uptodate(bh);
128 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
130 char b[BDEVNAME_SIZE];
133 set_buffer_uptodate(bh);
135 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
137 printk(KERN_WARNING "lost page write due to "
139 bdevname(bh->b_bdev, b));
141 set_buffer_write_io_error(bh);
142 clear_buffer_uptodate(bh);
149 * Write out and wait upon all the dirty data associated with a block
150 * device via its mapping. Does not take the superblock lock.
152 int sync_blockdev(struct block_device *bdev)
157 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
160 EXPORT_SYMBOL(sync_blockdev);
163 * Write out and wait upon all dirty data associated with this
164 * device. Filesystem data as well as the underlying block
165 * device. Takes the superblock lock.
167 int fsync_bdev(struct block_device *bdev)
169 struct super_block *sb = get_super(bdev);
171 int res = fsync_super(sb);
175 return sync_blockdev(bdev);
179 * freeze_bdev -- lock a filesystem and force it into a consistent state
180 * @bdev: blockdevice to lock
182 * This takes the block device bd_mount_sem to make sure no new mounts
183 * happen on bdev until thaw_bdev() is called.
184 * If a superblock is found on this device, we take the s_umount semaphore
185 * on it to make sure nobody unmounts until the snapshot creation is done.
187 struct super_block *freeze_bdev(struct block_device *bdev)
189 struct super_block *sb;
191 down(&bdev->bd_mount_sem);
192 sb = get_super(bdev);
193 if (sb && !(sb->s_flags & MS_RDONLY)) {
194 sb->s_frozen = SB_FREEZE_WRITE;
199 sb->s_frozen = SB_FREEZE_TRANS;
202 sync_blockdev(sb->s_bdev);
204 if (sb->s_op->write_super_lockfs)
205 sb->s_op->write_super_lockfs(sb);
209 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
211 EXPORT_SYMBOL(freeze_bdev);
214 * thaw_bdev -- unlock filesystem
215 * @bdev: blockdevice to unlock
216 * @sb: associated superblock
218 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
220 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
223 BUG_ON(sb->s_bdev != bdev);
225 if (sb->s_op->unlockfs)
226 sb->s_op->unlockfs(sb);
227 sb->s_frozen = SB_UNFROZEN;
229 wake_up(&sb->s_wait_unfrozen);
233 up(&bdev->bd_mount_sem);
235 EXPORT_SYMBOL(thaw_bdev);
238 * Various filesystems appear to want __find_get_block to be non-blocking.
239 * But it's the page lock which protects the buffers. To get around this,
240 * we get exclusion from try_to_free_buffers with the blockdev mapping's
243 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
244 * may be quite high. This code could TryLock the page, and if that
245 * succeeds, there is no need to take private_lock. (But if
246 * private_lock is contended then so is mapping->tree_lock).
248 static struct buffer_head *
249 __find_get_block_slow(struct block_device *bdev, sector_t block)
251 struct inode *bd_inode = bdev->bd_inode;
252 struct address_space *bd_mapping = bd_inode->i_mapping;
253 struct buffer_head *ret = NULL;
255 struct buffer_head *bh;
256 struct buffer_head *head;
260 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
261 page = find_get_page(bd_mapping, index);
265 spin_lock(&bd_mapping->private_lock);
266 if (!page_has_buffers(page))
268 head = page_buffers(page);
271 if (bh->b_blocknr == block) {
276 if (!buffer_mapped(bh))
278 bh = bh->b_this_page;
279 } while (bh != head);
281 /* we might be here because some of the buffers on this page are
282 * not mapped. This is due to various races between
283 * file io on the block device and getblk. It gets dealt with
284 * elsewhere, don't buffer_error if we had some unmapped buffers
287 printk("__find_get_block_slow() failed. "
288 "block=%llu, b_blocknr=%llu\n",
289 (unsigned long long)block,
290 (unsigned long long)bh->b_blocknr);
291 printk("b_state=0x%08lx, b_size=%zu\n",
292 bh->b_state, bh->b_size);
293 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
296 spin_unlock(&bd_mapping->private_lock);
297 page_cache_release(page);
302 /* If invalidate_buffers() will trash dirty buffers, it means some kind
303 of fs corruption is going on. Trashing dirty data always imply losing
304 information that was supposed to be just stored on the physical layer
307 Thus invalidate_buffers in general usage is not allwowed to trash
308 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
309 be preserved. These buffers are simply skipped.
311 We also skip buffers which are still in use. For example this can
312 happen if a userspace program is reading the block device.
314 NOTE: In the case where the user removed a removable-media-disk even if
315 there's still dirty data not synced on disk (due a bug in the device driver
316 or due an error of the user), by not destroying the dirty buffers we could
317 generate corruption also on the next media inserted, thus a parameter is
318 necessary to handle this case in the most safe way possible (trying
319 to not corrupt also the new disk inserted with the data belonging to
320 the old now corrupted disk). Also for the ramdisk the natural thing
321 to do in order to release the ramdisk memory is to destroy dirty buffers.
323 These are two special cases. Normal usage imply the device driver
324 to issue a sync on the device (without waiting I/O completion) and
325 then an invalidate_buffers call that doesn't trash dirty buffers.
327 For handling cache coherency with the blkdev pagecache the 'update' case
328 is been introduced. It is needed to re-read from disk any pinned
329 buffer. NOTE: re-reading from disk is destructive so we can do it only
330 when we assume nobody is changing the buffercache under our I/O and when
331 we think the disk contains more recent information than the buffercache.
332 The update == 1 pass marks the buffers we need to update, the update == 2
333 pass does the actual I/O. */
334 void invalidate_bdev(struct block_device *bdev)
336 struct address_space *mapping = bdev->bd_inode->i_mapping;
338 if (mapping->nrpages == 0)
341 invalidate_bh_lrus();
342 invalidate_mapping_pages(mapping, 0, -1);
346 * Kick pdflush then try to free up some ZONE_NORMAL memory.
348 static void free_more_memory(void)
353 wakeup_pdflush(1024);
356 for_each_online_pgdat(pgdat) {
357 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
359 try_to_free_pages(zones, GFP_NOFS);
364 * I/O completion handler for block_read_full_page() - pages
365 * which come unlocked at the end of I/O.
367 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
370 struct buffer_head *first;
371 struct buffer_head *tmp;
373 int page_uptodate = 1;
375 BUG_ON(!buffer_async_read(bh));
379 set_buffer_uptodate(bh);
381 clear_buffer_uptodate(bh);
382 if (printk_ratelimit())
388 * Be _very_ careful from here on. Bad things can happen if
389 * two buffer heads end IO at almost the same time and both
390 * decide that the page is now completely done.
392 first = page_buffers(page);
393 local_irq_save(flags);
394 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
395 clear_buffer_async_read(bh);
399 if (!buffer_uptodate(tmp))
401 if (buffer_async_read(tmp)) {
402 BUG_ON(!buffer_locked(tmp));
405 tmp = tmp->b_this_page;
407 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
408 local_irq_restore(flags);
411 * If none of the buffers had errors and they are all
412 * uptodate then we can set the page uptodate.
414 if (page_uptodate && !PageError(page))
415 SetPageUptodate(page);
420 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
421 local_irq_restore(flags);
426 * Completion handler for block_write_full_page() - pages which are unlocked
427 * during I/O, and which have PageWriteback cleared upon I/O completion.
429 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
431 char b[BDEVNAME_SIZE];
433 struct buffer_head *first;
434 struct buffer_head *tmp;
437 BUG_ON(!buffer_async_write(bh));
441 set_buffer_uptodate(bh);
443 if (printk_ratelimit()) {
445 printk(KERN_WARNING "lost page write due to "
447 bdevname(bh->b_bdev, b));
449 set_bit(AS_EIO, &page->mapping->flags);
450 set_buffer_write_io_error(bh);
451 clear_buffer_uptodate(bh);
455 first = page_buffers(page);
456 local_irq_save(flags);
457 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
459 clear_buffer_async_write(bh);
461 tmp = bh->b_this_page;
463 if (buffer_async_write(tmp)) {
464 BUG_ON(!buffer_locked(tmp));
467 tmp = tmp->b_this_page;
469 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
470 local_irq_restore(flags);
471 end_page_writeback(page);
475 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
476 local_irq_restore(flags);
481 * If a page's buffers are under async readin (end_buffer_async_read
482 * completion) then there is a possibility that another thread of
483 * control could lock one of the buffers after it has completed
484 * but while some of the other buffers have not completed. This
485 * locked buffer would confuse end_buffer_async_read() into not unlocking
486 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
487 * that this buffer is not under async I/O.
489 * The page comes unlocked when it has no locked buffer_async buffers
492 * PageLocked prevents anyone starting new async I/O reads any of
495 * PageWriteback is used to prevent simultaneous writeout of the same
498 * PageLocked prevents anyone from starting writeback of a page which is
499 * under read I/O (PageWriteback is only ever set against a locked page).
501 static void mark_buffer_async_read(struct buffer_head *bh)
503 bh->b_end_io = end_buffer_async_read;
504 set_buffer_async_read(bh);
507 void mark_buffer_async_write(struct buffer_head *bh)
509 bh->b_end_io = end_buffer_async_write;
510 set_buffer_async_write(bh);
512 EXPORT_SYMBOL(mark_buffer_async_write);
516 * fs/buffer.c contains helper functions for buffer-backed address space's
517 * fsync functions. A common requirement for buffer-based filesystems is
518 * that certain data from the backing blockdev needs to be written out for
519 * a successful fsync(). For example, ext2 indirect blocks need to be
520 * written back and waited upon before fsync() returns.
522 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
523 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
524 * management of a list of dependent buffers at ->i_mapping->private_list.
526 * Locking is a little subtle: try_to_free_buffers() will remove buffers
527 * from their controlling inode's queue when they are being freed. But
528 * try_to_free_buffers() will be operating against the *blockdev* mapping
529 * at the time, not against the S_ISREG file which depends on those buffers.
530 * So the locking for private_list is via the private_lock in the address_space
531 * which backs the buffers. Which is different from the address_space
532 * against which the buffers are listed. So for a particular address_space,
533 * mapping->private_lock does *not* protect mapping->private_list! In fact,
534 * mapping->private_list will always be protected by the backing blockdev's
537 * Which introduces a requirement: all buffers on an address_space's
538 * ->private_list must be from the same address_space: the blockdev's.
540 * address_spaces which do not place buffers at ->private_list via these
541 * utility functions are free to use private_lock and private_list for
542 * whatever they want. The only requirement is that list_empty(private_list)
543 * be true at clear_inode() time.
545 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
546 * filesystems should do that. invalidate_inode_buffers() should just go
547 * BUG_ON(!list_empty).
549 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
550 * take an address_space, not an inode. And it should be called
551 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
554 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
555 * list if it is already on a list. Because if the buffer is on a list,
556 * it *must* already be on the right one. If not, the filesystem is being
557 * silly. This will save a ton of locking. But first we have to ensure
558 * that buffers are taken *off* the old inode's list when they are freed
559 * (presumably in truncate). That requires careful auditing of all
560 * filesystems (do it inside bforget()). It could also be done by bringing
565 * The buffer's backing address_space's private_lock must be held
567 static inline void __remove_assoc_queue(struct buffer_head *bh)
569 list_del_init(&bh->b_assoc_buffers);
570 WARN_ON(!bh->b_assoc_map);
571 if (buffer_write_io_error(bh))
572 set_bit(AS_EIO, &bh->b_assoc_map->flags);
573 bh->b_assoc_map = NULL;
576 int inode_has_buffers(struct inode *inode)
578 return !list_empty(&inode->i_data.private_list);
582 * osync is designed to support O_SYNC io. It waits synchronously for
583 * all already-submitted IO to complete, but does not queue any new
584 * writes to the disk.
586 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
587 * you dirty the buffers, and then use osync_inode_buffers to wait for
588 * completion. Any other dirty buffers which are not yet queued for
589 * write will not be flushed to disk by the osync.
591 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
593 struct buffer_head *bh;
599 list_for_each_prev(p, list) {
601 if (buffer_locked(bh)) {
605 if (!buffer_uptodate(bh))
617 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
619 * @mapping: the mapping which wants those buffers written
621 * Starts I/O against the buffers at mapping->private_list, and waits upon
624 * Basically, this is a convenience function for fsync().
625 * @mapping is a file or directory which needs those buffers to be written for
626 * a successful fsync().
628 int sync_mapping_buffers(struct address_space *mapping)
630 struct address_space *buffer_mapping = mapping->assoc_mapping;
632 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
635 return fsync_buffers_list(&buffer_mapping->private_lock,
636 &mapping->private_list);
638 EXPORT_SYMBOL(sync_mapping_buffers);
641 * Called when we've recently written block `bblock', and it is known that
642 * `bblock' was for a buffer_boundary() buffer. This means that the block at
643 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
644 * dirty, schedule it for IO. So that indirects merge nicely with their data.
646 void write_boundary_block(struct block_device *bdev,
647 sector_t bblock, unsigned blocksize)
649 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
651 if (buffer_dirty(bh))
652 ll_rw_block(WRITE, 1, &bh);
657 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
659 struct address_space *mapping = inode->i_mapping;
660 struct address_space *buffer_mapping = bh->b_page->mapping;
662 mark_buffer_dirty(bh);
663 if (!mapping->assoc_mapping) {
664 mapping->assoc_mapping = buffer_mapping;
666 BUG_ON(mapping->assoc_mapping != buffer_mapping);
668 if (list_empty(&bh->b_assoc_buffers)) {
669 spin_lock(&buffer_mapping->private_lock);
670 list_move_tail(&bh->b_assoc_buffers,
671 &mapping->private_list);
672 bh->b_assoc_map = mapping;
673 spin_unlock(&buffer_mapping->private_lock);
676 EXPORT_SYMBOL(mark_buffer_dirty_inode);
679 * Add a page to the dirty page list.
681 * It is a sad fact of life that this function is called from several places
682 * deeply under spinlocking. It may not sleep.
684 * If the page has buffers, the uptodate buffers are set dirty, to preserve
685 * dirty-state coherency between the page and the buffers. It the page does
686 * not have buffers then when they are later attached they will all be set
689 * The buffers are dirtied before the page is dirtied. There's a small race
690 * window in which a writepage caller may see the page cleanness but not the
691 * buffer dirtiness. That's fine. If this code were to set the page dirty
692 * before the buffers, a concurrent writepage caller could clear the page dirty
693 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
694 * page on the dirty page list.
696 * We use private_lock to lock against try_to_free_buffers while using the
697 * page's buffer list. Also use this to protect against clean buffers being
698 * added to the page after it was set dirty.
700 * FIXME: may need to call ->reservepage here as well. That's rather up to the
701 * address_space though.
703 int __set_page_dirty_buffers(struct page *page)
705 struct address_space * const mapping = page_mapping(page);
707 if (unlikely(!mapping))
708 return !TestSetPageDirty(page);
710 spin_lock(&mapping->private_lock);
711 if (page_has_buffers(page)) {
712 struct buffer_head *head = page_buffers(page);
713 struct buffer_head *bh = head;
716 set_buffer_dirty(bh);
717 bh = bh->b_this_page;
718 } while (bh != head);
720 spin_unlock(&mapping->private_lock);
722 if (TestSetPageDirty(page))
725 write_lock_irq(&mapping->tree_lock);
726 if (page->mapping) { /* Race with truncate? */
727 if (mapping_cap_account_dirty(mapping)) {
728 __inc_zone_page_state(page, NR_FILE_DIRTY);
729 task_io_account_write(PAGE_CACHE_SIZE);
731 radix_tree_tag_set(&mapping->page_tree,
732 page_index(page), PAGECACHE_TAG_DIRTY);
734 write_unlock_irq(&mapping->tree_lock);
735 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
738 EXPORT_SYMBOL(__set_page_dirty_buffers);
741 * Write out and wait upon a list of buffers.
743 * We have conflicting pressures: we want to make sure that all
744 * initially dirty buffers get waited on, but that any subsequently
745 * dirtied buffers don't. After all, we don't want fsync to last
746 * forever if somebody is actively writing to the file.
748 * Do this in two main stages: first we copy dirty buffers to a
749 * temporary inode list, queueing the writes as we go. Then we clean
750 * up, waiting for those writes to complete.
752 * During this second stage, any subsequent updates to the file may end
753 * up refiling the buffer on the original inode's dirty list again, so
754 * there is a chance we will end up with a buffer queued for write but
755 * not yet completed on that list. So, as a final cleanup we go through
756 * the osync code to catch these locked, dirty buffers without requeuing
757 * any newly dirty buffers for write.
759 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
761 struct buffer_head *bh;
762 struct list_head tmp;
765 INIT_LIST_HEAD(&tmp);
768 while (!list_empty(list)) {
769 bh = BH_ENTRY(list->next);
770 __remove_assoc_queue(bh);
771 if (buffer_dirty(bh) || buffer_locked(bh)) {
772 list_add(&bh->b_assoc_buffers, &tmp);
773 if (buffer_dirty(bh)) {
777 * Ensure any pending I/O completes so that
778 * ll_rw_block() actually writes the current
779 * contents - it is a noop if I/O is still in
780 * flight on potentially older contents.
782 ll_rw_block(SWRITE, 1, &bh);
789 while (!list_empty(&tmp)) {
790 bh = BH_ENTRY(tmp.prev);
791 list_del_init(&bh->b_assoc_buffers);
795 if (!buffer_uptodate(bh))
802 err2 = osync_buffers_list(lock, list);
810 * Invalidate any and all dirty buffers on a given inode. We are
811 * probably unmounting the fs, but that doesn't mean we have already
812 * done a sync(). Just drop the buffers from the inode list.
814 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
815 * assumes that all the buffers are against the blockdev. Not true
818 void invalidate_inode_buffers(struct inode *inode)
820 if (inode_has_buffers(inode)) {
821 struct address_space *mapping = &inode->i_data;
822 struct list_head *list = &mapping->private_list;
823 struct address_space *buffer_mapping = mapping->assoc_mapping;
825 spin_lock(&buffer_mapping->private_lock);
826 while (!list_empty(list))
827 __remove_assoc_queue(BH_ENTRY(list->next));
828 spin_unlock(&buffer_mapping->private_lock);
833 * Remove any clean buffers from the inode's buffer list. This is called
834 * when we're trying to free the inode itself. Those buffers can pin it.
836 * Returns true if all buffers were removed.
838 int remove_inode_buffers(struct inode *inode)
842 if (inode_has_buffers(inode)) {
843 struct address_space *mapping = &inode->i_data;
844 struct list_head *list = &mapping->private_list;
845 struct address_space *buffer_mapping = mapping->assoc_mapping;
847 spin_lock(&buffer_mapping->private_lock);
848 while (!list_empty(list)) {
849 struct buffer_head *bh = BH_ENTRY(list->next);
850 if (buffer_dirty(bh)) {
854 __remove_assoc_queue(bh);
856 spin_unlock(&buffer_mapping->private_lock);
862 * Create the appropriate buffers when given a page for data area and
863 * the size of each buffer.. Use the bh->b_this_page linked list to
864 * follow the buffers created. Return NULL if unable to create more
867 * The retry flag is used to differentiate async IO (paging, swapping)
868 * which may not fail from ordinary buffer allocations.
870 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
873 struct buffer_head *bh, *head;
879 while ((offset -= size) >= 0) {
880 bh = alloc_buffer_head(GFP_NOFS);
885 bh->b_this_page = head;
890 atomic_set(&bh->b_count, 0);
891 bh->b_private = NULL;
894 /* Link the buffer to its page */
895 set_bh_page(bh, page, offset);
897 init_buffer(bh, NULL, NULL);
901 * In case anything failed, we just free everything we got.
907 head = head->b_this_page;
908 free_buffer_head(bh);
913 * Return failure for non-async IO requests. Async IO requests
914 * are not allowed to fail, so we have to wait until buffer heads
915 * become available. But we don't want tasks sleeping with
916 * partially complete buffers, so all were released above.
921 /* We're _really_ low on memory. Now we just
922 * wait for old buffer heads to become free due to
923 * finishing IO. Since this is an async request and
924 * the reserve list is empty, we're sure there are
925 * async buffer heads in use.
930 EXPORT_SYMBOL_GPL(alloc_page_buffers);
933 link_dev_buffers(struct page *page, struct buffer_head *head)
935 struct buffer_head *bh, *tail;
940 bh = bh->b_this_page;
942 tail->b_this_page = head;
943 attach_page_buffers(page, head);
947 * Initialise the state of a blockdev page's buffers.
950 init_page_buffers(struct page *page, struct block_device *bdev,
951 sector_t block, int size)
953 struct buffer_head *head = page_buffers(page);
954 struct buffer_head *bh = head;
955 int uptodate = PageUptodate(page);
958 if (!buffer_mapped(bh)) {
959 init_buffer(bh, NULL, NULL);
961 bh->b_blocknr = block;
963 set_buffer_uptodate(bh);
964 set_buffer_mapped(bh);
967 bh = bh->b_this_page;
968 } while (bh != head);
972 * Create the page-cache page that contains the requested block.
974 * This is user purely for blockdev mappings.
977 grow_dev_page(struct block_device *bdev, sector_t block,
978 pgoff_t index, int size)
980 struct inode *inode = bdev->bd_inode;
982 struct buffer_head *bh;
984 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
988 BUG_ON(!PageLocked(page));
990 if (page_has_buffers(page)) {
991 bh = page_buffers(page);
992 if (bh->b_size == size) {
993 init_page_buffers(page, bdev, block, size);
996 if (!try_to_free_buffers(page))
1001 * Allocate some buffers for this page
1003 bh = alloc_page_buffers(page, size, 0);
1008 * Link the page to the buffers and initialise them. Take the
1009 * lock to be atomic wrt __find_get_block(), which does not
1010 * run under the page lock.
1012 spin_lock(&inode->i_mapping->private_lock);
1013 link_dev_buffers(page, bh);
1014 init_page_buffers(page, bdev, block, size);
1015 spin_unlock(&inode->i_mapping->private_lock);
1021 page_cache_release(page);
1026 * Create buffers for the specified block device block's page. If
1027 * that page was dirty, the buffers are set dirty also.
1029 * Except that's a bug. Attaching dirty buffers to a dirty
1030 * blockdev's page can result in filesystem corruption, because
1031 * some of those buffers may be aliases of filesystem data.
1032 * grow_dev_page() will go BUG() if this happens.
1035 grow_buffers(struct block_device *bdev, sector_t block, int size)
1044 } while ((size << sizebits) < PAGE_SIZE);
1046 index = block >> sizebits;
1049 * Check for a block which wants to lie outside our maximum possible
1050 * pagecache index. (this comparison is done using sector_t types).
1052 if (unlikely(index != block >> sizebits)) {
1053 char b[BDEVNAME_SIZE];
1055 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1057 __FUNCTION__, (unsigned long long)block,
1061 block = index << sizebits;
1062 /* Create a page with the proper size buffers.. */
1063 page = grow_dev_page(bdev, block, index, size);
1067 page_cache_release(page);
1071 static struct buffer_head *
1072 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1074 /* Size must be multiple of hard sectorsize */
1075 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1076 (size < 512 || size > PAGE_SIZE))) {
1077 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1079 printk(KERN_ERR "hardsect size: %d\n",
1080 bdev_hardsect_size(bdev));
1087 struct buffer_head * bh;
1090 bh = __find_get_block(bdev, block, size);
1094 ret = grow_buffers(bdev, block, size);
1103 * The relationship between dirty buffers and dirty pages:
1105 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1106 * the page is tagged dirty in its radix tree.
1108 * At all times, the dirtiness of the buffers represents the dirtiness of
1109 * subsections of the page. If the page has buffers, the page dirty bit is
1110 * merely a hint about the true dirty state.
1112 * When a page is set dirty in its entirety, all its buffers are marked dirty
1113 * (if the page has buffers).
1115 * When a buffer is marked dirty, its page is dirtied, but the page's other
1118 * Also. When blockdev buffers are explicitly read with bread(), they
1119 * individually become uptodate. But their backing page remains not
1120 * uptodate - even if all of its buffers are uptodate. A subsequent
1121 * block_read_full_page() against that page will discover all the uptodate
1122 * buffers, will set the page uptodate and will perform no I/O.
1126 * mark_buffer_dirty - mark a buffer_head as needing writeout
1127 * @bh: the buffer_head to mark dirty
1129 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1130 * backing page dirty, then tag the page as dirty in its address_space's radix
1131 * tree and then attach the address_space's inode to its superblock's dirty
1134 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1135 * mapping->tree_lock and the global inode_lock.
1137 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1139 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1140 __set_page_dirty_nobuffers(bh->b_page);
1144 * Decrement a buffer_head's reference count. If all buffers against a page
1145 * have zero reference count, are clean and unlocked, and if the page is clean
1146 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1147 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1148 * a page but it ends up not being freed, and buffers may later be reattached).
1150 void __brelse(struct buffer_head * buf)
1152 if (atomic_read(&buf->b_count)) {
1156 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1161 * bforget() is like brelse(), except it discards any
1162 * potentially dirty data.
1164 void __bforget(struct buffer_head *bh)
1166 clear_buffer_dirty(bh);
1167 if (!list_empty(&bh->b_assoc_buffers)) {
1168 struct address_space *buffer_mapping = bh->b_page->mapping;
1170 spin_lock(&buffer_mapping->private_lock);
1171 list_del_init(&bh->b_assoc_buffers);
1172 bh->b_assoc_map = NULL;
1173 spin_unlock(&buffer_mapping->private_lock);
1178 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1181 if (buffer_uptodate(bh)) {
1186 bh->b_end_io = end_buffer_read_sync;
1187 submit_bh(READ, bh);
1189 if (buffer_uptodate(bh))
1197 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1198 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1199 * refcount elevated by one when they're in an LRU. A buffer can only appear
1200 * once in a particular CPU's LRU. A single buffer can be present in multiple
1201 * CPU's LRUs at the same time.
1203 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1204 * sb_find_get_block().
1206 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1207 * a local interrupt disable for that.
1210 #define BH_LRU_SIZE 8
1213 struct buffer_head *bhs[BH_LRU_SIZE];
1216 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1219 #define bh_lru_lock() local_irq_disable()
1220 #define bh_lru_unlock() local_irq_enable()
1222 #define bh_lru_lock() preempt_disable()
1223 #define bh_lru_unlock() preempt_enable()
1226 static inline void check_irqs_on(void)
1228 #ifdef irqs_disabled
1229 BUG_ON(irqs_disabled());
1234 * The LRU management algorithm is dopey-but-simple. Sorry.
1236 static void bh_lru_install(struct buffer_head *bh)
1238 struct buffer_head *evictee = NULL;
1243 lru = &__get_cpu_var(bh_lrus);
1244 if (lru->bhs[0] != bh) {
1245 struct buffer_head *bhs[BH_LRU_SIZE];
1251 for (in = 0; in < BH_LRU_SIZE; in++) {
1252 struct buffer_head *bh2 = lru->bhs[in];
1257 if (out >= BH_LRU_SIZE) {
1258 BUG_ON(evictee != NULL);
1265 while (out < BH_LRU_SIZE)
1267 memcpy(lru->bhs, bhs, sizeof(bhs));
1276 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1278 static struct buffer_head *
1279 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1281 struct buffer_head *ret = NULL;
1287 lru = &__get_cpu_var(bh_lrus);
1288 for (i = 0; i < BH_LRU_SIZE; i++) {
1289 struct buffer_head *bh = lru->bhs[i];
1291 if (bh && bh->b_bdev == bdev &&
1292 bh->b_blocknr == block && bh->b_size == size) {
1295 lru->bhs[i] = lru->bhs[i - 1];
1310 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1311 * it in the LRU and mark it as accessed. If it is not present then return
1314 struct buffer_head *
1315 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1317 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1320 bh = __find_get_block_slow(bdev, block);
1328 EXPORT_SYMBOL(__find_get_block);
1331 * __getblk will locate (and, if necessary, create) the buffer_head
1332 * which corresponds to the passed block_device, block and size. The
1333 * returned buffer has its reference count incremented.
1335 * __getblk() cannot fail - it just keeps trying. If you pass it an
1336 * illegal block number, __getblk() will happily return a buffer_head
1337 * which represents the non-existent block. Very weird.
1339 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1340 * attempt is failing. FIXME, perhaps?
1342 struct buffer_head *
1343 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1345 struct buffer_head *bh = __find_get_block(bdev, block, size);
1349 bh = __getblk_slow(bdev, block, size);
1352 EXPORT_SYMBOL(__getblk);
1355 * Do async read-ahead on a buffer..
1357 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1359 struct buffer_head *bh = __getblk(bdev, block, size);
1361 ll_rw_block(READA, 1, &bh);
1365 EXPORT_SYMBOL(__breadahead);
1368 * __bread() - reads a specified block and returns the bh
1369 * @bdev: the block_device to read from
1370 * @block: number of block
1371 * @size: size (in bytes) to read
1373 * Reads a specified block, and returns buffer head that contains it.
1374 * It returns NULL if the block was unreadable.
1376 struct buffer_head *
1377 __bread(struct block_device *bdev, sector_t block, unsigned size)
1379 struct buffer_head *bh = __getblk(bdev, block, size);
1381 if (likely(bh) && !buffer_uptodate(bh))
1382 bh = __bread_slow(bh);
1385 EXPORT_SYMBOL(__bread);
1388 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1389 * This doesn't race because it runs in each cpu either in irq
1390 * or with preempt disabled.
1392 static void invalidate_bh_lru(void *arg)
1394 struct bh_lru *b = &get_cpu_var(bh_lrus);
1397 for (i = 0; i < BH_LRU_SIZE; i++) {
1401 put_cpu_var(bh_lrus);
1404 void invalidate_bh_lrus(void)
1406 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1409 void set_bh_page(struct buffer_head *bh,
1410 struct page *page, unsigned long offset)
1413 BUG_ON(offset >= PAGE_SIZE);
1414 if (PageHighMem(page))
1416 * This catches illegal uses and preserves the offset:
1418 bh->b_data = (char *)(0 + offset);
1420 bh->b_data = page_address(page) + offset;
1422 EXPORT_SYMBOL(set_bh_page);
1425 * Called when truncating a buffer on a page completely.
1427 static void discard_buffer(struct buffer_head * bh)
1430 clear_buffer_dirty(bh);
1432 clear_buffer_mapped(bh);
1433 clear_buffer_req(bh);
1434 clear_buffer_new(bh);
1435 clear_buffer_delay(bh);
1436 clear_buffer_unwritten(bh);
1441 * block_invalidatepage - invalidate part of all of a buffer-backed page
1443 * @page: the page which is affected
1444 * @offset: the index of the truncation point
1446 * block_invalidatepage() is called when all or part of the page has become
1447 * invalidatedby a truncate operation.
1449 * block_invalidatepage() does not have to release all buffers, but it must
1450 * ensure that no dirty buffer is left outside @offset and that no I/O
1451 * is underway against any of the blocks which are outside the truncation
1452 * point. Because the caller is about to free (and possibly reuse) those
1455 void block_invalidatepage(struct page *page, unsigned long offset)
1457 struct buffer_head *head, *bh, *next;
1458 unsigned int curr_off = 0;
1460 BUG_ON(!PageLocked(page));
1461 if (!page_has_buffers(page))
1464 head = page_buffers(page);
1467 unsigned int next_off = curr_off + bh->b_size;
1468 next = bh->b_this_page;
1471 * is this block fully invalidated?
1473 if (offset <= curr_off)
1475 curr_off = next_off;
1477 } while (bh != head);
1480 * We release buffers only if the entire page is being invalidated.
1481 * The get_block cached value has been unconditionally invalidated,
1482 * so real IO is not possible anymore.
1485 try_to_release_page(page, 0);
1489 EXPORT_SYMBOL(block_invalidatepage);
1492 * We attach and possibly dirty the buffers atomically wrt
1493 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1494 * is already excluded via the page lock.
1496 void create_empty_buffers(struct page *page,
1497 unsigned long blocksize, unsigned long b_state)
1499 struct buffer_head *bh, *head, *tail;
1501 head = alloc_page_buffers(page, blocksize, 1);
1504 bh->b_state |= b_state;
1506 bh = bh->b_this_page;
1508 tail->b_this_page = head;
1510 spin_lock(&page->mapping->private_lock);
1511 if (PageUptodate(page) || PageDirty(page)) {
1514 if (PageDirty(page))
1515 set_buffer_dirty(bh);
1516 if (PageUptodate(page))
1517 set_buffer_uptodate(bh);
1518 bh = bh->b_this_page;
1519 } while (bh != head);
1521 attach_page_buffers(page, head);
1522 spin_unlock(&page->mapping->private_lock);
1524 EXPORT_SYMBOL(create_empty_buffers);
1527 * We are taking a block for data and we don't want any output from any
1528 * buffer-cache aliases starting from return from that function and
1529 * until the moment when something will explicitly mark the buffer
1530 * dirty (hopefully that will not happen until we will free that block ;-)
1531 * We don't even need to mark it not-uptodate - nobody can expect
1532 * anything from a newly allocated buffer anyway. We used to used
1533 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1534 * don't want to mark the alias unmapped, for example - it would confuse
1535 * anyone who might pick it with bread() afterwards...
1537 * Also.. Note that bforget() doesn't lock the buffer. So there can
1538 * be writeout I/O going on against recently-freed buffers. We don't
1539 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1540 * only if we really need to. That happens here.
1542 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1544 struct buffer_head *old_bh;
1548 old_bh = __find_get_block_slow(bdev, block);
1550 clear_buffer_dirty(old_bh);
1551 wait_on_buffer(old_bh);
1552 clear_buffer_req(old_bh);
1556 EXPORT_SYMBOL(unmap_underlying_metadata);
1559 * NOTE! All mapped/uptodate combinations are valid:
1561 * Mapped Uptodate Meaning
1563 * No No "unknown" - must do get_block()
1564 * No Yes "hole" - zero-filled
1565 * Yes No "allocated" - allocated on disk, not read in
1566 * Yes Yes "valid" - allocated and up-to-date in memory.
1568 * "Dirty" is valid only with the last case (mapped+uptodate).
1572 * While block_write_full_page is writing back the dirty buffers under
1573 * the page lock, whoever dirtied the buffers may decide to clean them
1574 * again at any time. We handle that by only looking at the buffer
1575 * state inside lock_buffer().
1577 * If block_write_full_page() is called for regular writeback
1578 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1579 * locked buffer. This only can happen if someone has written the buffer
1580 * directly, with submit_bh(). At the address_space level PageWriteback
1581 * prevents this contention from occurring.
1583 static int __block_write_full_page(struct inode *inode, struct page *page,
1584 get_block_t *get_block, struct writeback_control *wbc)
1588 sector_t last_block;
1589 struct buffer_head *bh, *head;
1590 const unsigned blocksize = 1 << inode->i_blkbits;
1591 int nr_underway = 0;
1593 BUG_ON(!PageLocked(page));
1595 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1597 if (!page_has_buffers(page)) {
1598 create_empty_buffers(page, blocksize,
1599 (1 << BH_Dirty)|(1 << BH_Uptodate));
1603 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1604 * here, and the (potentially unmapped) buffers may become dirty at
1605 * any time. If a buffer becomes dirty here after we've inspected it
1606 * then we just miss that fact, and the page stays dirty.
1608 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1609 * handle that here by just cleaning them.
1612 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1613 head = page_buffers(page);
1617 * Get all the dirty buffers mapped to disk addresses and
1618 * handle any aliases from the underlying blockdev's mapping.
1621 if (block > last_block) {
1623 * mapped buffers outside i_size will occur, because
1624 * this page can be outside i_size when there is a
1625 * truncate in progress.
1628 * The buffer was zeroed by block_write_full_page()
1630 clear_buffer_dirty(bh);
1631 set_buffer_uptodate(bh);
1632 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1633 WARN_ON(bh->b_size != blocksize);
1634 err = get_block(inode, block, bh, 1);
1637 if (buffer_new(bh)) {
1638 /* blockdev mappings never come here */
1639 clear_buffer_new(bh);
1640 unmap_underlying_metadata(bh->b_bdev,
1644 bh = bh->b_this_page;
1646 } while (bh != head);
1649 if (!buffer_mapped(bh))
1652 * If it's a fully non-blocking write attempt and we cannot
1653 * lock the buffer then redirty the page. Note that this can
1654 * potentially cause a busy-wait loop from pdflush and kswapd
1655 * activity, but those code paths have their own higher-level
1658 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1660 } else if (test_set_buffer_locked(bh)) {
1661 redirty_page_for_writepage(wbc, page);
1664 if (test_clear_buffer_dirty(bh)) {
1665 mark_buffer_async_write(bh);
1669 } while ((bh = bh->b_this_page) != head);
1672 * The page and its buffers are protected by PageWriteback(), so we can
1673 * drop the bh refcounts early.
1675 BUG_ON(PageWriteback(page));
1676 set_page_writeback(page);
1679 struct buffer_head *next = bh->b_this_page;
1680 if (buffer_async_write(bh)) {
1681 submit_bh(WRITE, bh);
1685 } while (bh != head);
1690 if (nr_underway == 0) {
1692 * The page was marked dirty, but the buffers were
1693 * clean. Someone wrote them back by hand with
1694 * ll_rw_block/submit_bh. A rare case.
1696 end_page_writeback(page);
1699 * The page and buffer_heads can be released at any time from
1702 wbc->pages_skipped++; /* We didn't write this page */
1708 * ENOSPC, or some other error. We may already have added some
1709 * blocks to the file, so we need to write these out to avoid
1710 * exposing stale data.
1711 * The page is currently locked and not marked for writeback
1714 /* Recovery: lock and submit the mapped buffers */
1716 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1718 mark_buffer_async_write(bh);
1721 * The buffer may have been set dirty during
1722 * attachment to a dirty page.
1724 clear_buffer_dirty(bh);
1726 } while ((bh = bh->b_this_page) != head);
1728 BUG_ON(PageWriteback(page));
1729 mapping_set_error(page->mapping, err);
1730 set_page_writeback(page);
1732 struct buffer_head *next = bh->b_this_page;
1733 if (buffer_async_write(bh)) {
1734 clear_buffer_dirty(bh);
1735 submit_bh(WRITE, bh);
1739 } while (bh != head);
1744 static int __block_prepare_write(struct inode *inode, struct page *page,
1745 unsigned from, unsigned to, get_block_t *get_block)
1747 unsigned block_start, block_end;
1750 unsigned blocksize, bbits;
1751 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1753 BUG_ON(!PageLocked(page));
1754 BUG_ON(from > PAGE_CACHE_SIZE);
1755 BUG_ON(to > PAGE_CACHE_SIZE);
1758 blocksize = 1 << inode->i_blkbits;
1759 if (!page_has_buffers(page))
1760 create_empty_buffers(page, blocksize, 0);
1761 head = page_buffers(page);
1763 bbits = inode->i_blkbits;
1764 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1766 for(bh = head, block_start = 0; bh != head || !block_start;
1767 block++, block_start=block_end, bh = bh->b_this_page) {
1768 block_end = block_start + blocksize;
1769 if (block_end <= from || block_start >= to) {
1770 if (PageUptodate(page)) {
1771 if (!buffer_uptodate(bh))
1772 set_buffer_uptodate(bh);
1777 clear_buffer_new(bh);
1778 if (!buffer_mapped(bh)) {
1779 WARN_ON(bh->b_size != blocksize);
1780 err = get_block(inode, block, bh, 1);
1783 if (buffer_new(bh)) {
1784 unmap_underlying_metadata(bh->b_bdev,
1786 if (PageUptodate(page)) {
1787 set_buffer_uptodate(bh);
1790 if (block_end > to || block_start < from) {
1793 kaddr = kmap_atomic(page, KM_USER0);
1797 if (block_start < from)
1798 memset(kaddr+block_start,
1799 0, from-block_start);
1800 flush_dcache_page(page);
1801 kunmap_atomic(kaddr, KM_USER0);
1806 if (PageUptodate(page)) {
1807 if (!buffer_uptodate(bh))
1808 set_buffer_uptodate(bh);
1811 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1812 !buffer_unwritten(bh) &&
1813 (block_start < from || block_end > to)) {
1814 ll_rw_block(READ, 1, &bh);
1819 * If we issued read requests - let them complete.
1821 while(wait_bh > wait) {
1822 wait_on_buffer(*--wait_bh);
1823 if (!buffer_uptodate(*wait_bh))
1830 clear_buffer_new(bh);
1831 } while ((bh = bh->b_this_page) != head);
1836 * Zero out any newly allocated blocks to avoid exposing stale
1837 * data. If BH_New is set, we know that the block was newly
1838 * allocated in the above loop.
1843 block_end = block_start+blocksize;
1844 if (block_end <= from)
1846 if (block_start >= to)
1848 if (buffer_new(bh)) {
1851 clear_buffer_new(bh);
1852 kaddr = kmap_atomic(page, KM_USER0);
1853 memset(kaddr+block_start, 0, bh->b_size);
1854 flush_dcache_page(page);
1855 kunmap_atomic(kaddr, KM_USER0);
1856 set_buffer_uptodate(bh);
1857 mark_buffer_dirty(bh);
1860 block_start = block_end;
1861 bh = bh->b_this_page;
1862 } while (bh != head);
1866 static int __block_commit_write(struct inode *inode, struct page *page,
1867 unsigned from, unsigned to)
1869 unsigned block_start, block_end;
1872 struct buffer_head *bh, *head;
1874 blocksize = 1 << inode->i_blkbits;
1876 for(bh = head = page_buffers(page), block_start = 0;
1877 bh != head || !block_start;
1878 block_start=block_end, bh = bh->b_this_page) {
1879 block_end = block_start + blocksize;
1880 if (block_end <= from || block_start >= to) {
1881 if (!buffer_uptodate(bh))
1884 set_buffer_uptodate(bh);
1885 mark_buffer_dirty(bh);
1890 * If this is a partial write which happened to make all buffers
1891 * uptodate then we can optimize away a bogus readpage() for
1892 * the next read(). Here we 'discover' whether the page went
1893 * uptodate as a result of this (potentially partial) write.
1896 SetPageUptodate(page);
1901 * Generic "read page" function for block devices that have the normal
1902 * get_block functionality. This is most of the block device filesystems.
1903 * Reads the page asynchronously --- the unlock_buffer() and
1904 * set/clear_buffer_uptodate() functions propagate buffer state into the
1905 * page struct once IO has completed.
1907 int block_read_full_page(struct page *page, get_block_t *get_block)
1909 struct inode *inode = page->mapping->host;
1910 sector_t iblock, lblock;
1911 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1912 unsigned int blocksize;
1914 int fully_mapped = 1;
1916 BUG_ON(!PageLocked(page));
1917 blocksize = 1 << inode->i_blkbits;
1918 if (!page_has_buffers(page))
1919 create_empty_buffers(page, blocksize, 0);
1920 head = page_buffers(page);
1922 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1923 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1929 if (buffer_uptodate(bh))
1932 if (!buffer_mapped(bh)) {
1936 if (iblock < lblock) {
1937 WARN_ON(bh->b_size != blocksize);
1938 err = get_block(inode, iblock, bh, 0);
1942 if (!buffer_mapped(bh)) {
1943 void *kaddr = kmap_atomic(page, KM_USER0);
1944 memset(kaddr + i * blocksize, 0, blocksize);
1945 flush_dcache_page(page);
1946 kunmap_atomic(kaddr, KM_USER0);
1948 set_buffer_uptodate(bh);
1952 * get_block() might have updated the buffer
1955 if (buffer_uptodate(bh))
1959 } while (i++, iblock++, (bh = bh->b_this_page) != head);
1962 SetPageMappedToDisk(page);
1966 * All buffers are uptodate - we can set the page uptodate
1967 * as well. But not if get_block() returned an error.
1969 if (!PageError(page))
1970 SetPageUptodate(page);
1975 /* Stage two: lock the buffers */
1976 for (i = 0; i < nr; i++) {
1979 mark_buffer_async_read(bh);
1983 * Stage 3: start the IO. Check for uptodateness
1984 * inside the buffer lock in case another process reading
1985 * the underlying blockdev brought it uptodate (the sct fix).
1987 for (i = 0; i < nr; i++) {
1989 if (buffer_uptodate(bh))
1990 end_buffer_async_read(bh, 1);
1992 submit_bh(READ, bh);
1997 /* utility function for filesystems that need to do work on expanding
1998 * truncates. Uses prepare/commit_write to allow the filesystem to
1999 * deal with the hole.
2001 static int __generic_cont_expand(struct inode *inode, loff_t size,
2002 pgoff_t index, unsigned int offset)
2004 struct address_space *mapping = inode->i_mapping;
2006 unsigned long limit;
2010 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2011 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2012 send_sig(SIGXFSZ, current, 0);
2015 if (size > inode->i_sb->s_maxbytes)
2019 page = grab_cache_page(mapping, index);
2022 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2025 * ->prepare_write() may have instantiated a few blocks
2026 * outside i_size. Trim these off again.
2029 page_cache_release(page);
2030 vmtruncate(inode, inode->i_size);
2034 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2037 page_cache_release(page);
2044 int generic_cont_expand(struct inode *inode, loff_t size)
2047 unsigned int offset;
2049 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2051 /* ugh. in prepare/commit_write, if from==to==start of block, we
2052 ** skip the prepare. make sure we never send an offset for the start
2055 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2056 /* caller must handle this extra byte. */
2059 index = size >> PAGE_CACHE_SHIFT;
2061 return __generic_cont_expand(inode, size, index, offset);
2064 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2066 loff_t pos = size - 1;
2067 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2068 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2070 /* prepare/commit_write can handle even if from==to==start of block. */
2071 return __generic_cont_expand(inode, size, index, offset);
2075 * For moronic filesystems that do not allow holes in file.
2076 * We may have to extend the file.
2079 int cont_prepare_write(struct page *page, unsigned offset,
2080 unsigned to, get_block_t *get_block, loff_t *bytes)
2082 struct address_space *mapping = page->mapping;
2083 struct inode *inode = mapping->host;
2084 struct page *new_page;
2088 unsigned blocksize = 1 << inode->i_blkbits;
2091 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2093 new_page = grab_cache_page(mapping, pgpos);
2096 /* we might sleep */
2097 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2098 unlock_page(new_page);
2099 page_cache_release(new_page);
2102 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2103 if (zerofrom & (blocksize-1)) {
2104 *bytes |= (blocksize-1);
2107 status = __block_prepare_write(inode, new_page, zerofrom,
2108 PAGE_CACHE_SIZE, get_block);
2111 kaddr = kmap_atomic(new_page, KM_USER0);
2112 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2113 flush_dcache_page(new_page);
2114 kunmap_atomic(kaddr, KM_USER0);
2115 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2116 unlock_page(new_page);
2117 page_cache_release(new_page);
2120 if (page->index < pgpos) {
2121 /* completely inside the area */
2124 /* page covers the boundary, find the boundary offset */
2125 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2127 /* if we will expand the thing last block will be filled */
2128 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2129 *bytes |= (blocksize-1);
2133 /* starting below the boundary? Nothing to zero out */
2134 if (offset <= zerofrom)
2137 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2140 if (zerofrom < offset) {
2141 kaddr = kmap_atomic(page, KM_USER0);
2142 memset(kaddr+zerofrom, 0, offset-zerofrom);
2143 flush_dcache_page(page);
2144 kunmap_atomic(kaddr, KM_USER0);
2145 __block_commit_write(inode, page, zerofrom, offset);
2149 ClearPageUptodate(page);
2153 ClearPageUptodate(new_page);
2154 unlock_page(new_page);
2155 page_cache_release(new_page);
2160 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2161 get_block_t *get_block)
2163 struct inode *inode = page->mapping->host;
2164 int err = __block_prepare_write(inode, page, from, to, get_block);
2166 ClearPageUptodate(page);
2170 int block_commit_write(struct page *page, unsigned from, unsigned to)
2172 struct inode *inode = page->mapping->host;
2173 __block_commit_write(inode,page,from,to);
2177 int generic_commit_write(struct file *file, struct page *page,
2178 unsigned from, unsigned to)
2180 struct inode *inode = page->mapping->host;
2181 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2182 __block_commit_write(inode,page,from,to);
2184 * No need to use i_size_read() here, the i_size
2185 * cannot change under us because we hold i_mutex.
2187 if (pos > inode->i_size) {
2188 i_size_write(inode, pos);
2189 mark_inode_dirty(inode);
2196 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2197 * immediately, while under the page lock. So it needs a special end_io
2198 * handler which does not touch the bh after unlocking it.
2200 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2201 * a race there is benign: unlock_buffer() only use the bh's address for
2202 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2205 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2208 set_buffer_uptodate(bh);
2210 /* This happens, due to failed READA attempts. */
2211 clear_buffer_uptodate(bh);
2217 * On entry, the page is fully not uptodate.
2218 * On exit the page is fully uptodate in the areas outside (from,to)
2220 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2221 get_block_t *get_block)
2223 struct inode *inode = page->mapping->host;
2224 const unsigned blkbits = inode->i_blkbits;
2225 const unsigned blocksize = 1 << blkbits;
2226 struct buffer_head map_bh;
2227 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2228 unsigned block_in_page;
2229 unsigned block_start;
2230 sector_t block_in_file;
2235 int is_mapped_to_disk = 1;
2237 if (PageMappedToDisk(page))
2240 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2241 map_bh.b_page = page;
2244 * We loop across all blocks in the page, whether or not they are
2245 * part of the affected region. This is so we can discover if the
2246 * page is fully mapped-to-disk.
2248 for (block_start = 0, block_in_page = 0;
2249 block_start < PAGE_CACHE_SIZE;
2250 block_in_page++, block_start += blocksize) {
2251 unsigned block_end = block_start + blocksize;
2256 if (block_start >= to)
2258 map_bh.b_size = blocksize;
2259 ret = get_block(inode, block_in_file + block_in_page,
2263 if (!buffer_mapped(&map_bh))
2264 is_mapped_to_disk = 0;
2265 if (buffer_new(&map_bh))
2266 unmap_underlying_metadata(map_bh.b_bdev,
2268 if (PageUptodate(page))
2270 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2271 kaddr = kmap_atomic(page, KM_USER0);
2272 if (block_start < from)
2273 memset(kaddr+block_start, 0, from-block_start);
2275 memset(kaddr + to, 0, block_end - to);
2276 flush_dcache_page(page);
2277 kunmap_atomic(kaddr, KM_USER0);
2280 if (buffer_uptodate(&map_bh))
2281 continue; /* reiserfs does this */
2282 if (block_start < from || block_end > to) {
2283 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2289 bh->b_state = map_bh.b_state;
2290 atomic_set(&bh->b_count, 0);
2291 bh->b_this_page = NULL;
2293 bh->b_blocknr = map_bh.b_blocknr;
2294 bh->b_size = blocksize;
2295 bh->b_data = (char *)(long)block_start;
2296 bh->b_bdev = map_bh.b_bdev;
2297 bh->b_private = NULL;
2298 read_bh[nr_reads++] = bh;
2303 struct buffer_head *bh;
2306 * The page is locked, so these buffers are protected from
2307 * any VM or truncate activity. Hence we don't need to care
2308 * for the buffer_head refcounts.
2310 for (i = 0; i < nr_reads; i++) {
2313 bh->b_end_io = end_buffer_read_nobh;
2314 submit_bh(READ, bh);
2316 for (i = 0; i < nr_reads; i++) {
2319 if (!buffer_uptodate(bh))
2321 free_buffer_head(bh);
2328 if (is_mapped_to_disk)
2329 SetPageMappedToDisk(page);
2334 for (i = 0; i < nr_reads; i++) {
2336 free_buffer_head(read_bh[i]);
2340 * Error recovery is pretty slack. Clear the page and mark it dirty
2341 * so we'll later zero out any blocks which _were_ allocated.
2343 kaddr = kmap_atomic(page, KM_USER0);
2344 memset(kaddr, 0, PAGE_CACHE_SIZE);
2345 flush_dcache_page(page);
2346 kunmap_atomic(kaddr, KM_USER0);
2347 SetPageUptodate(page);
2348 set_page_dirty(page);
2351 EXPORT_SYMBOL(nobh_prepare_write);
2354 * Make sure any changes to nobh_commit_write() are reflected in
2355 * nobh_truncate_page(), since it doesn't call commit_write().
2357 int nobh_commit_write(struct file *file, struct page *page,
2358 unsigned from, unsigned to)
2360 struct inode *inode = page->mapping->host;
2361 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2363 SetPageUptodate(page);
2364 set_page_dirty(page);
2365 if (pos > inode->i_size) {
2366 i_size_write(inode, pos);
2367 mark_inode_dirty(inode);
2371 EXPORT_SYMBOL(nobh_commit_write);
2374 * nobh_writepage() - based on block_full_write_page() except
2375 * that it tries to operate without attaching bufferheads to
2378 int nobh_writepage(struct page *page, get_block_t *get_block,
2379 struct writeback_control *wbc)
2381 struct inode * const inode = page->mapping->host;
2382 loff_t i_size = i_size_read(inode);
2383 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2388 /* Is the page fully inside i_size? */
2389 if (page->index < end_index)
2392 /* Is the page fully outside i_size? (truncate in progress) */
2393 offset = i_size & (PAGE_CACHE_SIZE-1);
2394 if (page->index >= end_index+1 || !offset) {
2396 * The page may have dirty, unmapped buffers. For example,
2397 * they may have been added in ext3_writepage(). Make them
2398 * freeable here, so the page does not leak.
2401 /* Not really sure about this - do we need this ? */
2402 if (page->mapping->a_ops->invalidatepage)
2403 page->mapping->a_ops->invalidatepage(page, offset);
2406 return 0; /* don't care */
2410 * The page straddles i_size. It must be zeroed out on each and every
2411 * writepage invocation because it may be mmapped. "A file is mapped
2412 * in multiples of the page size. For a file that is not a multiple of
2413 * the page size, the remaining memory is zeroed when mapped, and
2414 * writes to that region are not written out to the file."
2416 kaddr = kmap_atomic(page, KM_USER0);
2417 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2418 flush_dcache_page(page);
2419 kunmap_atomic(kaddr, KM_USER0);
2421 ret = mpage_writepage(page, get_block, wbc);
2423 ret = __block_write_full_page(inode, page, get_block, wbc);
2426 EXPORT_SYMBOL(nobh_writepage);
2429 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2431 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2433 struct inode *inode = mapping->host;
2434 unsigned blocksize = 1 << inode->i_blkbits;
2435 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2436 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2439 const struct address_space_operations *a_ops = mapping->a_ops;
2443 if ((offset & (blocksize - 1)) == 0)
2447 page = grab_cache_page(mapping, index);
2451 to = (offset + blocksize) & ~(blocksize - 1);
2452 ret = a_ops->prepare_write(NULL, page, offset, to);
2454 kaddr = kmap_atomic(page, KM_USER0);
2455 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2456 flush_dcache_page(page);
2457 kunmap_atomic(kaddr, KM_USER0);
2459 * It would be more correct to call aops->commit_write()
2460 * here, but this is more efficient.
2462 SetPageUptodate(page);
2463 set_page_dirty(page);
2466 page_cache_release(page);
2470 EXPORT_SYMBOL(nobh_truncate_page);
2472 int block_truncate_page(struct address_space *mapping,
2473 loff_t from, get_block_t *get_block)
2475 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2476 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2479 unsigned length, pos;
2480 struct inode *inode = mapping->host;
2482 struct buffer_head *bh;
2486 blocksize = 1 << inode->i_blkbits;
2487 length = offset & (blocksize - 1);
2489 /* Block boundary? Nothing to do */
2493 length = blocksize - length;
2494 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2496 page = grab_cache_page(mapping, index);
2501 if (!page_has_buffers(page))
2502 create_empty_buffers(page, blocksize, 0);
2504 /* Find the buffer that contains "offset" */
2505 bh = page_buffers(page);
2507 while (offset >= pos) {
2508 bh = bh->b_this_page;
2514 if (!buffer_mapped(bh)) {
2515 WARN_ON(bh->b_size != blocksize);
2516 err = get_block(inode, iblock, bh, 0);
2519 /* unmapped? It's a hole - nothing to do */
2520 if (!buffer_mapped(bh))
2524 /* Ok, it's mapped. Make sure it's up-to-date */
2525 if (PageUptodate(page))
2526 set_buffer_uptodate(bh);
2528 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2530 ll_rw_block(READ, 1, &bh);
2532 /* Uhhuh. Read error. Complain and punt. */
2533 if (!buffer_uptodate(bh))
2537 kaddr = kmap_atomic(page, KM_USER0);
2538 memset(kaddr + offset, 0, length);
2539 flush_dcache_page(page);
2540 kunmap_atomic(kaddr, KM_USER0);
2542 mark_buffer_dirty(bh);
2547 page_cache_release(page);
2553 * The generic ->writepage function for buffer-backed address_spaces
2555 int block_write_full_page(struct page *page, get_block_t *get_block,
2556 struct writeback_control *wbc)
2558 struct inode * const inode = page->mapping->host;
2559 loff_t i_size = i_size_read(inode);
2560 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2564 /* Is the page fully inside i_size? */
2565 if (page->index < end_index)
2566 return __block_write_full_page(inode, page, get_block, wbc);
2568 /* Is the page fully outside i_size? (truncate in progress) */
2569 offset = i_size & (PAGE_CACHE_SIZE-1);
2570 if (page->index >= end_index+1 || !offset) {
2572 * The page may have dirty, unmapped buffers. For example,
2573 * they may have been added in ext3_writepage(). Make them
2574 * freeable here, so the page does not leak.
2576 do_invalidatepage(page, 0);
2578 return 0; /* don't care */
2582 * The page straddles i_size. It must be zeroed out on each and every
2583 * writepage invokation because it may be mmapped. "A file is mapped
2584 * in multiples of the page size. For a file that is not a multiple of
2585 * the page size, the remaining memory is zeroed when mapped, and
2586 * writes to that region are not written out to the file."
2588 kaddr = kmap_atomic(page, KM_USER0);
2589 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2590 flush_dcache_page(page);
2591 kunmap_atomic(kaddr, KM_USER0);
2592 return __block_write_full_page(inode, page, get_block, wbc);
2595 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2596 get_block_t *get_block)
2598 struct buffer_head tmp;
2599 struct inode *inode = mapping->host;
2602 tmp.b_size = 1 << inode->i_blkbits;
2603 get_block(inode, block, &tmp, 0);
2604 return tmp.b_blocknr;
2607 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2609 struct buffer_head *bh = bio->bi_private;
2614 if (err == -EOPNOTSUPP) {
2615 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2616 set_bit(BH_Eopnotsupp, &bh->b_state);
2619 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2624 int submit_bh(int rw, struct buffer_head * bh)
2629 BUG_ON(!buffer_locked(bh));
2630 BUG_ON(!buffer_mapped(bh));
2631 BUG_ON(!bh->b_end_io);
2633 if (buffer_ordered(bh) && (rw == WRITE))
2637 * Only clear out a write error when rewriting, should this
2638 * include WRITE_SYNC as well?
2640 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2641 clear_buffer_write_io_error(bh);
2644 * from here on down, it's all bio -- do the initial mapping,
2645 * submit_bio -> generic_make_request may further map this bio around
2647 bio = bio_alloc(GFP_NOIO, 1);
2649 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2650 bio->bi_bdev = bh->b_bdev;
2651 bio->bi_io_vec[0].bv_page = bh->b_page;
2652 bio->bi_io_vec[0].bv_len = bh->b_size;
2653 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2657 bio->bi_size = bh->b_size;
2659 bio->bi_end_io = end_bio_bh_io_sync;
2660 bio->bi_private = bh;
2663 submit_bio(rw, bio);
2665 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2673 * ll_rw_block: low-level access to block devices (DEPRECATED)
2674 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2675 * @nr: number of &struct buffer_heads in the array
2676 * @bhs: array of pointers to &struct buffer_head
2678 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2679 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2680 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2681 * are sent to disk. The fourth %READA option is described in the documentation
2682 * for generic_make_request() which ll_rw_block() calls.
2684 * This function drops any buffer that it cannot get a lock on (with the
2685 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2686 * clean when doing a write request, and any buffer that appears to be
2687 * up-to-date when doing read request. Further it marks as clean buffers that
2688 * are processed for writing (the buffer cache won't assume that they are
2689 * actually clean until the buffer gets unlocked).
2691 * ll_rw_block sets b_end_io to simple completion handler that marks
2692 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2695 * All of the buffers must be for the same device, and must also be a
2696 * multiple of the current approved size for the device.
2698 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2702 for (i = 0; i < nr; i++) {
2703 struct buffer_head *bh = bhs[i];
2707 else if (test_set_buffer_locked(bh))
2710 if (rw == WRITE || rw == SWRITE) {
2711 if (test_clear_buffer_dirty(bh)) {
2712 bh->b_end_io = end_buffer_write_sync;
2714 submit_bh(WRITE, bh);
2718 if (!buffer_uptodate(bh)) {
2719 bh->b_end_io = end_buffer_read_sync;
2730 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2731 * and then start new I/O and then wait upon it. The caller must have a ref on
2734 int sync_dirty_buffer(struct buffer_head *bh)
2738 WARN_ON(atomic_read(&bh->b_count) < 1);
2740 if (test_clear_buffer_dirty(bh)) {
2742 bh->b_end_io = end_buffer_write_sync;
2743 ret = submit_bh(WRITE, bh);
2745 if (buffer_eopnotsupp(bh)) {
2746 clear_buffer_eopnotsupp(bh);
2749 if (!ret && !buffer_uptodate(bh))
2758 * try_to_free_buffers() checks if all the buffers on this particular page
2759 * are unused, and releases them if so.
2761 * Exclusion against try_to_free_buffers may be obtained by either
2762 * locking the page or by holding its mapping's private_lock.
2764 * If the page is dirty but all the buffers are clean then we need to
2765 * be sure to mark the page clean as well. This is because the page
2766 * may be against a block device, and a later reattachment of buffers
2767 * to a dirty page will set *all* buffers dirty. Which would corrupt
2768 * filesystem data on the same device.
2770 * The same applies to regular filesystem pages: if all the buffers are
2771 * clean then we set the page clean and proceed. To do that, we require
2772 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2775 * try_to_free_buffers() is non-blocking.
2777 static inline int buffer_busy(struct buffer_head *bh)
2779 return atomic_read(&bh->b_count) |
2780 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2784 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2786 struct buffer_head *head = page_buffers(page);
2787 struct buffer_head *bh;
2791 if (buffer_write_io_error(bh) && page->mapping)
2792 set_bit(AS_EIO, &page->mapping->flags);
2793 if (buffer_busy(bh))
2795 bh = bh->b_this_page;
2796 } while (bh != head);
2799 struct buffer_head *next = bh->b_this_page;
2801 if (!list_empty(&bh->b_assoc_buffers))
2802 __remove_assoc_queue(bh);
2804 } while (bh != head);
2805 *buffers_to_free = head;
2806 __clear_page_buffers(page);
2812 int try_to_free_buffers(struct page *page)
2814 struct address_space * const mapping = page->mapping;
2815 struct buffer_head *buffers_to_free = NULL;
2818 BUG_ON(!PageLocked(page));
2819 if (PageWriteback(page))
2822 if (mapping == NULL) { /* can this still happen? */
2823 ret = drop_buffers(page, &buffers_to_free);
2827 spin_lock(&mapping->private_lock);
2828 ret = drop_buffers(page, &buffers_to_free);
2831 * If the filesystem writes its buffers by hand (eg ext3)
2832 * then we can have clean buffers against a dirty page. We
2833 * clean the page here; otherwise the VM will never notice
2834 * that the filesystem did any IO at all.
2836 * Also, during truncate, discard_buffer will have marked all
2837 * the page's buffers clean. We discover that here and clean
2840 * private_lock must be held over this entire operation in order
2841 * to synchronise against __set_page_dirty_buffers and prevent the
2842 * dirty bit from being lost.
2845 cancel_dirty_page(page, PAGE_CACHE_SIZE);
2846 spin_unlock(&mapping->private_lock);
2848 if (buffers_to_free) {
2849 struct buffer_head *bh = buffers_to_free;
2852 struct buffer_head *next = bh->b_this_page;
2853 free_buffer_head(bh);
2855 } while (bh != buffers_to_free);
2859 EXPORT_SYMBOL(try_to_free_buffers);
2861 void block_sync_page(struct page *page)
2863 struct address_space *mapping;
2866 mapping = page_mapping(page);
2868 blk_run_backing_dev(mapping->backing_dev_info, page);
2872 * There are no bdflush tunables left. But distributions are
2873 * still running obsolete flush daemons, so we terminate them here.
2875 * Use of bdflush() is deprecated and will be removed in a future kernel.
2876 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2878 asmlinkage long sys_bdflush(int func, long data)
2880 static int msg_count;
2882 if (!capable(CAP_SYS_ADMIN))
2885 if (msg_count < 5) {
2888 "warning: process `%s' used the obsolete bdflush"
2889 " system call\n", current->comm);
2890 printk(KERN_INFO "Fix your initscripts?\n");
2899 * Buffer-head allocation
2901 static struct kmem_cache *bh_cachep;
2904 * Once the number of bh's in the machine exceeds this level, we start
2905 * stripping them in writeback.
2907 static int max_buffer_heads;
2909 int buffer_heads_over_limit;
2911 struct bh_accounting {
2912 int nr; /* Number of live bh's */
2913 int ratelimit; /* Limit cacheline bouncing */
2916 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2918 static void recalc_bh_state(void)
2923 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2925 __get_cpu_var(bh_accounting).ratelimit = 0;
2926 for_each_online_cpu(i)
2927 tot += per_cpu(bh_accounting, i).nr;
2928 buffer_heads_over_limit = (tot > max_buffer_heads);
2931 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2933 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
2935 get_cpu_var(bh_accounting).nr++;
2937 put_cpu_var(bh_accounting);
2941 EXPORT_SYMBOL(alloc_buffer_head);
2943 void free_buffer_head(struct buffer_head *bh)
2945 BUG_ON(!list_empty(&bh->b_assoc_buffers));
2946 kmem_cache_free(bh_cachep, bh);
2947 get_cpu_var(bh_accounting).nr--;
2949 put_cpu_var(bh_accounting);
2951 EXPORT_SYMBOL(free_buffer_head);
2954 init_buffer_head(void *data, struct kmem_cache *cachep, unsigned long flags)
2956 if (flags & SLAB_CTOR_CONSTRUCTOR) {
2957 struct buffer_head * bh = (struct buffer_head *)data;
2959 memset(bh, 0, sizeof(*bh));
2960 INIT_LIST_HEAD(&bh->b_assoc_buffers);
2964 static void buffer_exit_cpu(int cpu)
2967 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2969 for (i = 0; i < BH_LRU_SIZE; i++) {
2973 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
2974 per_cpu(bh_accounting, cpu).nr = 0;
2975 put_cpu_var(bh_accounting);
2978 static int buffer_cpu_notify(struct notifier_block *self,
2979 unsigned long action, void *hcpu)
2981 if (action == CPU_DEAD)
2982 buffer_exit_cpu((unsigned long)hcpu);
2986 void __init buffer_init(void)
2990 bh_cachep = kmem_cache_create("buffer_head",
2991 sizeof(struct buffer_head), 0,
2992 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2998 * Limit the bh occupancy to 10% of ZONE_NORMAL
3000 nrpages = (nr_free_buffer_pages() * 10) / 100;
3001 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3002 hotcpu_notifier(buffer_cpu_notify, 0);
3005 EXPORT_SYMBOL(__bforget);
3006 EXPORT_SYMBOL(__brelse);
3007 EXPORT_SYMBOL(__wait_on_buffer);
3008 EXPORT_SYMBOL(block_commit_write);
3009 EXPORT_SYMBOL(block_prepare_write);
3010 EXPORT_SYMBOL(block_read_full_page);
3011 EXPORT_SYMBOL(block_sync_page);
3012 EXPORT_SYMBOL(block_truncate_page);
3013 EXPORT_SYMBOL(block_write_full_page);
3014 EXPORT_SYMBOL(cont_prepare_write);
3015 EXPORT_SYMBOL(end_buffer_read_sync);
3016 EXPORT_SYMBOL(end_buffer_write_sync);
3017 EXPORT_SYMBOL(file_fsync);
3018 EXPORT_SYMBOL(fsync_bdev);
3019 EXPORT_SYMBOL(generic_block_bmap);
3020 EXPORT_SYMBOL(generic_commit_write);
3021 EXPORT_SYMBOL(generic_cont_expand);
3022 EXPORT_SYMBOL(generic_cont_expand_simple);
3023 EXPORT_SYMBOL(init_buffer);
3024 EXPORT_SYMBOL(invalidate_bdev);
3025 EXPORT_SYMBOL(ll_rw_block);
3026 EXPORT_SYMBOL(mark_buffer_dirty);
3027 EXPORT_SYMBOL(submit_bh);
3028 EXPORT_SYMBOL(sync_dirty_buffer);
3029 EXPORT_SYMBOL(unlock_buffer);