2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
64 #include <linux/kernel.h>
65 #include <linux/string.h>
66 #include <linux/errno.h>
67 #include <linux/unistd.h>
68 #include <linux/slab.h>
69 #include <linux/interrupt.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/if_vlan.h>
76 #include <linux/spinlock.h>
78 #include <linux/of_platform.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
86 #include <asm/uaccess.h>
87 #include <linux/module.h>
88 #include <linux/dma-mapping.h>
89 #include <linux/crc32.h>
90 #include <linux/mii.h>
91 #include <linux/phy.h>
92 #include <linux/phy_fixed.h>
96 #include "gianfar_mii.h"
98 #define TX_TIMEOUT (1*HZ)
99 #undef BRIEF_GFAR_ERRORS
100 #undef VERBOSE_GFAR_ERRORS
102 const char gfar_driver_name[] = "Gianfar Ethernet";
103 const char gfar_driver_version[] = "1.3";
105 static int gfar_enet_open(struct net_device *dev);
106 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
107 static void gfar_reset_task(struct work_struct *work);
108 static void gfar_timeout(struct net_device *dev);
109 static int gfar_close(struct net_device *dev);
110 struct sk_buff *gfar_new_skb(struct net_device *dev);
111 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
112 struct sk_buff *skb);
113 static int gfar_set_mac_address(struct net_device *dev);
114 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
115 static irqreturn_t gfar_error(int irq, void *dev_id);
116 static irqreturn_t gfar_transmit(int irq, void *dev_id);
117 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
118 static void adjust_link(struct net_device *dev);
119 static void init_registers(struct net_device *dev);
120 static int init_phy(struct net_device *dev);
121 static int gfar_probe(struct of_device *ofdev,
122 const struct of_device_id *match);
123 static int gfar_remove(struct of_device *ofdev);
124 static void free_skb_resources(struct gfar_private *priv);
125 static void gfar_set_multi(struct net_device *dev);
126 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
127 static void gfar_configure_serdes(struct net_device *dev);
128 static int gfar_poll(struct napi_struct *napi, int budget);
129 #ifdef CONFIG_NET_POLL_CONTROLLER
130 static void gfar_netpoll(struct net_device *dev);
132 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
133 static int gfar_clean_tx_ring(struct net_device *dev);
134 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
136 static void gfar_vlan_rx_register(struct net_device *netdev,
137 struct vlan_group *grp);
138 void gfar_halt(struct net_device *dev);
139 static void gfar_halt_nodisable(struct net_device *dev);
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
144 extern const struct ethtool_ops gfar_ethtool_ops;
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
150 /* Returns 1 if incoming frames use an FCB */
151 static inline int gfar_uses_fcb(struct gfar_private *priv)
153 return priv->vlgrp || priv->rx_csum_enable;
156 static int gfar_of_init(struct net_device *dev)
158 struct device_node *phy, *mdio;
159 const unsigned int *id;
162 const void *mac_addr;
166 struct gfar_private *priv = netdev_priv(dev);
167 struct device_node *np = priv->node;
168 char bus_name[MII_BUS_ID_SIZE];
170 if (!np || !of_device_is_available(np))
173 /* get a pointer to the register memory */
174 addr = of_translate_address(np, of_get_address(np, 0, &size, NULL));
175 priv->regs = ioremap(addr, size);
177 if (priv->regs == NULL)
180 priv->interruptTransmit = irq_of_parse_and_map(np, 0);
182 model = of_get_property(np, "model", NULL);
184 /* If we aren't the FEC we have multiple interrupts */
185 if (model && strcasecmp(model, "FEC")) {
186 priv->interruptReceive = irq_of_parse_and_map(np, 1);
188 priv->interruptError = irq_of_parse_and_map(np, 2);
190 if (priv->interruptTransmit < 0 ||
191 priv->interruptReceive < 0 ||
192 priv->interruptError < 0) {
198 mac_addr = of_get_mac_address(np);
200 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
202 if (model && !strcasecmp(model, "TSEC"))
204 FSL_GIANFAR_DEV_HAS_GIGABIT |
205 FSL_GIANFAR_DEV_HAS_COALESCE |
206 FSL_GIANFAR_DEV_HAS_RMON |
207 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
208 if (model && !strcasecmp(model, "eTSEC"))
210 FSL_GIANFAR_DEV_HAS_GIGABIT |
211 FSL_GIANFAR_DEV_HAS_COALESCE |
212 FSL_GIANFAR_DEV_HAS_RMON |
213 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
214 FSL_GIANFAR_DEV_HAS_PADDING |
215 FSL_GIANFAR_DEV_HAS_CSUM |
216 FSL_GIANFAR_DEV_HAS_VLAN |
217 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
218 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
220 ctype = of_get_property(np, "phy-connection-type", NULL);
222 /* We only care about rgmii-id. The rest are autodetected */
223 if (ctype && !strcmp(ctype, "rgmii-id"))
224 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
226 priv->interface = PHY_INTERFACE_MODE_MII;
228 if (of_get_property(np, "fsl,magic-packet", NULL))
229 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
231 ph = of_get_property(np, "phy-handle", NULL);
235 fixed_link = (u32 *)of_get_property(np, "fixed-link", NULL);
241 snprintf(priv->phy_bus_id, BUS_ID_SIZE, PHY_ID_FMT, "0",
244 phy = of_find_node_by_phandle(*ph);
251 mdio = of_get_parent(phy);
253 id = of_get_property(phy, "reg", NULL);
258 gfar_mdio_bus_name(bus_name, mdio);
259 snprintf(priv->phy_bus_id, BUS_ID_SIZE, "%s:%02x",
263 /* Find the TBI PHY. If it's not there, we don't support SGMII */
264 ph = of_get_property(np, "tbi-handle", NULL);
266 struct device_node *tbi = of_find_node_by_phandle(*ph);
267 struct of_device *ofdev;
273 mdio = of_get_parent(tbi);
277 ofdev = of_find_device_by_node(mdio);
281 id = of_get_property(tbi, "reg", NULL);
287 bus = dev_get_drvdata(&ofdev->dev);
289 priv->tbiphy = bus->phy_map[*id];
299 /* Set up the ethernet device structure, private data,
300 * and anything else we need before we start */
301 static int gfar_probe(struct of_device *ofdev,
302 const struct of_device_id *match)
305 struct net_device *dev = NULL;
306 struct gfar_private *priv = NULL;
307 DECLARE_MAC_BUF(mac);
311 /* Create an ethernet device instance */
312 dev = alloc_etherdev(sizeof (*priv));
317 priv = netdev_priv(dev);
319 priv->node = ofdev->node;
321 err = gfar_of_init(dev);
326 spin_lock_init(&priv->txlock);
327 spin_lock_init(&priv->rxlock);
328 spin_lock_init(&priv->bflock);
329 INIT_WORK(&priv->reset_task, gfar_reset_task);
331 dev_set_drvdata(&ofdev->dev, priv);
333 /* Stop the DMA engine now, in case it was running before */
334 /* (The firmware could have used it, and left it running). */
337 /* Reset MAC layer */
338 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
340 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
341 gfar_write(&priv->regs->maccfg1, tempval);
343 /* Initialize MACCFG2. */
344 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
346 /* Initialize ECNTRL */
347 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
349 /* Set the dev->base_addr to the gfar reg region */
350 dev->base_addr = (unsigned long) (priv->regs);
352 SET_NETDEV_DEV(dev, &ofdev->dev);
354 /* Fill in the dev structure */
355 dev->open = gfar_enet_open;
356 dev->hard_start_xmit = gfar_start_xmit;
357 dev->tx_timeout = gfar_timeout;
358 dev->watchdog_timeo = TX_TIMEOUT;
359 netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
360 #ifdef CONFIG_NET_POLL_CONTROLLER
361 dev->poll_controller = gfar_netpoll;
363 dev->stop = gfar_close;
364 dev->change_mtu = gfar_change_mtu;
366 dev->set_multicast_list = gfar_set_multi;
368 dev->ethtool_ops = &gfar_ethtool_ops;
370 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
371 priv->rx_csum_enable = 1;
372 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
374 priv->rx_csum_enable = 0;
378 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
379 dev->vlan_rx_register = gfar_vlan_rx_register;
381 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
384 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
385 priv->extended_hash = 1;
386 priv->hash_width = 9;
388 priv->hash_regs[0] = &priv->regs->igaddr0;
389 priv->hash_regs[1] = &priv->regs->igaddr1;
390 priv->hash_regs[2] = &priv->regs->igaddr2;
391 priv->hash_regs[3] = &priv->regs->igaddr3;
392 priv->hash_regs[4] = &priv->regs->igaddr4;
393 priv->hash_regs[5] = &priv->regs->igaddr5;
394 priv->hash_regs[6] = &priv->regs->igaddr6;
395 priv->hash_regs[7] = &priv->regs->igaddr7;
396 priv->hash_regs[8] = &priv->regs->gaddr0;
397 priv->hash_regs[9] = &priv->regs->gaddr1;
398 priv->hash_regs[10] = &priv->regs->gaddr2;
399 priv->hash_regs[11] = &priv->regs->gaddr3;
400 priv->hash_regs[12] = &priv->regs->gaddr4;
401 priv->hash_regs[13] = &priv->regs->gaddr5;
402 priv->hash_regs[14] = &priv->regs->gaddr6;
403 priv->hash_regs[15] = &priv->regs->gaddr7;
406 priv->extended_hash = 0;
407 priv->hash_width = 8;
409 priv->hash_regs[0] = &priv->regs->gaddr0;
410 priv->hash_regs[1] = &priv->regs->gaddr1;
411 priv->hash_regs[2] = &priv->regs->gaddr2;
412 priv->hash_regs[3] = &priv->regs->gaddr3;
413 priv->hash_regs[4] = &priv->regs->gaddr4;
414 priv->hash_regs[5] = &priv->regs->gaddr5;
415 priv->hash_regs[6] = &priv->regs->gaddr6;
416 priv->hash_regs[7] = &priv->regs->gaddr7;
419 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
420 priv->padding = DEFAULT_PADDING;
424 if (dev->features & NETIF_F_IP_CSUM)
425 dev->hard_header_len += GMAC_FCB_LEN;
427 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
428 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
429 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
430 priv->num_txbdfree = DEFAULT_TX_RING_SIZE;
432 priv->txcoalescing = DEFAULT_TX_COALESCE;
433 priv->txic = DEFAULT_TXIC;
434 priv->rxcoalescing = DEFAULT_RX_COALESCE;
435 priv->rxic = DEFAULT_RXIC;
437 /* Enable most messages by default */
438 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
440 /* Carrier starts down, phylib will bring it up */
441 netif_carrier_off(dev);
443 err = register_netdev(dev);
446 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
451 /* fill out IRQ number and name fields */
452 len_devname = strlen(dev->name);
453 strncpy(&priv->int_name_tx[0], dev->name, len_devname);
454 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
455 strncpy(&priv->int_name_tx[len_devname],
456 "_tx", sizeof("_tx") + 1);
458 strncpy(&priv->int_name_rx[0], dev->name, len_devname);
459 strncpy(&priv->int_name_rx[len_devname],
460 "_rx", sizeof("_rx") + 1);
462 strncpy(&priv->int_name_er[0], dev->name, len_devname);
463 strncpy(&priv->int_name_er[len_devname],
464 "_er", sizeof("_er") + 1);
466 priv->int_name_tx[len_devname] = '\0';
468 /* Create all the sysfs files */
469 gfar_init_sysfs(dev);
471 /* Print out the device info */
472 printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
474 /* Even more device info helps when determining which kernel */
475 /* provided which set of benchmarks. */
476 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
477 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
478 dev->name, priv->rx_ring_size, priv->tx_ring_size);
489 static int gfar_remove(struct of_device *ofdev)
491 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
493 dev_set_drvdata(&ofdev->dev, NULL);
496 free_netdev(priv->dev);
502 static int gfar_suspend(struct of_device *ofdev, pm_message_t state)
504 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
505 struct net_device *dev = priv->dev;
509 int magic_packet = priv->wol_en &&
510 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
512 netif_device_detach(dev);
514 if (netif_running(dev)) {
515 spin_lock_irqsave(&priv->txlock, flags);
516 spin_lock(&priv->rxlock);
518 gfar_halt_nodisable(dev);
520 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
521 tempval = gfar_read(&priv->regs->maccfg1);
523 tempval &= ~MACCFG1_TX_EN;
526 tempval &= ~MACCFG1_RX_EN;
528 gfar_write(&priv->regs->maccfg1, tempval);
530 spin_unlock(&priv->rxlock);
531 spin_unlock_irqrestore(&priv->txlock, flags);
533 napi_disable(&priv->napi);
536 /* Enable interrupt on Magic Packet */
537 gfar_write(&priv->regs->imask, IMASK_MAG);
539 /* Enable Magic Packet mode */
540 tempval = gfar_read(&priv->regs->maccfg2);
541 tempval |= MACCFG2_MPEN;
542 gfar_write(&priv->regs->maccfg2, tempval);
544 phy_stop(priv->phydev);
551 static int gfar_resume(struct of_device *ofdev)
553 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
554 struct net_device *dev = priv->dev;
557 int magic_packet = priv->wol_en &&
558 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
560 if (!netif_running(dev)) {
561 netif_device_attach(dev);
565 if (!magic_packet && priv->phydev)
566 phy_start(priv->phydev);
568 /* Disable Magic Packet mode, in case something
572 spin_lock_irqsave(&priv->txlock, flags);
573 spin_lock(&priv->rxlock);
575 tempval = gfar_read(&priv->regs->maccfg2);
576 tempval &= ~MACCFG2_MPEN;
577 gfar_write(&priv->regs->maccfg2, tempval);
581 spin_unlock(&priv->rxlock);
582 spin_unlock_irqrestore(&priv->txlock, flags);
584 netif_device_attach(dev);
586 napi_enable(&priv->napi);
591 #define gfar_suspend NULL
592 #define gfar_resume NULL
595 /* Reads the controller's registers to determine what interface
596 * connects it to the PHY.
598 static phy_interface_t gfar_get_interface(struct net_device *dev)
600 struct gfar_private *priv = netdev_priv(dev);
601 u32 ecntrl = gfar_read(&priv->regs->ecntrl);
603 if (ecntrl & ECNTRL_SGMII_MODE)
604 return PHY_INTERFACE_MODE_SGMII;
606 if (ecntrl & ECNTRL_TBI_MODE) {
607 if (ecntrl & ECNTRL_REDUCED_MODE)
608 return PHY_INTERFACE_MODE_RTBI;
610 return PHY_INTERFACE_MODE_TBI;
613 if (ecntrl & ECNTRL_REDUCED_MODE) {
614 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
615 return PHY_INTERFACE_MODE_RMII;
617 phy_interface_t interface = priv->interface;
620 * This isn't autodetected right now, so it must
621 * be set by the device tree or platform code.
623 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
624 return PHY_INTERFACE_MODE_RGMII_ID;
626 return PHY_INTERFACE_MODE_RGMII;
630 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
631 return PHY_INTERFACE_MODE_GMII;
633 return PHY_INTERFACE_MODE_MII;
637 /* Initializes driver's PHY state, and attaches to the PHY.
638 * Returns 0 on success.
640 static int init_phy(struct net_device *dev)
642 struct gfar_private *priv = netdev_priv(dev);
643 uint gigabit_support =
644 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
645 SUPPORTED_1000baseT_Full : 0;
646 struct phy_device *phydev;
647 phy_interface_t interface;
651 priv->oldduplex = -1;
653 interface = gfar_get_interface(dev);
655 phydev = phy_connect(dev, priv->phy_bus_id, &adjust_link, 0, interface);
657 if (interface == PHY_INTERFACE_MODE_SGMII)
658 gfar_configure_serdes(dev);
660 if (IS_ERR(phydev)) {
661 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
662 return PTR_ERR(phydev);
665 /* Remove any features not supported by the controller */
666 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
667 phydev->advertising = phydev->supported;
669 priv->phydev = phydev;
675 * Initialize TBI PHY interface for communicating with the
676 * SERDES lynx PHY on the chip. We communicate with this PHY
677 * through the MDIO bus on each controller, treating it as a
678 * "normal" PHY at the address found in the TBIPA register. We assume
679 * that the TBIPA register is valid. Either the MDIO bus code will set
680 * it to a value that doesn't conflict with other PHYs on the bus, or the
681 * value doesn't matter, as there are no other PHYs on the bus.
683 static void gfar_configure_serdes(struct net_device *dev)
685 struct gfar_private *priv = netdev_priv(dev);
688 printk(KERN_WARNING "SGMII mode requires that the device "
689 "tree specify a tbi-handle\n");
694 * If the link is already up, we must already be ok, and don't need to
695 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
696 * everything for us? Resetting it takes the link down and requires
697 * several seconds for it to come back.
699 if (phy_read(priv->tbiphy, MII_BMSR) & BMSR_LSTATUS)
702 /* Single clk mode, mii mode off(for serdes communication) */
703 phy_write(priv->tbiphy, MII_TBICON, TBICON_CLK_SELECT);
705 phy_write(priv->tbiphy, MII_ADVERTISE,
706 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
707 ADVERTISE_1000XPSE_ASYM);
709 phy_write(priv->tbiphy, MII_BMCR, BMCR_ANENABLE |
710 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
713 static void init_registers(struct net_device *dev)
715 struct gfar_private *priv = netdev_priv(dev);
718 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
720 /* Initialize IMASK */
721 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
723 /* Init hash registers to zero */
724 gfar_write(&priv->regs->igaddr0, 0);
725 gfar_write(&priv->regs->igaddr1, 0);
726 gfar_write(&priv->regs->igaddr2, 0);
727 gfar_write(&priv->regs->igaddr3, 0);
728 gfar_write(&priv->regs->igaddr4, 0);
729 gfar_write(&priv->regs->igaddr5, 0);
730 gfar_write(&priv->regs->igaddr6, 0);
731 gfar_write(&priv->regs->igaddr7, 0);
733 gfar_write(&priv->regs->gaddr0, 0);
734 gfar_write(&priv->regs->gaddr1, 0);
735 gfar_write(&priv->regs->gaddr2, 0);
736 gfar_write(&priv->regs->gaddr3, 0);
737 gfar_write(&priv->regs->gaddr4, 0);
738 gfar_write(&priv->regs->gaddr5, 0);
739 gfar_write(&priv->regs->gaddr6, 0);
740 gfar_write(&priv->regs->gaddr7, 0);
742 /* Zero out the rmon mib registers if it has them */
743 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
744 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
746 /* Mask off the CAM interrupts */
747 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
748 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
751 /* Initialize the max receive buffer length */
752 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
754 /* Initialize the Minimum Frame Length Register */
755 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
759 /* Halt the receive and transmit queues */
760 static void gfar_halt_nodisable(struct net_device *dev)
762 struct gfar_private *priv = netdev_priv(dev);
763 struct gfar __iomem *regs = priv->regs;
766 /* Mask all interrupts */
767 gfar_write(®s->imask, IMASK_INIT_CLEAR);
769 /* Clear all interrupts */
770 gfar_write(®s->ievent, IEVENT_INIT_CLEAR);
772 /* Stop the DMA, and wait for it to stop */
773 tempval = gfar_read(&priv->regs->dmactrl);
774 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
775 != (DMACTRL_GRS | DMACTRL_GTS)) {
776 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
777 gfar_write(&priv->regs->dmactrl, tempval);
779 while (!(gfar_read(&priv->regs->ievent) &
780 (IEVENT_GRSC | IEVENT_GTSC)))
785 /* Halt the receive and transmit queues */
786 void gfar_halt(struct net_device *dev)
788 struct gfar_private *priv = netdev_priv(dev);
789 struct gfar __iomem *regs = priv->regs;
792 gfar_halt_nodisable(dev);
794 /* Disable Rx and Tx */
795 tempval = gfar_read(®s->maccfg1);
796 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
797 gfar_write(®s->maccfg1, tempval);
800 void stop_gfar(struct net_device *dev)
802 struct gfar_private *priv = netdev_priv(dev);
803 struct gfar __iomem *regs = priv->regs;
806 phy_stop(priv->phydev);
809 spin_lock_irqsave(&priv->txlock, flags);
810 spin_lock(&priv->rxlock);
814 spin_unlock(&priv->rxlock);
815 spin_unlock_irqrestore(&priv->txlock, flags);
818 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
819 free_irq(priv->interruptError, dev);
820 free_irq(priv->interruptTransmit, dev);
821 free_irq(priv->interruptReceive, dev);
823 free_irq(priv->interruptTransmit, dev);
826 free_skb_resources(priv);
828 dma_free_coherent(&dev->dev,
829 sizeof(struct txbd8)*priv->tx_ring_size
830 + sizeof(struct rxbd8)*priv->rx_ring_size,
832 gfar_read(®s->tbase0));
835 /* If there are any tx skbs or rx skbs still around, free them.
836 * Then free tx_skbuff and rx_skbuff */
837 static void free_skb_resources(struct gfar_private *priv)
843 /* Go through all the buffer descriptors and free their data buffers */
844 txbdp = priv->tx_bd_base;
846 for (i = 0; i < priv->tx_ring_size; i++) {
847 if (!priv->tx_skbuff[i])
850 dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
851 txbdp->length, DMA_TO_DEVICE);
853 for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) {
855 dma_unmap_page(&priv->dev->dev, txbdp->bufPtr,
856 txbdp->length, DMA_TO_DEVICE);
859 dev_kfree_skb_any(priv->tx_skbuff[i]);
860 priv->tx_skbuff[i] = NULL;
863 kfree(priv->tx_skbuff);
865 rxbdp = priv->rx_bd_base;
867 /* rx_skbuff is not guaranteed to be allocated, so only
868 * free it and its contents if it is allocated */
869 if(priv->rx_skbuff != NULL) {
870 for (i = 0; i < priv->rx_ring_size; i++) {
871 if (priv->rx_skbuff[i]) {
872 dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
873 priv->rx_buffer_size,
876 dev_kfree_skb_any(priv->rx_skbuff[i]);
877 priv->rx_skbuff[i] = NULL;
886 kfree(priv->rx_skbuff);
890 void gfar_start(struct net_device *dev)
892 struct gfar_private *priv = netdev_priv(dev);
893 struct gfar __iomem *regs = priv->regs;
896 /* Enable Rx and Tx in MACCFG1 */
897 tempval = gfar_read(®s->maccfg1);
898 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
899 gfar_write(®s->maccfg1, tempval);
901 /* Initialize DMACTRL to have WWR and WOP */
902 tempval = gfar_read(&priv->regs->dmactrl);
903 tempval |= DMACTRL_INIT_SETTINGS;
904 gfar_write(&priv->regs->dmactrl, tempval);
906 /* Make sure we aren't stopped */
907 tempval = gfar_read(&priv->regs->dmactrl);
908 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
909 gfar_write(&priv->regs->dmactrl, tempval);
911 /* Clear THLT/RHLT, so that the DMA starts polling now */
912 gfar_write(®s->tstat, TSTAT_CLEAR_THALT);
913 gfar_write(®s->rstat, RSTAT_CLEAR_RHALT);
915 /* Unmask the interrupts we look for */
916 gfar_write(®s->imask, IMASK_DEFAULT);
918 dev->trans_start = jiffies;
921 /* Bring the controller up and running */
922 int startup_gfar(struct net_device *dev)
929 struct gfar_private *priv = netdev_priv(dev);
930 struct gfar __iomem *regs = priv->regs;
935 gfar_write(®s->imask, IMASK_INIT_CLEAR);
937 /* Allocate memory for the buffer descriptors */
938 vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
939 sizeof (struct txbd8) * priv->tx_ring_size +
940 sizeof (struct rxbd8) * priv->rx_ring_size,
944 if (netif_msg_ifup(priv))
945 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
950 priv->tx_bd_base = (struct txbd8 *) vaddr;
952 /* enet DMA only understands physical addresses */
953 gfar_write(®s->tbase0, addr);
955 /* Start the rx descriptor ring where the tx ring leaves off */
956 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
957 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
958 priv->rx_bd_base = (struct rxbd8 *) vaddr;
959 gfar_write(®s->rbase0, addr);
961 /* Setup the skbuff rings */
963 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
964 priv->tx_ring_size, GFP_KERNEL);
966 if (NULL == priv->tx_skbuff) {
967 if (netif_msg_ifup(priv))
968 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
974 for (i = 0; i < priv->tx_ring_size; i++)
975 priv->tx_skbuff[i] = NULL;
978 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
979 priv->rx_ring_size, GFP_KERNEL);
981 if (NULL == priv->rx_skbuff) {
982 if (netif_msg_ifup(priv))
983 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
989 for (i = 0; i < priv->rx_ring_size; i++)
990 priv->rx_skbuff[i] = NULL;
992 /* Initialize some variables in our dev structure */
993 priv->num_txbdfree = priv->tx_ring_size;
994 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
995 priv->cur_rx = priv->rx_bd_base;
996 priv->skb_curtx = priv->skb_dirtytx = 0;
999 /* Initialize Transmit Descriptor Ring */
1000 txbdp = priv->tx_bd_base;
1001 for (i = 0; i < priv->tx_ring_size; i++) {
1007 /* Set the last descriptor in the ring to indicate wrap */
1009 txbdp->status |= TXBD_WRAP;
1011 rxbdp = priv->rx_bd_base;
1012 for (i = 0; i < priv->rx_ring_size; i++) {
1013 struct sk_buff *skb;
1015 skb = gfar_new_skb(dev);
1018 printk(KERN_ERR "%s: Can't allocate RX buffers\n",
1021 goto err_rxalloc_fail;
1024 priv->rx_skbuff[i] = skb;
1026 gfar_new_rxbdp(dev, rxbdp, skb);
1031 /* Set the last descriptor in the ring to wrap */
1033 rxbdp->status |= RXBD_WRAP;
1035 /* If the device has multiple interrupts, register for
1036 * them. Otherwise, only register for the one */
1037 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1038 /* Install our interrupt handlers for Error,
1039 * Transmit, and Receive */
1040 if (request_irq(priv->interruptError, gfar_error,
1041 0, priv->int_name_er, dev) < 0) {
1042 if (netif_msg_intr(priv))
1043 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1044 dev->name, priv->interruptError);
1050 if (request_irq(priv->interruptTransmit, gfar_transmit,
1051 0, priv->int_name_tx, dev) < 0) {
1052 if (netif_msg_intr(priv))
1053 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1054 dev->name, priv->interruptTransmit);
1061 if (request_irq(priv->interruptReceive, gfar_receive,
1062 0, priv->int_name_rx, dev) < 0) {
1063 if (netif_msg_intr(priv))
1064 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
1065 dev->name, priv->interruptReceive);
1071 if (request_irq(priv->interruptTransmit, gfar_interrupt,
1072 0, priv->int_name_tx, dev) < 0) {
1073 if (netif_msg_intr(priv))
1074 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1075 dev->name, priv->interruptTransmit);
1082 phy_start(priv->phydev);
1084 /* Configure the coalescing support */
1085 gfar_write(®s->txic, 0);
1086 if (priv->txcoalescing)
1087 gfar_write(®s->txic, priv->txic);
1089 gfar_write(®s->rxic, 0);
1090 if (priv->rxcoalescing)
1091 gfar_write(®s->rxic, priv->rxic);
1093 if (priv->rx_csum_enable)
1094 rctrl |= RCTRL_CHECKSUMMING;
1096 if (priv->extended_hash) {
1097 rctrl |= RCTRL_EXTHASH;
1099 gfar_clear_exact_match(dev);
1100 rctrl |= RCTRL_EMEN;
1103 if (priv->padding) {
1104 rctrl &= ~RCTRL_PAL_MASK;
1105 rctrl |= RCTRL_PADDING(priv->padding);
1108 /* Init rctrl based on our settings */
1109 gfar_write(&priv->regs->rctrl, rctrl);
1111 if (dev->features & NETIF_F_IP_CSUM)
1112 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
1114 /* Set the extraction length and index */
1115 attrs = ATTRELI_EL(priv->rx_stash_size) |
1116 ATTRELI_EI(priv->rx_stash_index);
1118 gfar_write(&priv->regs->attreli, attrs);
1120 /* Start with defaults, and add stashing or locking
1121 * depending on the approprate variables */
1122 attrs = ATTR_INIT_SETTINGS;
1124 if (priv->bd_stash_en)
1125 attrs |= ATTR_BDSTASH;
1127 if (priv->rx_stash_size != 0)
1128 attrs |= ATTR_BUFSTASH;
1130 gfar_write(&priv->regs->attr, attrs);
1132 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1133 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1134 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1136 /* Start the controller */
1142 free_irq(priv->interruptTransmit, dev);
1144 free_irq(priv->interruptError, dev);
1148 free_skb_resources(priv);
1150 dma_free_coherent(&dev->dev,
1151 sizeof(struct txbd8)*priv->tx_ring_size
1152 + sizeof(struct rxbd8)*priv->rx_ring_size,
1154 gfar_read(®s->tbase0));
1159 /* Called when something needs to use the ethernet device */
1160 /* Returns 0 for success. */
1161 static int gfar_enet_open(struct net_device *dev)
1163 struct gfar_private *priv = netdev_priv(dev);
1166 napi_enable(&priv->napi);
1168 /* Initialize a bunch of registers */
1169 init_registers(dev);
1171 gfar_set_mac_address(dev);
1173 err = init_phy(dev);
1176 napi_disable(&priv->napi);
1180 err = startup_gfar(dev);
1182 napi_disable(&priv->napi);
1186 netif_start_queue(dev);
1191 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1193 struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
1195 cacheable_memzero(fcb, GMAC_FCB_LEN);
1200 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1204 /* If we're here, it's a IP packet with a TCP or UDP
1205 * payload. We set it to checksum, using a pseudo-header
1208 flags = TXFCB_DEFAULT;
1210 /* Tell the controller what the protocol is */
1211 /* And provide the already calculated phcs */
1212 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1214 fcb->phcs = udp_hdr(skb)->check;
1216 fcb->phcs = tcp_hdr(skb)->check;
1218 /* l3os is the distance between the start of the
1219 * frame (skb->data) and the start of the IP hdr.
1220 * l4os is the distance between the start of the
1221 * l3 hdr and the l4 hdr */
1222 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1223 fcb->l4os = skb_network_header_len(skb);
1228 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1230 fcb->flags |= TXFCB_VLN;
1231 fcb->vlctl = vlan_tx_tag_get(skb);
1234 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1235 struct txbd8 *base, int ring_size)
1237 struct txbd8 *new_bd = bdp + stride;
1239 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1242 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1245 return skip_txbd(bdp, 1, base, ring_size);
1248 /* This is called by the kernel when a frame is ready for transmission. */
1249 /* It is pointed to by the dev->hard_start_xmit function pointer */
1250 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1252 struct gfar_private *priv = netdev_priv(dev);
1253 struct txfcb *fcb = NULL;
1254 struct txbd8 *txbdp, *txbdp_start, *base;
1258 unsigned long flags;
1259 unsigned int nr_frags, length;
1261 base = priv->tx_bd_base;
1263 /* total number of fragments in the SKB */
1264 nr_frags = skb_shinfo(skb)->nr_frags;
1266 spin_lock_irqsave(&priv->txlock, flags);
1268 /* check if there is space to queue this packet */
1269 if (nr_frags > priv->num_txbdfree) {
1270 /* no space, stop the queue */
1271 netif_stop_queue(dev);
1272 dev->stats.tx_fifo_errors++;
1273 spin_unlock_irqrestore(&priv->txlock, flags);
1274 return NETDEV_TX_BUSY;
1277 /* Update transmit stats */
1278 dev->stats.tx_bytes += skb->len;
1280 txbdp = txbdp_start = priv->cur_tx;
1282 if (nr_frags == 0) {
1283 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1285 /* Place the fragment addresses and lengths into the TxBDs */
1286 for (i = 0; i < nr_frags; i++) {
1287 /* Point at the next BD, wrapping as needed */
1288 txbdp = next_txbd(txbdp, base, priv->tx_ring_size);
1290 length = skb_shinfo(skb)->frags[i].size;
1292 lstatus = txbdp->lstatus | length |
1293 BD_LFLAG(TXBD_READY);
1295 /* Handle the last BD specially */
1296 if (i == nr_frags - 1)
1297 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1299 bufaddr = dma_map_page(&dev->dev,
1300 skb_shinfo(skb)->frags[i].page,
1301 skb_shinfo(skb)->frags[i].page_offset,
1305 /* set the TxBD length and buffer pointer */
1306 txbdp->bufPtr = bufaddr;
1307 txbdp->lstatus = lstatus;
1310 lstatus = txbdp_start->lstatus;
1313 /* Set up checksumming */
1314 if (CHECKSUM_PARTIAL == skb->ip_summed) {
1315 fcb = gfar_add_fcb(skb);
1316 lstatus |= BD_LFLAG(TXBD_TOE);
1317 gfar_tx_checksum(skb, fcb);
1320 if (priv->vlgrp && vlan_tx_tag_present(skb)) {
1321 if (unlikely(NULL == fcb)) {
1322 fcb = gfar_add_fcb(skb);
1323 lstatus |= BD_LFLAG(TXBD_TOE);
1326 gfar_tx_vlan(skb, fcb);
1329 /* setup the TxBD length and buffer pointer for the first BD */
1330 priv->tx_skbuff[priv->skb_curtx] = skb;
1331 txbdp_start->bufPtr = dma_map_single(&dev->dev, skb->data,
1332 skb_headlen(skb), DMA_TO_DEVICE);
1334 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1337 * The powerpc-specific eieio() is used, as wmb() has too strong
1338 * semantics (it requires synchronization between cacheable and
1339 * uncacheable mappings, which eieio doesn't provide and which we
1340 * don't need), thus requiring a more expensive sync instruction. At
1341 * some point, the set of architecture-independent barrier functions
1342 * should be expanded to include weaker barriers.
1346 txbdp_start->lstatus = lstatus;
1348 /* Update the current skb pointer to the next entry we will use
1349 * (wrapping if necessary) */
1350 priv->skb_curtx = (priv->skb_curtx + 1) &
1351 TX_RING_MOD_MASK(priv->tx_ring_size);
1353 priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size);
1355 /* reduce TxBD free count */
1356 priv->num_txbdfree -= (nr_frags + 1);
1358 dev->trans_start = jiffies;
1360 /* If the next BD still needs to be cleaned up, then the bds
1361 are full. We need to tell the kernel to stop sending us stuff. */
1362 if (!priv->num_txbdfree) {
1363 netif_stop_queue(dev);
1365 dev->stats.tx_fifo_errors++;
1368 /* Tell the DMA to go go go */
1369 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1372 spin_unlock_irqrestore(&priv->txlock, flags);
1377 /* Stops the kernel queue, and halts the controller */
1378 static int gfar_close(struct net_device *dev)
1380 struct gfar_private *priv = netdev_priv(dev);
1382 napi_disable(&priv->napi);
1384 cancel_work_sync(&priv->reset_task);
1387 /* Disconnect from the PHY */
1388 phy_disconnect(priv->phydev);
1389 priv->phydev = NULL;
1391 netif_stop_queue(dev);
1396 /* Changes the mac address if the controller is not running. */
1397 static int gfar_set_mac_address(struct net_device *dev)
1399 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1405 /* Enables and disables VLAN insertion/extraction */
1406 static void gfar_vlan_rx_register(struct net_device *dev,
1407 struct vlan_group *grp)
1409 struct gfar_private *priv = netdev_priv(dev);
1410 unsigned long flags;
1411 struct vlan_group *old_grp;
1414 spin_lock_irqsave(&priv->rxlock, flags);
1416 old_grp = priv->vlgrp;
1422 /* Enable VLAN tag insertion */
1423 tempval = gfar_read(&priv->regs->tctrl);
1424 tempval |= TCTRL_VLINS;
1426 gfar_write(&priv->regs->tctrl, tempval);
1428 /* Enable VLAN tag extraction */
1429 tempval = gfar_read(&priv->regs->rctrl);
1430 tempval |= RCTRL_VLEX;
1431 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
1432 gfar_write(&priv->regs->rctrl, tempval);
1434 /* Disable VLAN tag insertion */
1435 tempval = gfar_read(&priv->regs->tctrl);
1436 tempval &= ~TCTRL_VLINS;
1437 gfar_write(&priv->regs->tctrl, tempval);
1439 /* Disable VLAN tag extraction */
1440 tempval = gfar_read(&priv->regs->rctrl);
1441 tempval &= ~RCTRL_VLEX;
1442 /* If parse is no longer required, then disable parser */
1443 if (tempval & RCTRL_REQ_PARSER)
1444 tempval |= RCTRL_PRSDEP_INIT;
1446 tempval &= ~RCTRL_PRSDEP_INIT;
1447 gfar_write(&priv->regs->rctrl, tempval);
1450 gfar_change_mtu(dev, dev->mtu);
1452 spin_unlock_irqrestore(&priv->rxlock, flags);
1455 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1457 int tempsize, tempval;
1458 struct gfar_private *priv = netdev_priv(dev);
1459 int oldsize = priv->rx_buffer_size;
1460 int frame_size = new_mtu + ETH_HLEN;
1463 frame_size += VLAN_HLEN;
1465 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1466 if (netif_msg_drv(priv))
1467 printk(KERN_ERR "%s: Invalid MTU setting\n",
1472 if (gfar_uses_fcb(priv))
1473 frame_size += GMAC_FCB_LEN;
1475 frame_size += priv->padding;
1478 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1479 INCREMENTAL_BUFFER_SIZE;
1481 /* Only stop and start the controller if it isn't already
1482 * stopped, and we changed something */
1483 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1486 priv->rx_buffer_size = tempsize;
1490 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1491 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1493 /* If the mtu is larger than the max size for standard
1494 * ethernet frames (ie, a jumbo frame), then set maccfg2
1495 * to allow huge frames, and to check the length */
1496 tempval = gfar_read(&priv->regs->maccfg2);
1498 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1499 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1501 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1503 gfar_write(&priv->regs->maccfg2, tempval);
1505 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1511 /* gfar_reset_task gets scheduled when a packet has not been
1512 * transmitted after a set amount of time.
1513 * For now, assume that clearing out all the structures, and
1514 * starting over will fix the problem.
1516 static void gfar_reset_task(struct work_struct *work)
1518 struct gfar_private *priv = container_of(work, struct gfar_private,
1520 struct net_device *dev = priv->dev;
1522 if (dev->flags & IFF_UP) {
1527 netif_tx_schedule_all(dev);
1530 static void gfar_timeout(struct net_device *dev)
1532 struct gfar_private *priv = netdev_priv(dev);
1534 dev->stats.tx_errors++;
1535 schedule_work(&priv->reset_task);
1538 /* Interrupt Handler for Transmit complete */
1539 static int gfar_clean_tx_ring(struct net_device *dev)
1541 struct gfar_private *priv = netdev_priv(dev);
1543 struct txbd8 *lbdp = NULL;
1544 struct txbd8 *base = priv->tx_bd_base;
1545 struct sk_buff *skb;
1547 int tx_ring_size = priv->tx_ring_size;
1553 bdp = priv->dirty_tx;
1554 skb_dirtytx = priv->skb_dirtytx;
1556 while ((skb = priv->tx_skbuff[skb_dirtytx])) {
1557 frags = skb_shinfo(skb)->nr_frags;
1558 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
1560 lstatus = lbdp->lstatus;
1562 /* Only clean completed frames */
1563 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
1564 (lstatus & BD_LENGTH_MASK))
1567 dma_unmap_single(&dev->dev,
1572 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1573 bdp = next_txbd(bdp, base, tx_ring_size);
1575 for (i = 0; i < frags; i++) {
1576 dma_unmap_page(&dev->dev,
1580 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1581 bdp = next_txbd(bdp, base, tx_ring_size);
1584 dev_kfree_skb_any(skb);
1585 priv->tx_skbuff[skb_dirtytx] = NULL;
1587 skb_dirtytx = (skb_dirtytx + 1) &
1588 TX_RING_MOD_MASK(tx_ring_size);
1591 priv->num_txbdfree += frags + 1;
1594 /* If we freed a buffer, we can restart transmission, if necessary */
1595 if (netif_queue_stopped(dev) && priv->num_txbdfree)
1596 netif_wake_queue(dev);
1598 /* Update dirty indicators */
1599 priv->skb_dirtytx = skb_dirtytx;
1600 priv->dirty_tx = bdp;
1602 dev->stats.tx_packets += howmany;
1607 static void gfar_schedule_cleanup(struct net_device *dev)
1609 struct gfar_private *priv = netdev_priv(dev);
1610 if (netif_rx_schedule_prep(dev, &priv->napi)) {
1611 gfar_write(&priv->regs->imask, IMASK_RTX_DISABLED);
1612 __netif_rx_schedule(dev, &priv->napi);
1616 /* Interrupt Handler for Transmit complete */
1617 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1619 gfar_schedule_cleanup((struct net_device *)dev_id);
1623 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1624 struct sk_buff *skb)
1626 struct gfar_private *priv = netdev_priv(dev);
1629 bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1630 priv->rx_buffer_size, DMA_FROM_DEVICE);
1632 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
1634 if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1635 lstatus |= BD_LFLAG(RXBD_WRAP);
1639 bdp->lstatus = lstatus;
1643 struct sk_buff * gfar_new_skb(struct net_device *dev)
1645 unsigned int alignamount;
1646 struct gfar_private *priv = netdev_priv(dev);
1647 struct sk_buff *skb = NULL;
1649 /* We have to allocate the skb, so keep trying till we succeed */
1650 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
1655 alignamount = RXBUF_ALIGNMENT -
1656 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1658 /* We need the data buffer to be aligned properly. We will reserve
1659 * as many bytes as needed to align the data properly
1661 skb_reserve(skb, alignamount);
1666 static inline void count_errors(unsigned short status, struct net_device *dev)
1668 struct gfar_private *priv = netdev_priv(dev);
1669 struct net_device_stats *stats = &dev->stats;
1670 struct gfar_extra_stats *estats = &priv->extra_stats;
1672 /* If the packet was truncated, none of the other errors
1674 if (status & RXBD_TRUNCATED) {
1675 stats->rx_length_errors++;
1681 /* Count the errors, if there were any */
1682 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1683 stats->rx_length_errors++;
1685 if (status & RXBD_LARGE)
1690 if (status & RXBD_NONOCTET) {
1691 stats->rx_frame_errors++;
1692 estats->rx_nonoctet++;
1694 if (status & RXBD_CRCERR) {
1695 estats->rx_crcerr++;
1696 stats->rx_crc_errors++;
1698 if (status & RXBD_OVERRUN) {
1699 estats->rx_overrun++;
1700 stats->rx_crc_errors++;
1704 irqreturn_t gfar_receive(int irq, void *dev_id)
1706 gfar_schedule_cleanup((struct net_device *)dev_id);
1710 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1712 /* If valid headers were found, and valid sums
1713 * were verified, then we tell the kernel that no
1714 * checksumming is necessary. Otherwise, it is */
1715 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1716 skb->ip_summed = CHECKSUM_UNNECESSARY;
1718 skb->ip_summed = CHECKSUM_NONE;
1722 /* gfar_process_frame() -- handle one incoming packet if skb
1724 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1727 struct gfar_private *priv = netdev_priv(dev);
1728 struct rxfcb *fcb = NULL;
1732 /* fcb is at the beginning if exists */
1733 fcb = (struct rxfcb *)skb->data;
1735 /* Remove the FCB from the skb */
1736 /* Remove the padded bytes, if there are any */
1738 skb_pull(skb, amount_pull);
1740 if (priv->rx_csum_enable)
1741 gfar_rx_checksum(skb, fcb);
1743 /* Tell the skb what kind of packet this is */
1744 skb->protocol = eth_type_trans(skb, dev);
1746 /* Send the packet up the stack */
1747 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1748 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
1750 ret = netif_receive_skb(skb);
1752 if (NET_RX_DROP == ret)
1753 priv->extra_stats.kernel_dropped++;
1758 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1759 * until the budget/quota has been reached. Returns the number
1762 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1764 struct rxbd8 *bdp, *base;
1765 struct sk_buff *skb;
1769 struct gfar_private *priv = netdev_priv(dev);
1771 /* Get the first full descriptor */
1773 base = priv->rx_bd_base;
1775 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
1778 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1779 struct sk_buff *newskb;
1782 /* Add another skb for the future */
1783 newskb = gfar_new_skb(dev);
1785 skb = priv->rx_skbuff[priv->skb_currx];
1787 dma_unmap_single(&priv->dev->dev, bdp->bufPtr,
1788 priv->rx_buffer_size, DMA_FROM_DEVICE);
1790 /* We drop the frame if we failed to allocate a new buffer */
1791 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1792 bdp->status & RXBD_ERR)) {
1793 count_errors(bdp->status, dev);
1795 if (unlikely(!newskb))
1798 dev_kfree_skb_any(skb);
1800 /* Increment the number of packets */
1801 dev->stats.rx_packets++;
1805 pkt_len = bdp->length - ETH_FCS_LEN;
1806 /* Remove the FCS from the packet length */
1807 skb_put(skb, pkt_len);
1808 dev->stats.rx_bytes += pkt_len;
1810 gfar_process_frame(dev, skb, amount_pull);
1813 if (netif_msg_rx_err(priv))
1815 "%s: Missing skb!\n", dev->name);
1816 dev->stats.rx_dropped++;
1817 priv->extra_stats.rx_skbmissing++;
1822 priv->rx_skbuff[priv->skb_currx] = newskb;
1824 /* Setup the new bdp */
1825 gfar_new_rxbdp(dev, bdp, newskb);
1827 /* Update to the next pointer */
1828 bdp = next_bd(bdp, base, priv->rx_ring_size);
1830 /* update to point at the next skb */
1832 (priv->skb_currx + 1) &
1833 RX_RING_MOD_MASK(priv->rx_ring_size);
1836 /* Update the current rxbd pointer to be the next one */
1842 static int gfar_poll(struct napi_struct *napi, int budget)
1844 struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1845 struct net_device *dev = priv->dev;
1848 unsigned long flags;
1850 /* Clear IEVENT, so interrupts aren't called again
1851 * because of the packets that have already arrived */
1852 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1854 /* If we fail to get the lock, don't bother with the TX BDs */
1855 if (spin_trylock_irqsave(&priv->txlock, flags)) {
1856 tx_cleaned = gfar_clean_tx_ring(dev);
1857 spin_unlock_irqrestore(&priv->txlock, flags);
1860 rx_cleaned = gfar_clean_rx_ring(dev, budget);
1865 if (rx_cleaned < budget) {
1866 netif_rx_complete(dev, napi);
1868 /* Clear the halt bit in RSTAT */
1869 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1871 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1873 /* If we are coalescing interrupts, update the timer */
1874 /* Otherwise, clear it */
1875 if (likely(priv->rxcoalescing)) {
1876 gfar_write(&priv->regs->rxic, 0);
1877 gfar_write(&priv->regs->rxic, priv->rxic);
1879 if (likely(priv->txcoalescing)) {
1880 gfar_write(&priv->regs->txic, 0);
1881 gfar_write(&priv->regs->txic, priv->txic);
1888 #ifdef CONFIG_NET_POLL_CONTROLLER
1890 * Polling 'interrupt' - used by things like netconsole to send skbs
1891 * without having to re-enable interrupts. It's not called while
1892 * the interrupt routine is executing.
1894 static void gfar_netpoll(struct net_device *dev)
1896 struct gfar_private *priv = netdev_priv(dev);
1898 /* If the device has multiple interrupts, run tx/rx */
1899 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1900 disable_irq(priv->interruptTransmit);
1901 disable_irq(priv->interruptReceive);
1902 disable_irq(priv->interruptError);
1903 gfar_interrupt(priv->interruptTransmit, dev);
1904 enable_irq(priv->interruptError);
1905 enable_irq(priv->interruptReceive);
1906 enable_irq(priv->interruptTransmit);
1908 disable_irq(priv->interruptTransmit);
1909 gfar_interrupt(priv->interruptTransmit, dev);
1910 enable_irq(priv->interruptTransmit);
1915 /* The interrupt handler for devices with one interrupt */
1916 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1918 struct net_device *dev = dev_id;
1919 struct gfar_private *priv = netdev_priv(dev);
1921 /* Save ievent for future reference */
1922 u32 events = gfar_read(&priv->regs->ievent);
1924 /* Check for reception */
1925 if (events & IEVENT_RX_MASK)
1926 gfar_receive(irq, dev_id);
1928 /* Check for transmit completion */
1929 if (events & IEVENT_TX_MASK)
1930 gfar_transmit(irq, dev_id);
1932 /* Check for errors */
1933 if (events & IEVENT_ERR_MASK)
1934 gfar_error(irq, dev_id);
1939 /* Called every time the controller might need to be made
1940 * aware of new link state. The PHY code conveys this
1941 * information through variables in the phydev structure, and this
1942 * function converts those variables into the appropriate
1943 * register values, and can bring down the device if needed.
1945 static void adjust_link(struct net_device *dev)
1947 struct gfar_private *priv = netdev_priv(dev);
1948 struct gfar __iomem *regs = priv->regs;
1949 unsigned long flags;
1950 struct phy_device *phydev = priv->phydev;
1953 spin_lock_irqsave(&priv->txlock, flags);
1955 u32 tempval = gfar_read(®s->maccfg2);
1956 u32 ecntrl = gfar_read(®s->ecntrl);
1958 /* Now we make sure that we can be in full duplex mode.
1959 * If not, we operate in half-duplex mode. */
1960 if (phydev->duplex != priv->oldduplex) {
1962 if (!(phydev->duplex))
1963 tempval &= ~(MACCFG2_FULL_DUPLEX);
1965 tempval |= MACCFG2_FULL_DUPLEX;
1967 priv->oldduplex = phydev->duplex;
1970 if (phydev->speed != priv->oldspeed) {
1972 switch (phydev->speed) {
1975 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1980 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1982 /* Reduced mode distinguishes
1983 * between 10 and 100 */
1984 if (phydev->speed == SPEED_100)
1985 ecntrl |= ECNTRL_R100;
1987 ecntrl &= ~(ECNTRL_R100);
1990 if (netif_msg_link(priv))
1992 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1993 dev->name, phydev->speed);
1997 priv->oldspeed = phydev->speed;
2000 gfar_write(®s->maccfg2, tempval);
2001 gfar_write(®s->ecntrl, ecntrl);
2003 if (!priv->oldlink) {
2007 } else if (priv->oldlink) {
2011 priv->oldduplex = -1;
2014 if (new_state && netif_msg_link(priv))
2015 phy_print_status(phydev);
2017 spin_unlock_irqrestore(&priv->txlock, flags);
2020 /* Update the hash table based on the current list of multicast
2021 * addresses we subscribe to. Also, change the promiscuity of
2022 * the device based on the flags (this function is called
2023 * whenever dev->flags is changed */
2024 static void gfar_set_multi(struct net_device *dev)
2026 struct dev_mc_list *mc_ptr;
2027 struct gfar_private *priv = netdev_priv(dev);
2028 struct gfar __iomem *regs = priv->regs;
2031 if(dev->flags & IFF_PROMISC) {
2032 /* Set RCTRL to PROM */
2033 tempval = gfar_read(®s->rctrl);
2034 tempval |= RCTRL_PROM;
2035 gfar_write(®s->rctrl, tempval);
2037 /* Set RCTRL to not PROM */
2038 tempval = gfar_read(®s->rctrl);
2039 tempval &= ~(RCTRL_PROM);
2040 gfar_write(®s->rctrl, tempval);
2043 if(dev->flags & IFF_ALLMULTI) {
2044 /* Set the hash to rx all multicast frames */
2045 gfar_write(®s->igaddr0, 0xffffffff);
2046 gfar_write(®s->igaddr1, 0xffffffff);
2047 gfar_write(®s->igaddr2, 0xffffffff);
2048 gfar_write(®s->igaddr3, 0xffffffff);
2049 gfar_write(®s->igaddr4, 0xffffffff);
2050 gfar_write(®s->igaddr5, 0xffffffff);
2051 gfar_write(®s->igaddr6, 0xffffffff);
2052 gfar_write(®s->igaddr7, 0xffffffff);
2053 gfar_write(®s->gaddr0, 0xffffffff);
2054 gfar_write(®s->gaddr1, 0xffffffff);
2055 gfar_write(®s->gaddr2, 0xffffffff);
2056 gfar_write(®s->gaddr3, 0xffffffff);
2057 gfar_write(®s->gaddr4, 0xffffffff);
2058 gfar_write(®s->gaddr5, 0xffffffff);
2059 gfar_write(®s->gaddr6, 0xffffffff);
2060 gfar_write(®s->gaddr7, 0xffffffff);
2065 /* zero out the hash */
2066 gfar_write(®s->igaddr0, 0x0);
2067 gfar_write(®s->igaddr1, 0x0);
2068 gfar_write(®s->igaddr2, 0x0);
2069 gfar_write(®s->igaddr3, 0x0);
2070 gfar_write(®s->igaddr4, 0x0);
2071 gfar_write(®s->igaddr5, 0x0);
2072 gfar_write(®s->igaddr6, 0x0);
2073 gfar_write(®s->igaddr7, 0x0);
2074 gfar_write(®s->gaddr0, 0x0);
2075 gfar_write(®s->gaddr1, 0x0);
2076 gfar_write(®s->gaddr2, 0x0);
2077 gfar_write(®s->gaddr3, 0x0);
2078 gfar_write(®s->gaddr4, 0x0);
2079 gfar_write(®s->gaddr5, 0x0);
2080 gfar_write(®s->gaddr6, 0x0);
2081 gfar_write(®s->gaddr7, 0x0);
2083 /* If we have extended hash tables, we need to
2084 * clear the exact match registers to prepare for
2086 if (priv->extended_hash) {
2087 em_num = GFAR_EM_NUM + 1;
2088 gfar_clear_exact_match(dev);
2095 if(dev->mc_count == 0)
2098 /* Parse the list, and set the appropriate bits */
2099 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2101 gfar_set_mac_for_addr(dev, idx,
2105 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2113 /* Clears each of the exact match registers to zero, so they
2114 * don't interfere with normal reception */
2115 static void gfar_clear_exact_match(struct net_device *dev)
2118 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2120 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2121 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2124 /* Set the appropriate hash bit for the given addr */
2125 /* The algorithm works like so:
2126 * 1) Take the Destination Address (ie the multicast address), and
2127 * do a CRC on it (little endian), and reverse the bits of the
2129 * 2) Use the 8 most significant bits as a hash into a 256-entry
2130 * table. The table is controlled through 8 32-bit registers:
2131 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
2132 * gaddr7. This means that the 3 most significant bits in the
2133 * hash index which gaddr register to use, and the 5 other bits
2134 * indicate which bit (assuming an IBM numbering scheme, which
2135 * for PowerPC (tm) is usually the case) in the register holds
2137 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2140 struct gfar_private *priv = netdev_priv(dev);
2141 u32 result = ether_crc(MAC_ADDR_LEN, addr);
2142 int width = priv->hash_width;
2143 u8 whichbit = (result >> (32 - width)) & 0x1f;
2144 u8 whichreg = result >> (32 - width + 5);
2145 u32 value = (1 << (31-whichbit));
2147 tempval = gfar_read(priv->hash_regs[whichreg]);
2149 gfar_write(priv->hash_regs[whichreg], tempval);
2155 /* There are multiple MAC Address register pairs on some controllers
2156 * This function sets the numth pair to a given address
2158 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2160 struct gfar_private *priv = netdev_priv(dev);
2162 char tmpbuf[MAC_ADDR_LEN];
2164 u32 __iomem *macptr = &priv->regs->macstnaddr1;
2168 /* Now copy it into the mac registers backwards, cuz */
2169 /* little endian is silly */
2170 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2171 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2173 gfar_write(macptr, *((u32 *) (tmpbuf)));
2175 tempval = *((u32 *) (tmpbuf + 4));
2177 gfar_write(macptr+1, tempval);
2180 /* GFAR error interrupt handler */
2181 static irqreturn_t gfar_error(int irq, void *dev_id)
2183 struct net_device *dev = dev_id;
2184 struct gfar_private *priv = netdev_priv(dev);
2186 /* Save ievent for future reference */
2187 u32 events = gfar_read(&priv->regs->ievent);
2190 gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2192 /* Magic Packet is not an error. */
2193 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2194 (events & IEVENT_MAG))
2195 events &= ~IEVENT_MAG;
2198 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2199 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2200 dev->name, events, gfar_read(&priv->regs->imask));
2202 /* Update the error counters */
2203 if (events & IEVENT_TXE) {
2204 dev->stats.tx_errors++;
2206 if (events & IEVENT_LC)
2207 dev->stats.tx_window_errors++;
2208 if (events & IEVENT_CRL)
2209 dev->stats.tx_aborted_errors++;
2210 if (events & IEVENT_XFUN) {
2211 if (netif_msg_tx_err(priv))
2212 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2213 "packet dropped.\n", dev->name);
2214 dev->stats.tx_dropped++;
2215 priv->extra_stats.tx_underrun++;
2217 /* Reactivate the Tx Queues */
2218 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2220 if (netif_msg_tx_err(priv))
2221 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2223 if (events & IEVENT_BSY) {
2224 dev->stats.rx_errors++;
2225 priv->extra_stats.rx_bsy++;
2227 gfar_receive(irq, dev_id);
2229 if (netif_msg_rx_err(priv))
2230 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2231 dev->name, gfar_read(&priv->regs->rstat));
2233 if (events & IEVENT_BABR) {
2234 dev->stats.rx_errors++;
2235 priv->extra_stats.rx_babr++;
2237 if (netif_msg_rx_err(priv))
2238 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2240 if (events & IEVENT_EBERR) {
2241 priv->extra_stats.eberr++;
2242 if (netif_msg_rx_err(priv))
2243 printk(KERN_DEBUG "%s: bus error\n", dev->name);
2245 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2246 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2248 if (events & IEVENT_BABT) {
2249 priv->extra_stats.tx_babt++;
2250 if (netif_msg_tx_err(priv))
2251 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2256 /* work with hotplug and coldplug */
2257 MODULE_ALIAS("platform:fsl-gianfar");
2259 static struct of_device_id gfar_match[] =
2263 .compatible = "gianfar",
2268 /* Structure for a device driver */
2269 static struct of_platform_driver gfar_driver = {
2270 .name = "fsl-gianfar",
2271 .match_table = gfar_match,
2273 .probe = gfar_probe,
2274 .remove = gfar_remove,
2275 .suspend = gfar_suspend,
2276 .resume = gfar_resume,
2279 static int __init gfar_init(void)
2281 int err = gfar_mdio_init();
2286 err = of_register_platform_driver(&gfar_driver);
2294 static void __exit gfar_exit(void)
2296 of_unregister_platform_driver(&gfar_driver);
2300 module_init(gfar_init);
2301 module_exit(gfar_exit);