2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <linux/signal.h>
27 #include <linux/audit.h>
28 #include <linux/capability.h>
29 #include <asm/param.h>
30 #include <asm/uaccess.h>
31 #include <asm/unistd.h>
32 #include <asm/siginfo.h>
35 * SLAB caches for signal bits.
38 static kmem_cache_t *sigqueue_cachep;
41 * In POSIX a signal is sent either to a specific thread (Linux task)
42 * or to the process as a whole (Linux thread group). How the signal
43 * is sent determines whether it's to one thread or the whole group,
44 * which determines which signal mask(s) are involved in blocking it
45 * from being delivered until later. When the signal is delivered,
46 * either it's caught or ignored by a user handler or it has a default
47 * effect that applies to the whole thread group (POSIX process).
49 * The possible effects an unblocked signal set to SIG_DFL can have are:
50 * ignore - Nothing Happens
51 * terminate - kill the process, i.e. all threads in the group,
52 * similar to exit_group. The group leader (only) reports
53 * WIFSIGNALED status to its parent.
54 * coredump - write a core dump file describing all threads using
55 * the same mm and then kill all those threads
56 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
58 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
59 * Other signals when not blocked and set to SIG_DFL behaves as follows.
60 * The job control signals also have other special effects.
62 * +--------------------+------------------+
63 * | POSIX signal | default action |
64 * +--------------------+------------------+
65 * | SIGHUP | terminate |
66 * | SIGINT | terminate |
67 * | SIGQUIT | coredump |
68 * | SIGILL | coredump |
69 * | SIGTRAP | coredump |
70 * | SIGABRT/SIGIOT | coredump |
71 * | SIGBUS | coredump |
72 * | SIGFPE | coredump |
73 * | SIGKILL | terminate(+) |
74 * | SIGUSR1 | terminate |
75 * | SIGSEGV | coredump |
76 * | SIGUSR2 | terminate |
77 * | SIGPIPE | terminate |
78 * | SIGALRM | terminate |
79 * | SIGTERM | terminate |
80 * | SIGCHLD | ignore |
81 * | SIGCONT | ignore(*) |
82 * | SIGSTOP | stop(*)(+) |
83 * | SIGTSTP | stop(*) |
84 * | SIGTTIN | stop(*) |
85 * | SIGTTOU | stop(*) |
87 * | SIGXCPU | coredump |
88 * | SIGXFSZ | coredump |
89 * | SIGVTALRM | terminate |
90 * | SIGPROF | terminate |
91 * | SIGPOLL/SIGIO | terminate |
92 * | SIGSYS/SIGUNUSED | coredump |
93 * | SIGSTKFLT | terminate |
94 * | SIGWINCH | ignore |
95 * | SIGPWR | terminate |
96 * | SIGRTMIN-SIGRTMAX | terminate |
97 * +--------------------+------------------+
98 * | non-POSIX signal | default action |
99 * +--------------------+------------------+
100 * | SIGEMT | coredump |
101 * +--------------------+------------------+
103 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
104 * (*) Special job control effects:
105 * When SIGCONT is sent, it resumes the process (all threads in the group)
106 * from TASK_STOPPED state and also clears any pending/queued stop signals
107 * (any of those marked with "stop(*)"). This happens regardless of blocking,
108 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
109 * any pending/queued SIGCONT signals; this happens regardless of blocking,
110 * catching, or ignored the stop signal, though (except for SIGSTOP) the
111 * default action of stopping the process may happen later or never.
115 #define M_SIGEMT M(SIGEMT)
120 #if SIGRTMIN > BITS_PER_LONG
121 #define M(sig) (1ULL << ((sig)-1))
123 #define M(sig) (1UL << ((sig)-1))
125 #define T(sig, mask) (M(sig) & (mask))
127 #define SIG_KERNEL_ONLY_MASK (\
128 M(SIGKILL) | M(SIGSTOP) )
130 #define SIG_KERNEL_STOP_MASK (\
131 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
133 #define SIG_KERNEL_COREDUMP_MASK (\
134 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
135 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
136 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
138 #define SIG_KERNEL_IGNORE_MASK (\
139 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
141 #define sig_kernel_only(sig) \
142 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
143 #define sig_kernel_coredump(sig) \
144 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
145 #define sig_kernel_ignore(sig) \
146 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
147 #define sig_kernel_stop(sig) \
148 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
150 #define sig_user_defined(t, signr) \
151 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
152 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
154 #define sig_fatal(t, signr) \
155 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
156 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
158 static int sig_ignored(struct task_struct *t, int sig)
160 void __user * handler;
163 * Tracers always want to know about signals..
165 if (t->ptrace & PT_PTRACED)
169 * Blocked signals are never ignored, since the
170 * signal handler may change by the time it is
173 if (sigismember(&t->blocked, sig))
176 /* Is it explicitly or implicitly ignored? */
177 handler = t->sighand->action[sig-1].sa.sa_handler;
178 return handler == SIG_IGN ||
179 (handler == SIG_DFL && sig_kernel_ignore(sig));
183 * Re-calculate pending state from the set of locally pending
184 * signals, globally pending signals, and blocked signals.
186 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
191 switch (_NSIG_WORDS) {
193 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
194 ready |= signal->sig[i] &~ blocked->sig[i];
197 case 4: ready = signal->sig[3] &~ blocked->sig[3];
198 ready |= signal->sig[2] &~ blocked->sig[2];
199 ready |= signal->sig[1] &~ blocked->sig[1];
200 ready |= signal->sig[0] &~ blocked->sig[0];
203 case 2: ready = signal->sig[1] &~ blocked->sig[1];
204 ready |= signal->sig[0] &~ blocked->sig[0];
207 case 1: ready = signal->sig[0] &~ blocked->sig[0];
212 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
214 fastcall void recalc_sigpending_tsk(struct task_struct *t)
216 if (t->signal->group_stop_count > 0 ||
218 PENDING(&t->pending, &t->blocked) ||
219 PENDING(&t->signal->shared_pending, &t->blocked))
220 set_tsk_thread_flag(t, TIF_SIGPENDING);
222 clear_tsk_thread_flag(t, TIF_SIGPENDING);
225 void recalc_sigpending(void)
227 recalc_sigpending_tsk(current);
230 /* Given the mask, find the first available signal that should be serviced. */
233 next_signal(struct sigpending *pending, sigset_t *mask)
235 unsigned long i, *s, *m, x;
238 s = pending->signal.sig;
240 switch (_NSIG_WORDS) {
242 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
243 if ((x = *s &~ *m) != 0) {
244 sig = ffz(~x) + i*_NSIG_BPW + 1;
249 case 2: if ((x = s[0] &~ m[0]) != 0)
251 else if ((x = s[1] &~ m[1]) != 0)
258 case 1: if ((x = *s &~ *m) != 0)
266 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
269 struct sigqueue *q = NULL;
271 atomic_inc(&t->user->sigpending);
272 if (override_rlimit ||
273 atomic_read(&t->user->sigpending) <=
274 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
275 q = kmem_cache_alloc(sigqueue_cachep, flags);
276 if (unlikely(q == NULL)) {
277 atomic_dec(&t->user->sigpending);
279 INIT_LIST_HEAD(&q->list);
281 q->user = get_uid(t->user);
286 static void __sigqueue_free(struct sigqueue *q)
288 if (q->flags & SIGQUEUE_PREALLOC)
290 atomic_dec(&q->user->sigpending);
292 kmem_cache_free(sigqueue_cachep, q);
295 static void flush_sigqueue(struct sigpending *queue)
299 sigemptyset(&queue->signal);
300 while (!list_empty(&queue->list)) {
301 q = list_entry(queue->list.next, struct sigqueue , list);
302 list_del_init(&q->list);
308 * Flush all pending signals for a task.
312 flush_signals(struct task_struct *t)
316 spin_lock_irqsave(&t->sighand->siglock, flags);
317 clear_tsk_thread_flag(t,TIF_SIGPENDING);
318 flush_sigqueue(&t->pending);
319 flush_sigqueue(&t->signal->shared_pending);
320 spin_unlock_irqrestore(&t->sighand->siglock, flags);
324 * This function expects the tasklist_lock write-locked.
326 void __exit_sighand(struct task_struct *tsk)
328 struct sighand_struct * sighand = tsk->sighand;
330 /* Ok, we're done with the signal handlers */
332 if (atomic_dec_and_test(&sighand->count))
333 kmem_cache_free(sighand_cachep, sighand);
336 void exit_sighand(struct task_struct *tsk)
338 write_lock_irq(&tasklist_lock);
340 if (tsk->sighand != NULL) {
341 struct sighand_struct *sighand = rcu_dereference(tsk->sighand);
342 spin_lock(&sighand->siglock);
344 spin_unlock(&sighand->siglock);
347 write_unlock_irq(&tasklist_lock);
351 * This function expects the tasklist_lock write-locked.
353 void __exit_signal(struct task_struct *tsk)
355 struct signal_struct * sig = tsk->signal;
356 struct sighand_struct * sighand;
360 if (!atomic_read(&sig->count))
363 sighand = rcu_dereference(tsk->sighand);
364 spin_lock(&sighand->siglock);
365 posix_cpu_timers_exit(tsk);
366 if (atomic_dec_and_test(&sig->count)) {
367 posix_cpu_timers_exit_group(tsk);
370 spin_unlock(&sighand->siglock);
371 flush_sigqueue(&sig->shared_pending);
374 * If there is any task waiting for the group exit
377 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
378 wake_up_process(sig->group_exit_task);
379 sig->group_exit_task = NULL;
381 if (tsk == sig->curr_target)
382 sig->curr_target = next_thread(tsk);
385 * Accumulate here the counters for all threads but the
386 * group leader as they die, so they can be added into
387 * the process-wide totals when those are taken.
388 * The group leader stays around as a zombie as long
389 * as there are other threads. When it gets reaped,
390 * the exit.c code will add its counts into these totals.
391 * We won't ever get here for the group leader, since it
392 * will have been the last reference on the signal_struct.
394 sig->utime = cputime_add(sig->utime, tsk->utime);
395 sig->stime = cputime_add(sig->stime, tsk->stime);
396 sig->min_flt += tsk->min_flt;
397 sig->maj_flt += tsk->maj_flt;
398 sig->nvcsw += tsk->nvcsw;
399 sig->nivcsw += tsk->nivcsw;
400 sig->sched_time += tsk->sched_time;
402 spin_unlock(&sighand->siglock);
403 sig = NULL; /* Marker for below. */
406 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
407 flush_sigqueue(&tsk->pending);
410 * We are cleaning up the signal_struct here.
412 exit_thread_group_keys(sig);
413 kmem_cache_free(signal_cachep, sig);
417 void exit_signal(struct task_struct *tsk)
419 atomic_dec(&tsk->signal->live);
421 write_lock_irq(&tasklist_lock);
423 write_unlock_irq(&tasklist_lock);
427 * Flush all handlers for a task.
431 flush_signal_handlers(struct task_struct *t, int force_default)
434 struct k_sigaction *ka = &t->sighand->action[0];
435 for (i = _NSIG ; i != 0 ; i--) {
436 if (force_default || ka->sa.sa_handler != SIG_IGN)
437 ka->sa.sa_handler = SIG_DFL;
439 sigemptyset(&ka->sa.sa_mask);
445 /* Notify the system that a driver wants to block all signals for this
446 * process, and wants to be notified if any signals at all were to be
447 * sent/acted upon. If the notifier routine returns non-zero, then the
448 * signal will be acted upon after all. If the notifier routine returns 0,
449 * then then signal will be blocked. Only one block per process is
450 * allowed. priv is a pointer to private data that the notifier routine
451 * can use to determine if the signal should be blocked or not. */
454 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
458 spin_lock_irqsave(¤t->sighand->siglock, flags);
459 current->notifier_mask = mask;
460 current->notifier_data = priv;
461 current->notifier = notifier;
462 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
465 /* Notify the system that blocking has ended. */
468 unblock_all_signals(void)
472 spin_lock_irqsave(¤t->sighand->siglock, flags);
473 current->notifier = NULL;
474 current->notifier_data = NULL;
476 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
479 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
481 struct sigqueue *q, *first = NULL;
482 int still_pending = 0;
484 if (unlikely(!sigismember(&list->signal, sig)))
488 * Collect the siginfo appropriate to this signal. Check if
489 * there is another siginfo for the same signal.
491 list_for_each_entry(q, &list->list, list) {
492 if (q->info.si_signo == sig) {
501 list_del_init(&first->list);
502 copy_siginfo(info, &first->info);
503 __sigqueue_free(first);
505 sigdelset(&list->signal, sig);
508 /* Ok, it wasn't in the queue. This must be
509 a fast-pathed signal or we must have been
510 out of queue space. So zero out the info.
512 sigdelset(&list->signal, sig);
513 info->si_signo = sig;
522 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
527 sig = next_signal(pending, mask);
529 if (current->notifier) {
530 if (sigismember(current->notifier_mask, sig)) {
531 if (!(current->notifier)(current->notifier_data)) {
532 clear_thread_flag(TIF_SIGPENDING);
538 if (!collect_signal(sig, pending, info))
548 * Dequeue a signal and return the element to the caller, which is
549 * expected to free it.
551 * All callers have to hold the siglock.
553 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
555 int signr = __dequeue_signal(&tsk->pending, mask, info);
557 signr = __dequeue_signal(&tsk->signal->shared_pending,
559 if (signr && unlikely(sig_kernel_stop(signr))) {
561 * Set a marker that we have dequeued a stop signal. Our
562 * caller might release the siglock and then the pending
563 * stop signal it is about to process is no longer in the
564 * pending bitmasks, but must still be cleared by a SIGCONT
565 * (and overruled by a SIGKILL). So those cases clear this
566 * shared flag after we've set it. Note that this flag may
567 * remain set after the signal we return is ignored or
568 * handled. That doesn't matter because its only purpose
569 * is to alert stop-signal processing code when another
570 * processor has come along and cleared the flag.
572 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
573 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
576 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
577 info->si_sys_private){
579 * Release the siglock to ensure proper locking order
580 * of timer locks outside of siglocks. Note, we leave
581 * irqs disabled here, since the posix-timers code is
582 * about to disable them again anyway.
584 spin_unlock(&tsk->sighand->siglock);
585 do_schedule_next_timer(info);
586 spin_lock(&tsk->sighand->siglock);
592 * Tell a process that it has a new active signal..
594 * NOTE! we rely on the previous spin_lock to
595 * lock interrupts for us! We can only be called with
596 * "siglock" held, and the local interrupt must
597 * have been disabled when that got acquired!
599 * No need to set need_resched since signal event passing
600 * goes through ->blocked
602 void signal_wake_up(struct task_struct *t, int resume)
606 set_tsk_thread_flag(t, TIF_SIGPENDING);
609 * For SIGKILL, we want to wake it up in the stopped/traced case.
610 * We don't check t->state here because there is a race with it
611 * executing another processor and just now entering stopped state.
612 * By using wake_up_state, we ensure the process will wake up and
613 * handle its death signal.
615 mask = TASK_INTERRUPTIBLE;
617 mask |= TASK_STOPPED | TASK_TRACED;
618 if (!wake_up_state(t, mask))
623 * Remove signals in mask from the pending set and queue.
624 * Returns 1 if any signals were found.
626 * All callers must be holding the siglock.
628 * This version takes a sigset mask and looks at all signals,
629 * not just those in the first mask word.
631 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
633 struct sigqueue *q, *n;
636 sigandsets(&m, mask, &s->signal);
637 if (sigisemptyset(&m))
640 signandsets(&s->signal, &s->signal, mask);
641 list_for_each_entry_safe(q, n, &s->list, list) {
642 if (sigismember(mask, q->info.si_signo)) {
643 list_del_init(&q->list);
650 * Remove signals in mask from the pending set and queue.
651 * Returns 1 if any signals were found.
653 * All callers must be holding the siglock.
655 static int rm_from_queue(unsigned long mask, struct sigpending *s)
657 struct sigqueue *q, *n;
659 if (!sigtestsetmask(&s->signal, mask))
662 sigdelsetmask(&s->signal, mask);
663 list_for_each_entry_safe(q, n, &s->list, list) {
664 if (q->info.si_signo < SIGRTMIN &&
665 (mask & sigmask(q->info.si_signo))) {
666 list_del_init(&q->list);
674 * Bad permissions for sending the signal
676 static int check_kill_permission(int sig, struct siginfo *info,
677 struct task_struct *t)
680 if (!valid_signal(sig))
683 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
684 && ((sig != SIGCONT) ||
685 (current->signal->session != t->signal->session))
686 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
687 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
688 && !capable(CAP_KILL))
691 error = security_task_kill(t, info, sig);
693 audit_signal_info(sig, t); /* Let audit system see the signal */
698 static void do_notify_parent_cldstop(struct task_struct *tsk,
703 * Handle magic process-wide effects of stop/continue signals.
704 * Unlike the signal actions, these happen immediately at signal-generation
705 * time regardless of blocking, ignoring, or handling. This does the
706 * actual continuing for SIGCONT, but not the actual stopping for stop
707 * signals. The process stop is done as a signal action for SIG_DFL.
709 static void handle_stop_signal(int sig, struct task_struct *p)
711 struct task_struct *t;
713 if (p->signal->flags & SIGNAL_GROUP_EXIT)
715 * The process is in the middle of dying already.
719 if (sig_kernel_stop(sig)) {
721 * This is a stop signal. Remove SIGCONT from all queues.
723 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
726 rm_from_queue(sigmask(SIGCONT), &t->pending);
729 } else if (sig == SIGCONT) {
731 * Remove all stop signals from all queues,
732 * and wake all threads.
734 if (unlikely(p->signal->group_stop_count > 0)) {
736 * There was a group stop in progress. We'll
737 * pretend it finished before we got here. We are
738 * obliged to report it to the parent: if the
739 * SIGSTOP happened "after" this SIGCONT, then it
740 * would have cleared this pending SIGCONT. If it
741 * happened "before" this SIGCONT, then the parent
742 * got the SIGCHLD about the stop finishing before
743 * the continue happened. We do the notification
744 * now, and it's as if the stop had finished and
745 * the SIGCHLD was pending on entry to this kill.
747 p->signal->group_stop_count = 0;
748 p->signal->flags = SIGNAL_STOP_CONTINUED;
749 spin_unlock(&p->sighand->siglock);
750 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
751 spin_lock(&p->sighand->siglock);
753 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
757 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
760 * If there is a handler for SIGCONT, we must make
761 * sure that no thread returns to user mode before
762 * we post the signal, in case it was the only
763 * thread eligible to run the signal handler--then
764 * it must not do anything between resuming and
765 * running the handler. With the TIF_SIGPENDING
766 * flag set, the thread will pause and acquire the
767 * siglock that we hold now and until we've queued
768 * the pending signal.
770 * Wake up the stopped thread _after_ setting
773 state = TASK_STOPPED;
774 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
775 set_tsk_thread_flag(t, TIF_SIGPENDING);
776 state |= TASK_INTERRUPTIBLE;
778 wake_up_state(t, state);
783 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
785 * We were in fact stopped, and are now continued.
786 * Notify the parent with CLD_CONTINUED.
788 p->signal->flags = SIGNAL_STOP_CONTINUED;
789 p->signal->group_exit_code = 0;
790 spin_unlock(&p->sighand->siglock);
791 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
792 spin_lock(&p->sighand->siglock);
795 * We are not stopped, but there could be a stop
796 * signal in the middle of being processed after
797 * being removed from the queue. Clear that too.
799 p->signal->flags = 0;
801 } else if (sig == SIGKILL) {
803 * Make sure that any pending stop signal already dequeued
804 * is undone by the wakeup for SIGKILL.
806 p->signal->flags = 0;
810 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
811 struct sigpending *signals)
813 struct sigqueue * q = NULL;
817 * fast-pathed signals for kernel-internal things like SIGSTOP
820 if (info == SEND_SIG_FORCED)
823 /* Real-time signals must be queued if sent by sigqueue, or
824 some other real-time mechanism. It is implementation
825 defined whether kill() does so. We attempt to do so, on
826 the principle of least surprise, but since kill is not
827 allowed to fail with EAGAIN when low on memory we just
828 make sure at least one signal gets delivered and don't
829 pass on the info struct. */
831 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
832 (is_si_special(info) ||
833 info->si_code >= 0)));
835 list_add_tail(&q->list, &signals->list);
836 switch ((unsigned long) info) {
837 case (unsigned long) SEND_SIG_NOINFO:
838 q->info.si_signo = sig;
839 q->info.si_errno = 0;
840 q->info.si_code = SI_USER;
841 q->info.si_pid = current->pid;
842 q->info.si_uid = current->uid;
844 case (unsigned long) SEND_SIG_PRIV:
845 q->info.si_signo = sig;
846 q->info.si_errno = 0;
847 q->info.si_code = SI_KERNEL;
852 copy_siginfo(&q->info, info);
855 } else if (!is_si_special(info)) {
856 if (sig >= SIGRTMIN && info->si_code != SI_USER)
858 * Queue overflow, abort. We may abort if the signal was rt
859 * and sent by user using something other than kill().
865 sigaddset(&signals->signal, sig);
869 #define LEGACY_QUEUE(sigptr, sig) \
870 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
874 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
878 if (!irqs_disabled())
880 assert_spin_locked(&t->sighand->siglock);
882 /* Short-circuit ignored signals. */
883 if (sig_ignored(t, sig))
886 /* Support queueing exactly one non-rt signal, so that we
887 can get more detailed information about the cause of
889 if (LEGACY_QUEUE(&t->pending, sig))
892 ret = send_signal(sig, info, t, &t->pending);
893 if (!ret && !sigismember(&t->blocked, sig))
894 signal_wake_up(t, sig == SIGKILL);
900 * Force a signal that the process can't ignore: if necessary
901 * we unblock the signal and change any SIG_IGN to SIG_DFL.
905 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
907 unsigned long int flags;
910 spin_lock_irqsave(&t->sighand->siglock, flags);
911 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
912 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
914 if (sigismember(&t->blocked, sig)) {
915 sigdelset(&t->blocked, sig);
917 recalc_sigpending_tsk(t);
918 ret = specific_send_sig_info(sig, info, t);
919 spin_unlock_irqrestore(&t->sighand->siglock, flags);
925 force_sig_specific(int sig, struct task_struct *t)
927 force_sig_info(sig, SEND_SIG_FORCED, t);
931 * Test if P wants to take SIG. After we've checked all threads with this,
932 * it's equivalent to finding no threads not blocking SIG. Any threads not
933 * blocking SIG were ruled out because they are not running and already
934 * have pending signals. Such threads will dequeue from the shared queue
935 * as soon as they're available, so putting the signal on the shared queue
936 * will be equivalent to sending it to one such thread.
938 static inline int wants_signal(int sig, struct task_struct *p)
940 if (sigismember(&p->blocked, sig))
942 if (p->flags & PF_EXITING)
946 if (p->state & (TASK_STOPPED | TASK_TRACED))
948 return task_curr(p) || !signal_pending(p);
952 __group_complete_signal(int sig, struct task_struct *p)
954 struct task_struct *t;
957 * Now find a thread we can wake up to take the signal off the queue.
959 * If the main thread wants the signal, it gets first crack.
960 * Probably the least surprising to the average bear.
962 if (wants_signal(sig, p))
964 else if (thread_group_empty(p))
966 * There is just one thread and it does not need to be woken.
967 * It will dequeue unblocked signals before it runs again.
972 * Otherwise try to find a suitable thread.
974 t = p->signal->curr_target;
976 /* restart balancing at this thread */
977 t = p->signal->curr_target = p;
978 BUG_ON(t->tgid != p->tgid);
980 while (!wants_signal(sig, t)) {
982 if (t == p->signal->curr_target)
984 * No thread needs to be woken.
985 * Any eligible threads will see
986 * the signal in the queue soon.
990 p->signal->curr_target = t;
994 * Found a killable thread. If the signal will be fatal,
995 * then start taking the whole group down immediately.
997 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
998 !sigismember(&t->real_blocked, sig) &&
999 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
1001 * This signal will be fatal to the whole group.
1003 if (!sig_kernel_coredump(sig)) {
1005 * Start a group exit and wake everybody up.
1006 * This way we don't have other threads
1007 * running and doing things after a slower
1008 * thread has the fatal signal pending.
1010 p->signal->flags = SIGNAL_GROUP_EXIT;
1011 p->signal->group_exit_code = sig;
1012 p->signal->group_stop_count = 0;
1015 sigaddset(&t->pending.signal, SIGKILL);
1016 signal_wake_up(t, 1);
1023 * There will be a core dump. We make all threads other
1024 * than the chosen one go into a group stop so that nothing
1025 * happens until it gets scheduled, takes the signal off
1026 * the shared queue, and does the core dump. This is a
1027 * little more complicated than strictly necessary, but it
1028 * keeps the signal state that winds up in the core dump
1029 * unchanged from the death state, e.g. which thread had
1030 * the core-dump signal unblocked.
1032 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1033 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1034 p->signal->group_stop_count = 0;
1035 p->signal->group_exit_task = t;
1038 p->signal->group_stop_count++;
1039 signal_wake_up(t, 0);
1042 wake_up_process(p->signal->group_exit_task);
1047 * The signal is already in the shared-pending queue.
1048 * Tell the chosen thread to wake up and dequeue it.
1050 signal_wake_up(t, sig == SIGKILL);
1055 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1059 assert_spin_locked(&p->sighand->siglock);
1060 handle_stop_signal(sig, p);
1062 /* Short-circuit ignored signals. */
1063 if (sig_ignored(p, sig))
1066 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1067 /* This is a non-RT signal and we already have one queued. */
1071 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1072 * We always use the shared queue for process-wide signals,
1073 * to avoid several races.
1075 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1079 __group_complete_signal(sig, p);
1084 * Nuke all other threads in the group.
1086 void zap_other_threads(struct task_struct *p)
1088 struct task_struct *t;
1090 p->signal->flags = SIGNAL_GROUP_EXIT;
1091 p->signal->group_stop_count = 0;
1093 if (thread_group_empty(p))
1096 for (t = next_thread(p); t != p; t = next_thread(t)) {
1098 * Don't bother with already dead threads
1104 * We don't want to notify the parent, since we are
1105 * killed as part of a thread group due to another
1106 * thread doing an execve() or similar. So set the
1107 * exit signal to -1 to allow immediate reaping of
1108 * the process. But don't detach the thread group
1111 if (t != p->group_leader)
1112 t->exit_signal = -1;
1114 /* SIGKILL will be handled before any pending SIGSTOP */
1115 sigaddset(&t->pending.signal, SIGKILL);
1116 signal_wake_up(t, 1);
1121 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1123 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1125 unsigned long flags;
1126 struct sighand_struct *sp;
1130 ret = check_kill_permission(sig, info, p);
1131 if (!ret && sig && (sp = rcu_dereference(p->sighand))) {
1132 spin_lock_irqsave(&sp->siglock, flags);
1133 if (p->sighand != sp) {
1134 spin_unlock_irqrestore(&sp->siglock, flags);
1137 if ((atomic_read(&sp->count) == 0) ||
1138 (atomic_read(&p->usage) == 0)) {
1139 spin_unlock_irqrestore(&sp->siglock, flags);
1142 ret = __group_send_sig_info(sig, info, p);
1143 spin_unlock_irqrestore(&sp->siglock, flags);
1150 * kill_pg_info() sends a signal to a process group: this is what the tty
1151 * control characters do (^C, ^Z etc)
1154 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1156 struct task_struct *p = NULL;
1157 int retval, success;
1164 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1165 int err = group_send_sig_info(sig, info, p);
1168 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1169 return success ? 0 : retval;
1173 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1177 read_lock(&tasklist_lock);
1178 retval = __kill_pg_info(sig, info, pgrp);
1179 read_unlock(&tasklist_lock);
1185 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1188 int acquired_tasklist_lock = 0;
1189 struct task_struct *p;
1192 if (unlikely(sig_kernel_stop(sig) || sig == SIGCONT)) {
1193 read_lock(&tasklist_lock);
1194 acquired_tasklist_lock = 1;
1196 p = find_task_by_pid(pid);
1199 error = group_send_sig_info(sig, info, p);
1200 if (unlikely(acquired_tasklist_lock))
1201 read_unlock(&tasklist_lock);
1206 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1207 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1208 uid_t uid, uid_t euid)
1211 struct task_struct *p;
1213 if (!valid_signal(sig))
1216 read_lock(&tasklist_lock);
1217 p = find_task_by_pid(pid);
1222 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1223 && (euid != p->suid) && (euid != p->uid)
1224 && (uid != p->suid) && (uid != p->uid)) {
1228 if (sig && p->sighand) {
1229 unsigned long flags;
1230 spin_lock_irqsave(&p->sighand->siglock, flags);
1231 ret = __group_send_sig_info(sig, info, p);
1232 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1235 read_unlock(&tasklist_lock);
1238 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1241 * kill_something_info() interprets pid in interesting ways just like kill(2).
1243 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1244 * is probably wrong. Should make it like BSD or SYSV.
1247 static int kill_something_info(int sig, struct siginfo *info, int pid)
1250 return kill_pg_info(sig, info, process_group(current));
1251 } else if (pid == -1) {
1252 int retval = 0, count = 0;
1253 struct task_struct * p;
1255 read_lock(&tasklist_lock);
1256 for_each_process(p) {
1257 if (p->pid > 1 && p->tgid != current->tgid) {
1258 int err = group_send_sig_info(sig, info, p);
1264 read_unlock(&tasklist_lock);
1265 return count ? retval : -ESRCH;
1266 } else if (pid < 0) {
1267 return kill_pg_info(sig, info, -pid);
1269 return kill_proc_info(sig, info, pid);
1274 * These are for backward compatibility with the rest of the kernel source.
1278 * These two are the most common entry points. They send a signal
1279 * just to the specific thread.
1282 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1285 unsigned long flags;
1288 * Make sure legacy kernel users don't send in bad values
1289 * (normal paths check this in check_kill_permission).
1291 if (!valid_signal(sig))
1295 * We need the tasklist lock even for the specific
1296 * thread case (when we don't need to follow the group
1297 * lists) in order to avoid races with "p->sighand"
1298 * going away or changing from under us.
1300 read_lock(&tasklist_lock);
1301 spin_lock_irqsave(&p->sighand->siglock, flags);
1302 ret = specific_send_sig_info(sig, info, p);
1303 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1304 read_unlock(&tasklist_lock);
1308 #define __si_special(priv) \
1309 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1312 send_sig(int sig, struct task_struct *p, int priv)
1314 return send_sig_info(sig, __si_special(priv), p);
1318 * This is the entry point for "process-wide" signals.
1319 * They will go to an appropriate thread in the thread group.
1322 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1325 read_lock(&tasklist_lock);
1326 ret = group_send_sig_info(sig, info, p);
1327 read_unlock(&tasklist_lock);
1332 force_sig(int sig, struct task_struct *p)
1334 force_sig_info(sig, SEND_SIG_PRIV, p);
1338 * When things go south during signal handling, we
1339 * will force a SIGSEGV. And if the signal that caused
1340 * the problem was already a SIGSEGV, we'll want to
1341 * make sure we don't even try to deliver the signal..
1344 force_sigsegv(int sig, struct task_struct *p)
1346 if (sig == SIGSEGV) {
1347 unsigned long flags;
1348 spin_lock_irqsave(&p->sighand->siglock, flags);
1349 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1350 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1352 force_sig(SIGSEGV, p);
1357 kill_pg(pid_t pgrp, int sig, int priv)
1359 return kill_pg_info(sig, __si_special(priv), pgrp);
1363 kill_proc(pid_t pid, int sig, int priv)
1365 return kill_proc_info(sig, __si_special(priv), pid);
1369 * These functions support sending signals using preallocated sigqueue
1370 * structures. This is needed "because realtime applications cannot
1371 * afford to lose notifications of asynchronous events, like timer
1372 * expirations or I/O completions". In the case of Posix Timers
1373 * we allocate the sigqueue structure from the timer_create. If this
1374 * allocation fails we are able to report the failure to the application
1375 * with an EAGAIN error.
1378 struct sigqueue *sigqueue_alloc(void)
1382 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1383 q->flags |= SIGQUEUE_PREALLOC;
1387 void sigqueue_free(struct sigqueue *q)
1389 unsigned long flags;
1390 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1392 * If the signal is still pending remove it from the
1395 if (unlikely(!list_empty(&q->list))) {
1396 spinlock_t *lock = ¤t->sighand->siglock;
1397 read_lock(&tasklist_lock);
1398 spin_lock_irqsave(lock, flags);
1399 if (!list_empty(&q->list))
1400 list_del_init(&q->list);
1401 spin_unlock_irqrestore(lock, flags);
1402 read_unlock(&tasklist_lock);
1404 q->flags &= ~SIGQUEUE_PREALLOC;
1409 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1411 unsigned long flags;
1413 struct sighand_struct *sh;
1415 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1418 * The rcu based delayed sighand destroy makes it possible to
1419 * run this without tasklist lock held. The task struct itself
1420 * cannot go away as create_timer did get_task_struct().
1422 * We return -1, when the task is marked exiting, so
1423 * posix_timer_event can redirect it to the group leader
1427 if (unlikely(p->flags & PF_EXITING)) {
1433 sh = rcu_dereference(p->sighand);
1435 spin_lock_irqsave(&sh->siglock, flags);
1436 if (p->sighand != sh) {
1437 /* We raced with exec() in a multithreaded process... */
1438 spin_unlock_irqrestore(&sh->siglock, flags);
1443 * We do the check here again to handle the following scenario:
1448 * interrupt exit code running
1450 * lock sighand->siglock
1451 * unlock sighand->siglock
1453 * add(tsk->pending) flush_sigqueue(tsk->pending)
1457 if (unlikely(p->flags & PF_EXITING)) {
1462 if (unlikely(!list_empty(&q->list))) {
1464 * If an SI_TIMER entry is already queue just increment
1465 * the overrun count.
1467 if (q->info.si_code != SI_TIMER)
1469 q->info.si_overrun++;
1472 /* Short-circuit ignored signals. */
1473 if (sig_ignored(p, sig)) {
1478 list_add_tail(&q->list, &p->pending.list);
1479 sigaddset(&p->pending.signal, sig);
1480 if (!sigismember(&p->blocked, sig))
1481 signal_wake_up(p, sig == SIGKILL);
1484 spin_unlock_irqrestore(&sh->siglock, flags);
1492 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1494 unsigned long flags;
1497 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1499 read_lock(&tasklist_lock);
1500 /* Since it_lock is held, p->sighand cannot be NULL. */
1501 spin_lock_irqsave(&p->sighand->siglock, flags);
1502 handle_stop_signal(sig, p);
1504 /* Short-circuit ignored signals. */
1505 if (sig_ignored(p, sig)) {
1510 if (unlikely(!list_empty(&q->list))) {
1512 * If an SI_TIMER entry is already queue just increment
1513 * the overrun count. Other uses should not try to
1514 * send the signal multiple times.
1516 if (q->info.si_code != SI_TIMER)
1518 q->info.si_overrun++;
1523 * Put this signal on the shared-pending queue.
1524 * We always use the shared queue for process-wide signals,
1525 * to avoid several races.
1527 list_add_tail(&q->list, &p->signal->shared_pending.list);
1528 sigaddset(&p->signal->shared_pending.signal, sig);
1530 __group_complete_signal(sig, p);
1532 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1533 read_unlock(&tasklist_lock);
1538 * Wake up any threads in the parent blocked in wait* syscalls.
1540 static inline void __wake_up_parent(struct task_struct *p,
1541 struct task_struct *parent)
1543 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1547 * Let a parent know about the death of a child.
1548 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1551 void do_notify_parent(struct task_struct *tsk, int sig)
1553 struct siginfo info;
1554 unsigned long flags;
1555 struct sighand_struct *psig;
1559 /* do_notify_parent_cldstop should have been called instead. */
1560 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1562 BUG_ON(!tsk->ptrace &&
1563 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1565 info.si_signo = sig;
1567 info.si_pid = tsk->pid;
1568 info.si_uid = tsk->uid;
1570 /* FIXME: find out whether or not this is supposed to be c*time. */
1571 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1572 tsk->signal->utime));
1573 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1574 tsk->signal->stime));
1576 info.si_status = tsk->exit_code & 0x7f;
1577 if (tsk->exit_code & 0x80)
1578 info.si_code = CLD_DUMPED;
1579 else if (tsk->exit_code & 0x7f)
1580 info.si_code = CLD_KILLED;
1582 info.si_code = CLD_EXITED;
1583 info.si_status = tsk->exit_code >> 8;
1586 psig = tsk->parent->sighand;
1587 spin_lock_irqsave(&psig->siglock, flags);
1588 if (!tsk->ptrace && sig == SIGCHLD &&
1589 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1590 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1592 * We are exiting and our parent doesn't care. POSIX.1
1593 * defines special semantics for setting SIGCHLD to SIG_IGN
1594 * or setting the SA_NOCLDWAIT flag: we should be reaped
1595 * automatically and not left for our parent's wait4 call.
1596 * Rather than having the parent do it as a magic kind of
1597 * signal handler, we just set this to tell do_exit that we
1598 * can be cleaned up without becoming a zombie. Note that
1599 * we still call __wake_up_parent in this case, because a
1600 * blocked sys_wait4 might now return -ECHILD.
1602 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1603 * is implementation-defined: we do (if you don't want
1604 * it, just use SIG_IGN instead).
1606 tsk->exit_signal = -1;
1607 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1610 if (valid_signal(sig) && sig > 0)
1611 __group_send_sig_info(sig, &info, tsk->parent);
1612 __wake_up_parent(tsk, tsk->parent);
1613 spin_unlock_irqrestore(&psig->siglock, flags);
1616 static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1618 struct siginfo info;
1619 unsigned long flags;
1620 struct task_struct *parent;
1621 struct sighand_struct *sighand;
1624 parent = tsk->parent;
1626 tsk = tsk->group_leader;
1627 parent = tsk->real_parent;
1630 info.si_signo = SIGCHLD;
1632 info.si_pid = tsk->pid;
1633 info.si_uid = tsk->uid;
1635 /* FIXME: find out whether or not this is supposed to be c*time. */
1636 info.si_utime = cputime_to_jiffies(tsk->utime);
1637 info.si_stime = cputime_to_jiffies(tsk->stime);
1642 info.si_status = SIGCONT;
1645 info.si_status = tsk->signal->group_exit_code & 0x7f;
1648 info.si_status = tsk->exit_code & 0x7f;
1654 sighand = parent->sighand;
1655 spin_lock_irqsave(&sighand->siglock, flags);
1656 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1657 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1658 __group_send_sig_info(SIGCHLD, &info, parent);
1660 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1662 __wake_up_parent(tsk, parent);
1663 spin_unlock_irqrestore(&sighand->siglock, flags);
1667 * This must be called with current->sighand->siglock held.
1669 * This should be the path for all ptrace stops.
1670 * We always set current->last_siginfo while stopped here.
1671 * That makes it a way to test a stopped process for
1672 * being ptrace-stopped vs being job-control-stopped.
1674 * If we actually decide not to stop at all because the tracer is gone,
1675 * we leave nostop_code in current->exit_code.
1677 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1680 * If there is a group stop in progress,
1681 * we must participate in the bookkeeping.
1683 if (current->signal->group_stop_count > 0)
1684 --current->signal->group_stop_count;
1686 current->last_siginfo = info;
1687 current->exit_code = exit_code;
1689 /* Let the debugger run. */
1690 set_current_state(TASK_TRACED);
1691 spin_unlock_irq(¤t->sighand->siglock);
1692 read_lock(&tasklist_lock);
1693 if (likely(current->ptrace & PT_PTRACED) &&
1694 likely(current->parent != current->real_parent ||
1695 !(current->ptrace & PT_ATTACHED)) &&
1696 (likely(current->parent->signal != current->signal) ||
1697 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1698 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1699 read_unlock(&tasklist_lock);
1703 * By the time we got the lock, our tracer went away.
1706 read_unlock(&tasklist_lock);
1707 set_current_state(TASK_RUNNING);
1708 current->exit_code = nostop_code;
1712 * We are back. Now reacquire the siglock before touching
1713 * last_siginfo, so that we are sure to have synchronized with
1714 * any signal-sending on another CPU that wants to examine it.
1716 spin_lock_irq(¤t->sighand->siglock);
1717 current->last_siginfo = NULL;
1720 * Queued signals ignored us while we were stopped for tracing.
1721 * So check for any that we should take before resuming user mode.
1723 recalc_sigpending();
1726 void ptrace_notify(int exit_code)
1730 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1732 memset(&info, 0, sizeof info);
1733 info.si_signo = SIGTRAP;
1734 info.si_code = exit_code;
1735 info.si_pid = current->pid;
1736 info.si_uid = current->uid;
1738 /* Let the debugger run. */
1739 spin_lock_irq(¤t->sighand->siglock);
1740 ptrace_stop(exit_code, 0, &info);
1741 spin_unlock_irq(¤t->sighand->siglock);
1745 finish_stop(int stop_count)
1750 * If there are no other threads in the group, or if there is
1751 * a group stop in progress and we are the last to stop,
1752 * report to the parent. When ptraced, every thread reports itself.
1754 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1756 else if (stop_count == 0)
1761 read_lock(&tasklist_lock);
1762 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1763 read_unlock(&tasklist_lock);
1768 * Now we don't run again until continued.
1770 current->exit_code = 0;
1774 * This performs the stopping for SIGSTOP and other stop signals.
1775 * We have to stop all threads in the thread group.
1776 * Returns nonzero if we've actually stopped and released the siglock.
1777 * Returns zero if we didn't stop and still hold the siglock.
1780 do_signal_stop(int signr)
1782 struct signal_struct *sig = current->signal;
1783 struct sighand_struct *sighand = current->sighand;
1784 int stop_count = -1;
1786 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1789 if (sig->group_stop_count > 0) {
1791 * There is a group stop in progress. We don't need to
1792 * start another one.
1794 signr = sig->group_exit_code;
1795 stop_count = --sig->group_stop_count;
1796 current->exit_code = signr;
1797 set_current_state(TASK_STOPPED);
1798 if (stop_count == 0)
1799 sig->flags = SIGNAL_STOP_STOPPED;
1800 spin_unlock_irq(&sighand->siglock);
1802 else if (thread_group_empty(current)) {
1804 * Lock must be held through transition to stopped state.
1806 current->exit_code = current->signal->group_exit_code = signr;
1807 set_current_state(TASK_STOPPED);
1808 sig->flags = SIGNAL_STOP_STOPPED;
1809 spin_unlock_irq(&sighand->siglock);
1813 * There is no group stop already in progress.
1814 * We must initiate one now, but that requires
1815 * dropping siglock to get both the tasklist lock
1816 * and siglock again in the proper order. Note that
1817 * this allows an intervening SIGCONT to be posted.
1818 * We need to check for that and bail out if necessary.
1820 struct task_struct *t;
1822 spin_unlock_irq(&sighand->siglock);
1824 /* signals can be posted during this window */
1826 read_lock(&tasklist_lock);
1827 spin_lock_irq(&sighand->siglock);
1829 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1831 * Another stop or continue happened while we
1832 * didn't have the lock. We can just swallow this
1833 * signal now. If we raced with a SIGCONT, that
1834 * should have just cleared it now. If we raced
1835 * with another processor delivering a stop signal,
1836 * then the SIGCONT that wakes us up should clear it.
1838 read_unlock(&tasklist_lock);
1842 if (sig->group_stop_count == 0) {
1843 sig->group_exit_code = signr;
1845 for (t = next_thread(current); t != current;
1848 * Setting state to TASK_STOPPED for a group
1849 * stop is always done with the siglock held,
1850 * so this check has no races.
1852 if (!t->exit_state &&
1853 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1855 signal_wake_up(t, 0);
1857 sig->group_stop_count = stop_count;
1860 /* A race with another thread while unlocked. */
1861 signr = sig->group_exit_code;
1862 stop_count = --sig->group_stop_count;
1865 current->exit_code = signr;
1866 set_current_state(TASK_STOPPED);
1867 if (stop_count == 0)
1868 sig->flags = SIGNAL_STOP_STOPPED;
1870 spin_unlock_irq(&sighand->siglock);
1871 read_unlock(&tasklist_lock);
1874 finish_stop(stop_count);
1879 * Do appropriate magic when group_stop_count > 0.
1880 * We return nonzero if we stopped, after releasing the siglock.
1881 * We return zero if we still hold the siglock and should look
1882 * for another signal without checking group_stop_count again.
1884 static int handle_group_stop(void)
1888 if (current->signal->group_exit_task == current) {
1890 * Group stop is so we can do a core dump,
1891 * We are the initiating thread, so get on with it.
1893 current->signal->group_exit_task = NULL;
1897 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1899 * Group stop is so another thread can do a core dump,
1900 * or else we are racing against a death signal.
1901 * Just punt the stop so we can get the next signal.
1906 * There is a group stop in progress. We stop
1907 * without any associated signal being in our queue.
1909 stop_count = --current->signal->group_stop_count;
1910 if (stop_count == 0)
1911 current->signal->flags = SIGNAL_STOP_STOPPED;
1912 current->exit_code = current->signal->group_exit_code;
1913 set_current_state(TASK_STOPPED);
1914 spin_unlock_irq(¤t->sighand->siglock);
1915 finish_stop(stop_count);
1919 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1920 struct pt_regs *regs, void *cookie)
1922 sigset_t *mask = ¤t->blocked;
1928 spin_lock_irq(¤t->sighand->siglock);
1930 struct k_sigaction *ka;
1932 if (unlikely(current->signal->group_stop_count > 0) &&
1933 handle_group_stop())
1936 signr = dequeue_signal(current, mask, info);
1939 break; /* will return 0 */
1941 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1942 ptrace_signal_deliver(regs, cookie);
1944 /* Let the debugger run. */
1945 ptrace_stop(signr, signr, info);
1947 /* We're back. Did the debugger cancel the sig or group_exit? */
1948 signr = current->exit_code;
1949 if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT)
1952 current->exit_code = 0;
1954 /* Update the siginfo structure if the signal has
1955 changed. If the debugger wanted something
1956 specific in the siginfo structure then it should
1957 have updated *info via PTRACE_SETSIGINFO. */
1958 if (signr != info->si_signo) {
1959 info->si_signo = signr;
1961 info->si_code = SI_USER;
1962 info->si_pid = current->parent->pid;
1963 info->si_uid = current->parent->uid;
1966 /* If the (new) signal is now blocked, requeue it. */
1967 if (sigismember(¤t->blocked, signr)) {
1968 specific_send_sig_info(signr, info, current);
1973 ka = ¤t->sighand->action[signr-1];
1974 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1976 if (ka->sa.sa_handler != SIG_DFL) {
1977 /* Run the handler. */
1980 if (ka->sa.sa_flags & SA_ONESHOT)
1981 ka->sa.sa_handler = SIG_DFL;
1983 break; /* will return non-zero "signr" value */
1987 * Now we are doing the default action for this signal.
1989 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1992 /* Init gets no signals it doesn't want. */
1993 if (current == child_reaper)
1996 if (sig_kernel_stop(signr)) {
1998 * The default action is to stop all threads in
1999 * the thread group. The job control signals
2000 * do nothing in an orphaned pgrp, but SIGSTOP
2001 * always works. Note that siglock needs to be
2002 * dropped during the call to is_orphaned_pgrp()
2003 * because of lock ordering with tasklist_lock.
2004 * This allows an intervening SIGCONT to be posted.
2005 * We need to check for that and bail out if necessary.
2007 if (signr != SIGSTOP) {
2008 spin_unlock_irq(¤t->sighand->siglock);
2010 /* signals can be posted during this window */
2012 if (is_orphaned_pgrp(process_group(current)))
2015 spin_lock_irq(¤t->sighand->siglock);
2018 if (likely(do_signal_stop(signr))) {
2019 /* It released the siglock. */
2024 * We didn't actually stop, due to a race
2025 * with SIGCONT or something like that.
2030 spin_unlock_irq(¤t->sighand->siglock);
2033 * Anything else is fatal, maybe with a core dump.
2035 current->flags |= PF_SIGNALED;
2036 if (sig_kernel_coredump(signr)) {
2038 * If it was able to dump core, this kills all
2039 * other threads in the group and synchronizes with
2040 * their demise. If we lost the race with another
2041 * thread getting here, it set group_exit_code
2042 * first and our do_group_exit call below will use
2043 * that value and ignore the one we pass it.
2045 do_coredump((long)signr, signr, regs);
2049 * Death signals, no core dump.
2051 do_group_exit(signr);
2054 spin_unlock_irq(¤t->sighand->siglock);
2058 EXPORT_SYMBOL(recalc_sigpending);
2059 EXPORT_SYMBOL_GPL(dequeue_signal);
2060 EXPORT_SYMBOL(flush_signals);
2061 EXPORT_SYMBOL(force_sig);
2062 EXPORT_SYMBOL(kill_pg);
2063 EXPORT_SYMBOL(kill_proc);
2064 EXPORT_SYMBOL(ptrace_notify);
2065 EXPORT_SYMBOL(send_sig);
2066 EXPORT_SYMBOL(send_sig_info);
2067 EXPORT_SYMBOL(sigprocmask);
2068 EXPORT_SYMBOL(block_all_signals);
2069 EXPORT_SYMBOL(unblock_all_signals);
2073 * System call entry points.
2076 asmlinkage long sys_restart_syscall(void)
2078 struct restart_block *restart = ¤t_thread_info()->restart_block;
2079 return restart->fn(restart);
2082 long do_no_restart_syscall(struct restart_block *param)
2088 * We don't need to get the kernel lock - this is all local to this
2089 * particular thread.. (and that's good, because this is _heavily_
2090 * used by various programs)
2094 * This is also useful for kernel threads that want to temporarily
2095 * (or permanently) block certain signals.
2097 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2098 * interface happily blocks "unblockable" signals like SIGKILL
2101 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2105 spin_lock_irq(¤t->sighand->siglock);
2107 *oldset = current->blocked;
2112 sigorsets(¤t->blocked, ¤t->blocked, set);
2115 signandsets(¤t->blocked, ¤t->blocked, set);
2118 current->blocked = *set;
2123 recalc_sigpending();
2124 spin_unlock_irq(¤t->sighand->siglock);
2130 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2132 int error = -EINVAL;
2133 sigset_t old_set, new_set;
2135 /* XXX: Don't preclude handling different sized sigset_t's. */
2136 if (sigsetsize != sizeof(sigset_t))
2141 if (copy_from_user(&new_set, set, sizeof(*set)))
2143 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2145 error = sigprocmask(how, &new_set, &old_set);
2151 spin_lock_irq(¤t->sighand->siglock);
2152 old_set = current->blocked;
2153 spin_unlock_irq(¤t->sighand->siglock);
2157 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2165 long do_sigpending(void __user *set, unsigned long sigsetsize)
2167 long error = -EINVAL;
2170 if (sigsetsize > sizeof(sigset_t))
2173 spin_lock_irq(¤t->sighand->siglock);
2174 sigorsets(&pending, ¤t->pending.signal,
2175 ¤t->signal->shared_pending.signal);
2176 spin_unlock_irq(¤t->sighand->siglock);
2178 /* Outside the lock because only this thread touches it. */
2179 sigandsets(&pending, ¤t->blocked, &pending);
2182 if (!copy_to_user(set, &pending, sigsetsize))
2190 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2192 return do_sigpending(set, sigsetsize);
2195 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2197 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2201 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2203 if (from->si_code < 0)
2204 return __copy_to_user(to, from, sizeof(siginfo_t))
2207 * If you change siginfo_t structure, please be sure
2208 * this code is fixed accordingly.
2209 * It should never copy any pad contained in the structure
2210 * to avoid security leaks, but must copy the generic
2211 * 3 ints plus the relevant union member.
2213 err = __put_user(from->si_signo, &to->si_signo);
2214 err |= __put_user(from->si_errno, &to->si_errno);
2215 err |= __put_user((short)from->si_code, &to->si_code);
2216 switch (from->si_code & __SI_MASK) {
2218 err |= __put_user(from->si_pid, &to->si_pid);
2219 err |= __put_user(from->si_uid, &to->si_uid);
2222 err |= __put_user(from->si_tid, &to->si_tid);
2223 err |= __put_user(from->si_overrun, &to->si_overrun);
2224 err |= __put_user(from->si_ptr, &to->si_ptr);
2227 err |= __put_user(from->si_band, &to->si_band);
2228 err |= __put_user(from->si_fd, &to->si_fd);
2231 err |= __put_user(from->si_addr, &to->si_addr);
2232 #ifdef __ARCH_SI_TRAPNO
2233 err |= __put_user(from->si_trapno, &to->si_trapno);
2237 err |= __put_user(from->si_pid, &to->si_pid);
2238 err |= __put_user(from->si_uid, &to->si_uid);
2239 err |= __put_user(from->si_status, &to->si_status);
2240 err |= __put_user(from->si_utime, &to->si_utime);
2241 err |= __put_user(from->si_stime, &to->si_stime);
2243 case __SI_RT: /* This is not generated by the kernel as of now. */
2244 case __SI_MESGQ: /* But this is */
2245 err |= __put_user(from->si_pid, &to->si_pid);
2246 err |= __put_user(from->si_uid, &to->si_uid);
2247 err |= __put_user(from->si_ptr, &to->si_ptr);
2249 default: /* this is just in case for now ... */
2250 err |= __put_user(from->si_pid, &to->si_pid);
2251 err |= __put_user(from->si_uid, &to->si_uid);
2260 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2261 siginfo_t __user *uinfo,
2262 const struct timespec __user *uts,
2271 /* XXX: Don't preclude handling different sized sigset_t's. */
2272 if (sigsetsize != sizeof(sigset_t))
2275 if (copy_from_user(&these, uthese, sizeof(these)))
2279 * Invert the set of allowed signals to get those we
2282 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2286 if (copy_from_user(&ts, uts, sizeof(ts)))
2288 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2293 spin_lock_irq(¤t->sighand->siglock);
2294 sig = dequeue_signal(current, &these, &info);
2296 timeout = MAX_SCHEDULE_TIMEOUT;
2298 timeout = (timespec_to_jiffies(&ts)
2299 + (ts.tv_sec || ts.tv_nsec));
2302 /* None ready -- temporarily unblock those we're
2303 * interested while we are sleeping in so that we'll
2304 * be awakened when they arrive. */
2305 current->real_blocked = current->blocked;
2306 sigandsets(¤t->blocked, ¤t->blocked, &these);
2307 recalc_sigpending();
2308 spin_unlock_irq(¤t->sighand->siglock);
2310 timeout = schedule_timeout_interruptible(timeout);
2312 spin_lock_irq(¤t->sighand->siglock);
2313 sig = dequeue_signal(current, &these, &info);
2314 current->blocked = current->real_blocked;
2315 siginitset(¤t->real_blocked, 0);
2316 recalc_sigpending();
2319 spin_unlock_irq(¤t->sighand->siglock);
2324 if (copy_siginfo_to_user(uinfo, &info))
2337 sys_kill(int pid, int sig)
2339 struct siginfo info;
2341 info.si_signo = sig;
2343 info.si_code = SI_USER;
2344 info.si_pid = current->tgid;
2345 info.si_uid = current->uid;
2347 return kill_something_info(sig, &info, pid);
2350 static int do_tkill(int tgid, int pid, int sig)
2353 struct siginfo info;
2354 struct task_struct *p;
2357 info.si_signo = sig;
2359 info.si_code = SI_TKILL;
2360 info.si_pid = current->tgid;
2361 info.si_uid = current->uid;
2363 read_lock(&tasklist_lock);
2364 p = find_task_by_pid(pid);
2365 if (p && (tgid <= 0 || p->tgid == tgid)) {
2366 error = check_kill_permission(sig, &info, p);
2368 * The null signal is a permissions and process existence
2369 * probe. No signal is actually delivered.
2371 if (!error && sig && p->sighand) {
2372 spin_lock_irq(&p->sighand->siglock);
2373 handle_stop_signal(sig, p);
2374 error = specific_send_sig_info(sig, &info, p);
2375 spin_unlock_irq(&p->sighand->siglock);
2378 read_unlock(&tasklist_lock);
2384 * sys_tgkill - send signal to one specific thread
2385 * @tgid: the thread group ID of the thread
2386 * @pid: the PID of the thread
2387 * @sig: signal to be sent
2389 * This syscall also checks the tgid and returns -ESRCH even if the PID
2390 * exists but it's not belonging to the target process anymore. This
2391 * method solves the problem of threads exiting and PIDs getting reused.
2393 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2395 /* This is only valid for single tasks */
2396 if (pid <= 0 || tgid <= 0)
2399 return do_tkill(tgid, pid, sig);
2403 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2406 sys_tkill(int pid, int sig)
2408 /* This is only valid for single tasks */
2412 return do_tkill(0, pid, sig);
2416 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2420 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2423 /* Not even root can pretend to send signals from the kernel.
2424 Nor can they impersonate a kill(), which adds source info. */
2425 if (info.si_code >= 0)
2427 info.si_signo = sig;
2429 /* POSIX.1b doesn't mention process groups. */
2430 return kill_proc_info(sig, &info, pid);
2434 do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2436 struct k_sigaction *k;
2439 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2442 k = ¤t->sighand->action[sig-1];
2444 spin_lock_irq(¤t->sighand->siglock);
2445 if (signal_pending(current)) {
2447 * If there might be a fatal signal pending on multiple
2448 * threads, make sure we take it before changing the action.
2450 spin_unlock_irq(¤t->sighand->siglock);
2451 return -ERESTARTNOINTR;
2458 sigdelsetmask(&act->sa.sa_mask,
2459 sigmask(SIGKILL) | sigmask(SIGSTOP));
2462 * "Setting a signal action to SIG_IGN for a signal that is
2463 * pending shall cause the pending signal to be discarded,
2464 * whether or not it is blocked."
2466 * "Setting a signal action to SIG_DFL for a signal that is
2467 * pending and whose default action is to ignore the signal
2468 * (for example, SIGCHLD), shall cause the pending signal to
2469 * be discarded, whether or not it is blocked"
2471 if (act->sa.sa_handler == SIG_IGN ||
2472 (act->sa.sa_handler == SIG_DFL &&
2473 sig_kernel_ignore(sig))) {
2475 * This is a fairly rare case, so we only take the
2476 * tasklist_lock once we're sure we'll need it.
2477 * Now we must do this little unlock and relock
2478 * dance to maintain the lock hierarchy.
2480 struct task_struct *t = current;
2481 spin_unlock_irq(&t->sighand->siglock);
2482 read_lock(&tasklist_lock);
2483 spin_lock_irq(&t->sighand->siglock);
2486 sigaddset(&mask, sig);
2487 rm_from_queue_full(&mask, &t->signal->shared_pending);
2489 rm_from_queue_full(&mask, &t->pending);
2490 recalc_sigpending_tsk(t);
2492 } while (t != current);
2493 spin_unlock_irq(¤t->sighand->siglock);
2494 read_unlock(&tasklist_lock);
2501 spin_unlock_irq(¤t->sighand->siglock);
2506 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2512 oss.ss_sp = (void __user *) current->sas_ss_sp;
2513 oss.ss_size = current->sas_ss_size;
2514 oss.ss_flags = sas_ss_flags(sp);
2523 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2524 || __get_user(ss_sp, &uss->ss_sp)
2525 || __get_user(ss_flags, &uss->ss_flags)
2526 || __get_user(ss_size, &uss->ss_size))
2530 if (on_sig_stack(sp))
2536 * Note - this code used to test ss_flags incorrectly
2537 * old code may have been written using ss_flags==0
2538 * to mean ss_flags==SS_ONSTACK (as this was the only
2539 * way that worked) - this fix preserves that older
2542 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2545 if (ss_flags == SS_DISABLE) {
2550 if (ss_size < MINSIGSTKSZ)
2554 current->sas_ss_sp = (unsigned long) ss_sp;
2555 current->sas_ss_size = ss_size;
2560 if (copy_to_user(uoss, &oss, sizeof(oss)))
2569 #ifdef __ARCH_WANT_SYS_SIGPENDING
2572 sys_sigpending(old_sigset_t __user *set)
2574 return do_sigpending(set, sizeof(*set));
2579 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2580 /* Some platforms have their own version with special arguments others
2581 support only sys_rt_sigprocmask. */
2584 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2587 old_sigset_t old_set, new_set;
2591 if (copy_from_user(&new_set, set, sizeof(*set)))
2593 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2595 spin_lock_irq(¤t->sighand->siglock);
2596 old_set = current->blocked.sig[0];
2604 sigaddsetmask(¤t->blocked, new_set);
2607 sigdelsetmask(¤t->blocked, new_set);
2610 current->blocked.sig[0] = new_set;
2614 recalc_sigpending();
2615 spin_unlock_irq(¤t->sighand->siglock);
2621 old_set = current->blocked.sig[0];
2624 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2631 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2633 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2635 sys_rt_sigaction(int sig,
2636 const struct sigaction __user *act,
2637 struct sigaction __user *oact,
2640 struct k_sigaction new_sa, old_sa;
2643 /* XXX: Don't preclude handling different sized sigset_t's. */
2644 if (sigsetsize != sizeof(sigset_t))
2648 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2652 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2655 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2661 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2663 #ifdef __ARCH_WANT_SYS_SGETMASK
2666 * For backwards compatibility. Functionality superseded by sigprocmask.
2672 return current->blocked.sig[0];
2676 sys_ssetmask(int newmask)
2680 spin_lock_irq(¤t->sighand->siglock);
2681 old = current->blocked.sig[0];
2683 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)|
2685 recalc_sigpending();
2686 spin_unlock_irq(¤t->sighand->siglock);
2690 #endif /* __ARCH_WANT_SGETMASK */
2692 #ifdef __ARCH_WANT_SYS_SIGNAL
2694 * For backwards compatibility. Functionality superseded by sigaction.
2696 asmlinkage unsigned long
2697 sys_signal(int sig, __sighandler_t handler)
2699 struct k_sigaction new_sa, old_sa;
2702 new_sa.sa.sa_handler = handler;
2703 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2704 sigemptyset(&new_sa.sa.sa_mask);
2706 ret = do_sigaction(sig, &new_sa, &old_sa);
2708 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2710 #endif /* __ARCH_WANT_SYS_SIGNAL */
2712 #ifdef __ARCH_WANT_SYS_PAUSE
2717 current->state = TASK_INTERRUPTIBLE;
2719 return -ERESTARTNOHAND;
2724 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2725 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2729 /* XXX: Don't preclude handling different sized sigset_t's. */
2730 if (sigsetsize != sizeof(sigset_t))
2733 if (copy_from_user(&newset, unewset, sizeof(newset)))
2735 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2737 spin_lock_irq(¤t->sighand->siglock);
2738 current->saved_sigmask = current->blocked;
2739 current->blocked = newset;
2740 recalc_sigpending();
2741 spin_unlock_irq(¤t->sighand->siglock);
2743 current->state = TASK_INTERRUPTIBLE;
2745 set_thread_flag(TIF_RESTORE_SIGMASK);
2746 return -ERESTARTNOHAND;
2748 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2750 void __init signals_init(void)
2753 kmem_cache_create("sigqueue",
2754 sizeof(struct sigqueue),
2755 __alignof__(struct sigqueue),
2756 SLAB_PANIC, NULL, NULL);