5 * Copyright Information:
6 * Copyright Digital Equipment Corporation 1996.
8 * This software may be used and distributed according to the terms of
9 * the GNU General Public License, incorporated herein by reference.
12 * A Linux device driver supporting the Digital Equipment Corporation
13 * FDDI TURBOchannel, EISA and PCI controller families. Supported
16 * DEC FDDIcontroller/TURBOchannel (DEFTA)
17 * DEC FDDIcontroller/EISA (DEFEA)
18 * DEC FDDIcontroller/PCI (DEFPA)
20 * The original author:
21 * LVS Lawrence V. Stefani <lstefani@yahoo.com>
24 * macro Maciej W. Rozycki <macro@linux-mips.org>
27 * I'd like to thank Patricia Cross for helping me get started with
28 * Linux, David Davies for a lot of help upgrading and configuring
29 * my development system and for answering many OS and driver
30 * development questions, and Alan Cox for recommendations and
31 * integration help on getting FDDI support into Linux. LVS
33 * Driver Architecture:
34 * The driver architecture is largely based on previous driver work
35 * for other operating systems. The upper edge interface and
36 * functions were largely taken from existing Linux device drivers
37 * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
41 * The driver scans for supported EISA adapters by reading the
42 * SLOT ID register for each EISA slot and making a match
43 * against the expected value.
45 * Bus-Specific Initialization -
46 * This driver currently supports both EISA and PCI controller
47 * families. While the custom DMA chip and FDDI logic is similar
48 * or identical, the bus logic is very different. After
49 * initialization, the only bus-specific differences is in how the
50 * driver enables and disables interrupts. Other than that, the
51 * run-time critical code behaves the same on both families.
52 * It's important to note that both adapter families are configured
53 * to I/O map, rather than memory map, the adapter registers.
56 * In the driver open routine, the driver ISR (interrupt service
57 * routine) is registered and the adapter is brought to an
58 * operational state. In the driver close routine, the opposite
59 * occurs; the driver ISR is deregistered and the adapter is
60 * brought to a safe, but closed state. Users may use consecutive
61 * commands to bring the adapter up and down as in the following
68 * Apparently, there is no shutdown or halt routine support under
69 * Linux. This routine would be called during "reboot" or
70 * "shutdown" to allow the driver to place the adapter in a safe
71 * state before a warm reboot occurs. To be really safe, the user
72 * should close the adapter before shutdown (eg. ifconfig fddi0 down)
73 * to ensure that the adapter DMA engine is taken off-line. However,
74 * the current driver code anticipates this problem and always issues
75 * a soft reset of the adapter at the beginning of driver initialization.
76 * A future driver enhancement in this area may occur in 2.1.X where
77 * Alan indicated that a shutdown handler may be implemented.
79 * Interrupt Service Routine -
80 * The driver supports shared interrupts, so the ISR is registered for
81 * each board with the appropriate flag and the pointer to that board's
82 * device structure. This provides the context during interrupt
83 * processing to support shared interrupts and multiple boards.
85 * Interrupt enabling/disabling can occur at many levels. At the host
86 * end, you can disable system interrupts, or disable interrupts at the
87 * PIC (on Intel systems). Across the bus, both EISA and PCI adapters
88 * have a bus-logic chip interrupt enable/disable as well as a DMA
89 * controller interrupt enable/disable.
91 * The driver currently enables and disables adapter interrupts at the
92 * bus-logic chip and assumes that Linux will take care of clearing or
93 * acknowledging any host-based interrupt chips.
96 * Control functions are those used to support functions such as adding
97 * or deleting multicast addresses, enabling or disabling packet
98 * reception filters, or other custom/proprietary commands. Presently,
99 * the driver supports the "get statistics", "set multicast list", and
100 * "set mac address" functions defined by Linux. A list of possible
101 * enhancements include:
103 * - Custom ioctl interface for executing port interface commands
104 * - Custom ioctl interface for adding unicast addresses to
105 * adapter CAM (to support bridge functions).
106 * - Custom ioctl interface for supporting firmware upgrades.
108 * Hardware (port interface) Support Routines -
109 * The driver function names that start with "dfx_hw_" represent
110 * low-level port interface routines that are called frequently. They
111 * include issuing a DMA or port control command to the adapter,
112 * resetting the adapter, or reading the adapter state. Since the
113 * driver initialization and run-time code must make calls into the
114 * port interface, these routines were written to be as generic and
115 * usable as possible.
118 * The adapter DMA engine supports a 256 entry receive descriptor block
119 * of which up to 255 entries can be used at any given time. The
120 * architecture is a standard producer, consumer, completion model in
121 * which the driver "produces" receive buffers to the adapter, the
122 * adapter "consumes" the receive buffers by DMAing incoming packet data,
123 * and the driver "completes" the receive buffers by servicing the
124 * incoming packet, then "produces" a new buffer and starts the cycle
125 * again. Receive buffers can be fragmented in up to 16 fragments
126 * (descriptor entries). For simplicity, this driver posts
127 * single-fragment receive buffers of 4608 bytes, then allocates a
128 * sk_buff, copies the data, then reposts the buffer. To reduce CPU
129 * utilization, a better approach would be to pass up the receive
130 * buffer (no extra copy) then allocate and post a replacement buffer.
131 * This is a performance enhancement that should be looked into at
135 * Like the receive path, the adapter DMA engine supports a 256 entry
136 * transmit descriptor block of which up to 255 entries can be used at
137 * any given time. Transmit buffers can be fragmented in up to 255
138 * fragments (descriptor entries). This driver always posts one
139 * fragment per transmit packet request.
141 * The fragment contains the entire packet from FC to end of data.
142 * Before posting the buffer to the adapter, the driver sets a three-byte
143 * packet request header (PRH) which is required by the Motorola MAC chip
144 * used on the adapters. The PRH tells the MAC the type of token to
145 * receive/send, whether or not to generate and append the CRC, whether
146 * synchronous or asynchronous framing is used, etc. Since the PRH
147 * definition is not necessarily consistent across all FDDI chipsets,
148 * the driver, rather than the common FDDI packet handler routines,
151 * To reduce the amount of descriptor fetches needed per transmit request,
152 * the driver takes advantage of the fact that there are at least three
153 * bytes available before the skb->data field on the outgoing transmit
154 * request. This is guaranteed by having fddi_setup() in net_init.c set
155 * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest
156 * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad"
157 * bytes which we'll use to store the PRH.
159 * There's a subtle advantage to adding these pad bytes to the
160 * hard_header_len, it ensures that the data portion of the packet for
161 * an 802.2 SNAP frame is longword aligned. Other FDDI driver
162 * implementations may not need the extra padding and can start copying
163 * or DMAing directly from the FC byte which starts at skb->data. Should
164 * another driver implementation need ADDITIONAL padding, the net_init.c
165 * module should be updated and dev->hard_header_len should be increased.
166 * NOTE: To maintain the alignment on the data portion of the packet,
167 * dev->hard_header_len should always be evenly divisible by 4 and at
168 * least 24 bytes in size.
170 * Modification History:
171 * Date Name Description
172 * 16-Aug-96 LVS Created.
173 * 20-Aug-96 LVS Updated dfx_probe so that version information
174 * string is only displayed if 1 or more cards are
175 * found. Changed dfx_rcv_queue_process to copy
176 * 3 NULL bytes before FC to ensure that data is
177 * longword aligned in receive buffer.
178 * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable
179 * LLC group promiscuous mode if multicast list
180 * is too large. LLC individual/group promiscuous
181 * mode is now disabled if IFF_PROMISC flag not set.
182 * dfx_xmt_queue_pkt no longer checks for NULL skb
183 * on Alan Cox recommendation. Added node address
185 * 12-Sep-96 LVS Reset current address to factory address during
186 * device open. Updated transmit path to post a
187 * single fragment which includes PRH->end of data.
188 * Mar 2000 AC Did various cleanups for 2.3.x
189 * Jun 2000 jgarzik PCI and resource alloc cleanups
190 * Jul 2000 tjeerd Much cleanup and some bug fixes
191 * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup
192 * Feb 2001 Skb allocation fixes
193 * Feb 2001 davej PCI enable cleanups.
194 * 04 Aug 2003 macro Converted to the DMA API.
195 * 14 Aug 2004 macro Fix device names reported.
196 * 14 Jun 2005 macro Use irqreturn_t.
197 * 23 Oct 2006 macro Big-endian host support.
198 * 14 Dec 2006 macro TURBOchannel support.
202 #include <linux/bitops.h>
203 #include <linux/compiler.h>
204 #include <linux/delay.h>
205 #include <linux/dma-mapping.h>
206 #include <linux/eisa.h>
207 #include <linux/errno.h>
208 #include <linux/fddidevice.h>
209 #include <linux/init.h>
210 #include <linux/interrupt.h>
211 #include <linux/ioport.h>
212 #include <linux/kernel.h>
213 #include <linux/module.h>
214 #include <linux/netdevice.h>
215 #include <linux/pci.h>
216 #include <linux/skbuff.h>
217 #include <linux/slab.h>
218 #include <linux/string.h>
219 #include <linux/tc.h>
221 #include <asm/byteorder.h>
226 /* Version information string should be updated prior to each new release! */
227 #define DRV_NAME "defxx"
228 #define DRV_VERSION "v1.10"
229 #define DRV_RELDATE "2006/12/14"
231 static char version[] __devinitdata =
232 DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
233 " Lawrence V. Stefani and others\n";
235 #define DYNAMIC_BUFFERS 1
237 #define SKBUFF_RX_COPYBREAK 200
239 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
240 * alignment for compatibility with old EISA boards.
242 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
245 #define DFX_BUS_PCI(dev) (dev->bus == &pci_bus_type)
247 #define DFX_BUS_PCI(dev) 0
251 #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
253 #define DFX_BUS_EISA(dev) 0
257 #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
259 #define DFX_BUS_TC(dev) 0
262 #ifdef CONFIG_DEFXX_MMIO
268 /* Define module-wide (static) routines */
270 static void dfx_bus_init(struct net_device *dev);
271 static void dfx_bus_uninit(struct net_device *dev);
272 static void dfx_bus_config_check(DFX_board_t *bp);
274 static int dfx_driver_init(struct net_device *dev,
275 const char *print_name,
276 resource_size_t bar_start);
277 static int dfx_adap_init(DFX_board_t *bp, int get_buffers);
279 static int dfx_open(struct net_device *dev);
280 static int dfx_close(struct net_device *dev);
282 static void dfx_int_pr_halt_id(DFX_board_t *bp);
283 static void dfx_int_type_0_process(DFX_board_t *bp);
284 static void dfx_int_common(struct net_device *dev);
285 static irqreturn_t dfx_interrupt(int irq, void *dev_id);
287 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
288 static void dfx_ctl_set_multicast_list(struct net_device *dev);
289 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
290 static int dfx_ctl_update_cam(DFX_board_t *bp);
291 static int dfx_ctl_update_filters(DFX_board_t *bp);
293 static int dfx_hw_dma_cmd_req(DFX_board_t *bp);
294 static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
295 static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
296 static int dfx_hw_adap_state_rd(DFX_board_t *bp);
297 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
299 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers);
300 static void dfx_rcv_queue_process(DFX_board_t *bp);
301 static void dfx_rcv_flush(DFX_board_t *bp);
303 static int dfx_xmt_queue_pkt(struct sk_buff *skb, struct net_device *dev);
304 static int dfx_xmt_done(DFX_board_t *bp);
305 static void dfx_xmt_flush(DFX_board_t *bp);
307 /* Define module-wide (static) variables */
309 static struct pci_driver dfx_pci_driver;
310 static struct eisa_driver dfx_eisa_driver;
311 static struct tc_driver dfx_tc_driver;
315 * =======================
316 * = dfx_port_write_long =
317 * = dfx_port_read_long =
318 * =======================
321 * Routines for reading and writing values from/to adapter
327 * bp - pointer to board information
328 * offset - register offset from base I/O address
329 * data - for dfx_port_write_long, this is a value to write;
330 * for dfx_port_read_long, this is a pointer to store
333 * Functional Description:
334 * These routines perform the correct operation to read or write
335 * the adapter register.
337 * EISA port block base addresses are based on the slot number in which the
338 * controller is installed. For example, if the EISA controller is installed
339 * in slot 4, the port block base address is 0x4000. If the controller is
340 * installed in slot 2, the port block base address is 0x2000, and so on.
341 * This port block can be used to access PDQ, ESIC, and DEFEA on-board
342 * registers using the register offsets defined in DEFXX.H.
344 * PCI port block base addresses are assigned by the PCI BIOS or system
345 * firmware. There is one 128 byte port block which can be accessed. It
346 * allows for I/O mapping of both PDQ and PFI registers using the register
347 * offsets defined in DEFXX.H.
353 * bp->base is a valid base I/O address for this adapter.
354 * offset is a valid register offset for this adapter.
357 * Rather than produce macros for these functions, these routines
358 * are defined using "inline" to ensure that the compiler will
359 * generate inline code and not waste a procedure call and return.
360 * This provides all the benefits of macros, but with the
361 * advantage of strict data type checking.
364 static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
366 writel(data, bp->base.mem + offset);
370 static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
372 outl(data, bp->base.port + offset);
375 static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
377 struct device __maybe_unused *bdev = bp->bus_dev;
378 int dfx_bus_tc = DFX_BUS_TC(bdev);
379 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
382 dfx_writel(bp, offset, data);
384 dfx_outl(bp, offset, data);
388 static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
391 *data = readl(bp->base.mem + offset);
394 static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
396 *data = inl(bp->base.port + offset);
399 static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
401 struct device __maybe_unused *bdev = bp->bus_dev;
402 int dfx_bus_tc = DFX_BUS_TC(bdev);
403 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
406 dfx_readl(bp, offset, data);
408 dfx_inl(bp, offset, data);
418 * Retrieves the address range used to access control and status
425 * bdev - pointer to device information
426 * bar_start - pointer to store the start address
427 * bar_len - pointer to store the length of the area
430 * I am sure there are some.
435 static void dfx_get_bars(struct device *bdev,
436 resource_size_t *bar_start, resource_size_t *bar_len)
438 int dfx_bus_pci = DFX_BUS_PCI(bdev);
439 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
440 int dfx_bus_tc = DFX_BUS_TC(bdev);
441 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
444 int num = dfx_use_mmio ? 0 : 1;
446 *bar_start = pci_resource_start(to_pci_dev(bdev), num);
447 *bar_len = pci_resource_len(to_pci_dev(bdev), num);
450 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
454 bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2);
456 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1);
458 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0);
461 bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2);
463 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1);
465 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0);
467 *bar_len = (bar | PI_MEM_ADD_MASK_M) + 1;
469 *bar_start = base_addr;
470 *bar_len = PI_ESIC_K_CSR_IO_LEN;
474 *bar_start = to_tc_dev(bdev)->resource.start +
476 *bar_len = PI_TC_K_CSR_LEN;
480 static const struct net_device_ops dfx_netdev_ops = {
481 .ndo_open = dfx_open,
482 .ndo_stop = dfx_close,
483 .ndo_start_xmit = dfx_xmt_queue_pkt,
484 .ndo_get_stats = dfx_ctl_get_stats,
485 .ndo_set_multicast_list = dfx_ctl_set_multicast_list,
486 .ndo_set_mac_address = dfx_ctl_set_mac_address,
495 * Initializes a supported FDDI controller
501 * bdev - pointer to device information
503 * Functional Description:
506 * 0 - This device (fddi0, fddi1, etc) configured successfully
507 * -EBUSY - Failed to get resources, or dfx_driver_init failed.
510 * It compiles so it should work :-( (PCI cards do :-)
513 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
514 * initialized and the board resources are read and stored in
515 * the device structure.
517 static int __devinit dfx_register(struct device *bdev)
519 static int version_disp;
520 int dfx_bus_pci = DFX_BUS_PCI(bdev);
521 int dfx_bus_tc = DFX_BUS_TC(bdev);
522 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
523 const char *print_name = dev_name(bdev);
524 struct net_device *dev;
525 DFX_board_t *bp; /* board pointer */
526 resource_size_t bar_start = 0; /* pointer to port */
527 resource_size_t bar_len = 0; /* resource length */
528 int alloc_size; /* total buffer size used */
529 struct resource *region;
532 if (!version_disp) { /* display version info if adapter is found */
533 version_disp = 1; /* set display flag to TRUE so that */
534 printk(version); /* we only display this string ONCE */
537 dev = alloc_fddidev(sizeof(*bp));
539 printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
544 /* Enable PCI device. */
545 if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) {
546 printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n",
551 SET_NETDEV_DEV(dev, bdev);
553 bp = netdev_priv(dev);
555 dev_set_drvdata(bdev, dev);
557 dfx_get_bars(bdev, &bar_start, &bar_len);
560 region = request_mem_region(bar_start, bar_len, print_name);
562 region = request_region(bar_start, bar_len, print_name);
564 printk(KERN_ERR "%s: Cannot reserve I/O resource "
565 "0x%lx @ 0x%lx, aborting\n",
566 print_name, (long)bar_len, (long)bar_start);
568 goto err_out_disable;
571 /* Set up I/O base address. */
573 bp->base.mem = ioremap_nocache(bar_start, bar_len);
575 printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
580 bp->base.port = bar_start;
581 dev->base_addr = bar_start;
584 /* Initialize new device structure */
585 dev->netdev_ops = &dfx_netdev_ops;
588 pci_set_master(to_pci_dev(bdev));
590 if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) {
595 err = register_netdev(dev);
599 printk("%s: registered as %s\n", print_name, dev->name);
603 alloc_size = sizeof(PI_DESCR_BLOCK) +
604 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
605 #ifndef DYNAMIC_BUFFERS
606 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
608 sizeof(PI_CONSUMER_BLOCK) +
609 (PI_ALIGN_K_DESC_BLK - 1);
611 dma_free_coherent(bdev, alloc_size,
612 bp->kmalloced, bp->kmalloced_dma);
616 iounmap(bp->base.mem);
620 release_mem_region(bar_start, bar_len);
622 release_region(bar_start, bar_len);
626 pci_disable_device(to_pci_dev(bdev));
640 * Initializes the bus-specific controller logic.
646 * dev - pointer to device information
648 * Functional Description:
649 * Determine and save adapter IRQ in device table,
650 * then perform bus-specific logic initialization.
656 * bp->base has already been set with the proper
657 * base I/O address for this device.
660 * Interrupts are enabled at the adapter bus-specific logic.
661 * Note: Interrupts at the DMA engine (PDQ chip) are not
665 static void __devinit dfx_bus_init(struct net_device *dev)
667 DFX_board_t *bp = netdev_priv(dev);
668 struct device *bdev = bp->bus_dev;
669 int dfx_bus_pci = DFX_BUS_PCI(bdev);
670 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
671 int dfx_bus_tc = DFX_BUS_TC(bdev);
672 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
675 DBG_printk("In dfx_bus_init...\n");
677 /* Initialize a pointer back to the net_device struct */
680 /* Initialize adapter based on bus type */
683 dev->irq = to_tc_dev(bdev)->interrupt;
685 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
687 /* Get the interrupt level from the ESIC chip. */
688 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
689 val &= PI_CONFIG_STAT_0_M_IRQ;
690 val >>= PI_CONFIG_STAT_0_V_IRQ;
693 case PI_CONFIG_STAT_0_IRQ_K_9:
697 case PI_CONFIG_STAT_0_IRQ_K_10:
701 case PI_CONFIG_STAT_0_IRQ_K_11:
705 case PI_CONFIG_STAT_0_IRQ_K_15:
711 * Enable memory decoding (MEMCS0) and/or port decoding
712 * (IOCS1/IOCS0) as appropriate in Function Control
713 * Register. One of the port chip selects seems to be
714 * used for the Burst Holdoff register, but this bit of
715 * documentation is missing and as yet it has not been
716 * determined which of the two. This is also the reason
717 * the size of the decoded port range is twice as large
718 * as one required by the PDQ.
721 /* Set the decode range of the board. */
722 val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT);
723 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val);
724 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0);
725 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val);
726 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0);
727 val = PI_ESIC_K_CSR_IO_LEN - 1;
728 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff);
729 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff);
730 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff);
731 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff);
733 /* Enable the decoders. */
734 val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0;
736 val |= PI_FUNCTION_CNTRL_M_MEMCS0;
737 outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val);
740 * Enable access to the rest of the module
741 * (including PDQ and packet memory).
743 val = PI_SLOT_CNTRL_M_ENB;
744 outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val);
747 * Map PDQ registers into memory or port space. This is
748 * done with a bit in the Burst Holdoff register.
750 val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
752 val |= PI_BURST_HOLDOFF_V_MEM_MAP;
754 val &= ~PI_BURST_HOLDOFF_V_MEM_MAP;
755 outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val);
757 /* Enable interrupts at EISA bus interface chip (ESIC) */
758 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
759 val |= PI_CONFIG_STAT_0_M_INT_ENB;
760 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
763 struct pci_dev *pdev = to_pci_dev(bdev);
765 /* Get the interrupt level from the PCI Configuration Table */
767 dev->irq = pdev->irq;
769 /* Check Latency Timer and set if less than minimal */
771 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
772 if (val < PFI_K_LAT_TIMER_MIN) {
773 val = PFI_K_LAT_TIMER_DEF;
774 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
777 /* Enable interrupts at PCI bus interface chip (PFI) */
778 val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
779 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
789 * Uninitializes the bus-specific controller logic.
795 * dev - pointer to device information
797 * Functional Description:
798 * Perform bus-specific logic uninitialization.
804 * bp->base has already been set with the proper
805 * base I/O address for this device.
808 * Interrupts are disabled at the adapter bus-specific logic.
811 static void __devexit dfx_bus_uninit(struct net_device *dev)
813 DFX_board_t *bp = netdev_priv(dev);
814 struct device *bdev = bp->bus_dev;
815 int dfx_bus_pci = DFX_BUS_PCI(bdev);
816 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
819 DBG_printk("In dfx_bus_uninit...\n");
821 /* Uninitialize adapter based on bus type */
824 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
826 /* Disable interrupts at EISA bus interface chip (ESIC) */
827 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
828 val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
829 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
832 /* Disable interrupts at PCI bus interface chip (PFI) */
833 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
839 * ========================
840 * = dfx_bus_config_check =
841 * ========================
844 * Checks the configuration (burst size, full-duplex, etc.) If any parameters
845 * are illegal, then this routine will set new defaults.
851 * bp - pointer to board information
853 * Functional Description:
854 * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
855 * PDQ, and all FDDI PCI controllers, all values are legal.
861 * dfx_adap_init has NOT been called yet so burst size and other items have
868 static void __devinit dfx_bus_config_check(DFX_board_t *bp)
870 struct device __maybe_unused *bdev = bp->bus_dev;
871 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
872 int status; /* return code from adapter port control call */
873 u32 host_data; /* LW data returned from port control call */
875 DBG_printk("In dfx_bus_config_check...\n");
877 /* Configuration check only valid for EISA adapter */
881 * First check if revision 2 EISA controller. Rev. 1 cards used
882 * PDQ revision B, so no workaround needed in this case. Rev. 3
883 * cards used PDQ revision E, so no workaround needed in this
884 * case, either. Only Rev. 2 cards used either Rev. D or E
885 * chips, so we must verify the chip revision on Rev. 2 cards.
887 if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
889 * Revision 2 FDDI EISA controller found,
890 * so let's check PDQ revision of adapter.
892 status = dfx_hw_port_ctrl_req(bp,
894 PI_SUB_CMD_K_PDQ_REV_GET,
897 if ((status != DFX_K_SUCCESS) || (host_data == 2))
900 * Either we couldn't determine the PDQ revision, or
901 * we determined that it is at revision D. In either case,
902 * we need to implement the workaround.
905 /* Ensure that the burst size is set to 8 longwords or less */
907 switch (bp->burst_size)
909 case PI_PDATA_B_DMA_BURST_SIZE_32:
910 case PI_PDATA_B_DMA_BURST_SIZE_16:
911 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
918 /* Ensure that full-duplex mode is not enabled */
920 bp->full_duplex_enb = PI_SNMP_K_FALSE;
928 * ===================
929 * = dfx_driver_init =
930 * ===================
933 * Initializes remaining adapter board structure information
934 * and makes sure adapter is in a safe state prior to dfx_open().
940 * dev - pointer to device information
941 * print_name - printable device name
943 * Functional Description:
944 * This function allocates additional resources such as the host memory
945 * blocks needed by the adapter (eg. descriptor and consumer blocks).
946 * Remaining bus initialization steps are also completed. The adapter
947 * is also reset so that it is in the DMA_UNAVAILABLE state. The OS
948 * must call dfx_open() to open the adapter and bring it on-line.
951 * DFX_K_SUCCESS - initialization succeeded
952 * DFX_K_FAILURE - initialization failed - could not allocate memory
953 * or read adapter MAC address
956 * Memory allocated from pci_alloc_consistent() call is physically
957 * contiguous, locked memory.
960 * Adapter is reset and should be in DMA_UNAVAILABLE state before
961 * returning from this routine.
964 static int __devinit dfx_driver_init(struct net_device *dev,
965 const char *print_name,
966 resource_size_t bar_start)
968 DFX_board_t *bp = netdev_priv(dev);
969 struct device *bdev = bp->bus_dev;
970 int dfx_bus_pci = DFX_BUS_PCI(bdev);
971 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
972 int dfx_bus_tc = DFX_BUS_TC(bdev);
973 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
974 int alloc_size; /* total buffer size needed */
975 char *top_v, *curr_v; /* virtual addrs into memory block */
976 dma_addr_t top_p, curr_p; /* physical addrs into memory block */
977 u32 data; /* host data register value */
979 char *board_name = NULL;
981 DBG_printk("In dfx_driver_init...\n");
983 /* Initialize bus-specific hardware registers */
988 * Initialize default values for configurable parameters
990 * Note: All of these parameters are ones that a user may
991 * want to customize. It'd be nice to break these
992 * out into Space.c or someplace else that's more
993 * accessible/understandable than this file.
996 bp->full_duplex_enb = PI_SNMP_K_FALSE;
997 bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */
998 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF;
999 bp->rcv_bufs_to_post = RCV_BUFS_DEF;
1002 * Ensure that HW configuration is OK
1004 * Note: Depending on the hardware revision, we may need to modify
1005 * some of the configurable parameters to workaround hardware
1006 * limitations. We'll perform this configuration check AFTER
1007 * setting the parameters to their default values.
1010 dfx_bus_config_check(bp);
1012 /* Disable PDQ interrupts first */
1014 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1016 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1018 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1020 /* Read the factory MAC address from the adapter then save it */
1022 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1023 &data) != DFX_K_SUCCESS) {
1024 printk("%s: Could not read adapter factory MAC address!\n",
1026 return(DFX_K_FAILURE);
1028 le32 = cpu_to_le32(data);
1029 memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1031 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1032 &data) != DFX_K_SUCCESS) {
1033 printk("%s: Could not read adapter factory MAC address!\n",
1035 return(DFX_K_FAILURE);
1037 le32 = cpu_to_le32(data);
1038 memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1041 * Set current address to factory address
1043 * Note: Node address override support is handled through
1044 * dfx_ctl_set_mac_address.
1047 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1049 board_name = "DEFTA";
1051 board_name = "DEFEA";
1053 board_name = "DEFPA";
1054 pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, "
1055 "Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
1056 print_name, board_name, dfx_use_mmio ? "" : "I/O ",
1057 (long long)bar_start, dev->irq,
1058 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
1059 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
1062 * Get memory for descriptor block, consumer block, and other buffers
1063 * that need to be DMA read or written to by the adapter.
1066 alloc_size = sizeof(PI_DESCR_BLOCK) +
1067 PI_CMD_REQ_K_SIZE_MAX +
1068 PI_CMD_RSP_K_SIZE_MAX +
1069 #ifndef DYNAMIC_BUFFERS
1070 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1072 sizeof(PI_CONSUMER_BLOCK) +
1073 (PI_ALIGN_K_DESC_BLK - 1);
1074 bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size,
1077 if (top_v == NULL) {
1078 printk("%s: Could not allocate memory for host buffers "
1079 "and structures!\n", print_name);
1080 return(DFX_K_FAILURE);
1082 memset(top_v, 0, alloc_size); /* zero out memory before continuing */
1083 top_p = bp->kmalloced_dma; /* get physical address of buffer */
1086 * To guarantee the 8K alignment required for the descriptor block, 8K - 1
1087 * plus the amount of memory needed was allocated. The physical address
1088 * is now 8K aligned. By carving up the memory in a specific order,
1089 * we'll guarantee the alignment requirements for all other structures.
1091 * Note: If the assumptions change regarding the non-paged, non-cached,
1092 * physically contiguous nature of the memory block or the address
1093 * alignments, then we'll need to implement a different algorithm
1094 * for allocating the needed memory.
1097 curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1098 curr_v = top_v + (curr_p - top_p);
1100 /* Reserve space for descriptor block */
1102 bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1103 bp->descr_block_phys = curr_p;
1104 curr_v += sizeof(PI_DESCR_BLOCK);
1105 curr_p += sizeof(PI_DESCR_BLOCK);
1107 /* Reserve space for command request buffer */
1109 bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1110 bp->cmd_req_phys = curr_p;
1111 curr_v += PI_CMD_REQ_K_SIZE_MAX;
1112 curr_p += PI_CMD_REQ_K_SIZE_MAX;
1114 /* Reserve space for command response buffer */
1116 bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1117 bp->cmd_rsp_phys = curr_p;
1118 curr_v += PI_CMD_RSP_K_SIZE_MAX;
1119 curr_p += PI_CMD_RSP_K_SIZE_MAX;
1121 /* Reserve space for the LLC host receive queue buffers */
1123 bp->rcv_block_virt = curr_v;
1124 bp->rcv_block_phys = curr_p;
1126 #ifndef DYNAMIC_BUFFERS
1127 curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1128 curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1131 /* Reserve space for the consumer block */
1133 bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1134 bp->cons_block_phys = curr_p;
1136 /* Display virtual and physical addresses if debug driver */
1138 DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
1140 (long)bp->descr_block_virt, bp->descr_block_phys);
1141 DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
1142 print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
1143 DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
1144 print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
1145 DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
1146 print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
1147 DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
1148 print_name, (long)bp->cons_block_virt, bp->cons_block_phys);
1150 return(DFX_K_SUCCESS);
1160 * Brings the adapter to the link avail/link unavailable state.
1166 * bp - pointer to board information
1167 * get_buffers - non-zero if buffers to be allocated
1169 * Functional Description:
1170 * Issues the low-level firmware/hardware calls necessary to bring
1171 * the adapter up, or to properly reset and restore adapter during
1175 * DFX_K_SUCCESS - Adapter brought up successfully
1176 * DFX_K_FAILURE - Adapter initialization failed
1179 * bp->reset_type should be set to a valid reset type value before
1180 * calling this routine.
1183 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1184 * upon a successful return of this routine.
1187 static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1189 DBG_printk("In dfx_adap_init...\n");
1191 /* Disable PDQ interrupts first */
1193 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1195 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1197 if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1199 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1200 return(DFX_K_FAILURE);
1204 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1205 * so we'll acknowledge all Type 0 interrupts now before continuing.
1208 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1211 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1213 * Note: We only need to clear host copies of these registers. The PDQ reset
1214 * takes care of the on-board register values.
1217 bp->cmd_req_reg.lword = 0;
1218 bp->cmd_rsp_reg.lword = 0;
1219 bp->rcv_xmt_reg.lword = 0;
1221 /* Clear consumer block before going to DMA_AVAILABLE state */
1223 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1225 /* Initialize the DMA Burst Size */
1227 if (dfx_hw_port_ctrl_req(bp,
1229 PI_SUB_CMD_K_BURST_SIZE_SET,
1231 NULL) != DFX_K_SUCCESS)
1233 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1234 return(DFX_K_FAILURE);
1238 * Set base address of Consumer Block
1240 * Assumption: 32-bit physical address of consumer block is 64 byte
1241 * aligned. That is, bits 0-5 of the address must be zero.
1244 if (dfx_hw_port_ctrl_req(bp,
1245 PI_PCTRL_M_CONS_BLOCK,
1246 bp->cons_block_phys,
1248 NULL) != DFX_K_SUCCESS)
1250 printk("%s: Could not set consumer block address!\n", bp->dev->name);
1251 return(DFX_K_FAILURE);
1255 * Set the base address of Descriptor Block and bring adapter
1256 * to DMA_AVAILABLE state.
1258 * Note: We also set the literal and data swapping requirements
1261 * Assumption: 32-bit physical address of descriptor block
1262 * is 8Kbyte aligned.
1264 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1265 (u32)(bp->descr_block_phys |
1266 PI_PDATA_A_INIT_M_BSWAP_INIT),
1267 0, NULL) != DFX_K_SUCCESS) {
1268 printk("%s: Could not set descriptor block address!\n",
1270 return DFX_K_FAILURE;
1273 /* Set transmit flush timeout value */
1275 bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1276 bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME;
1277 bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */
1278 bp->cmd_req_virt->char_set.item[0].item_index = 0;
1279 bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL;
1280 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1282 printk("%s: DMA command request failed!\n", bp->dev->name);
1283 return(DFX_K_FAILURE);
1286 /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1288 bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1289 bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS;
1290 bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb;
1291 bp->cmd_req_virt->snmp_set.item[0].item_index = 0;
1292 bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ;
1293 bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt;
1294 bp->cmd_req_virt->snmp_set.item[1].item_index = 0;
1295 bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL;
1296 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1298 printk("%s: DMA command request failed!\n", bp->dev->name);
1299 return(DFX_K_FAILURE);
1302 /* Initialize adapter CAM */
1304 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1306 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1307 return(DFX_K_FAILURE);
1310 /* Initialize adapter filters */
1312 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1314 printk("%s: Adapter filters update failed!\n", bp->dev->name);
1315 return(DFX_K_FAILURE);
1319 * Remove any existing dynamic buffers (i.e. if the adapter is being
1326 /* Initialize receive descriptor block and produce buffers */
1328 if (dfx_rcv_init(bp, get_buffers))
1330 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1333 return(DFX_K_FAILURE);
1336 /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1338 bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1339 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1341 printk("%s: Start command failed\n", bp->dev->name);
1344 return(DFX_K_FAILURE);
1347 /* Initialization succeeded, reenable PDQ interrupts */
1349 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1350 return(DFX_K_SUCCESS);
1366 * dev - pointer to device information
1368 * Functional Description:
1369 * This function brings the adapter to an operational state.
1372 * 0 - Adapter was successfully opened
1373 * -EAGAIN - Could not register IRQ or adapter initialization failed
1376 * This routine should only be called for a device that was
1377 * initialized successfully.
1380 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1381 * if the open is successful.
1384 static int dfx_open(struct net_device *dev)
1386 DFX_board_t *bp = netdev_priv(dev);
1389 DBG_printk("In dfx_open...\n");
1391 /* Register IRQ - support shared interrupts by passing device ptr */
1393 ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1396 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1401 * Set current address to factory MAC address
1403 * Note: We've already done this step in dfx_driver_init.
1404 * However, it's possible that a user has set a node
1405 * address override, then closed and reopened the
1406 * adapter. Unless we reset the device address field
1407 * now, we'll continue to use the existing modified
1411 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1413 /* Clear local unicast/multicast address tables and counts */
1415 memset(bp->uc_table, 0, sizeof(bp->uc_table));
1416 memset(bp->mc_table, 0, sizeof(bp->mc_table));
1420 /* Disable promiscuous filter settings */
1422 bp->ind_group_prom = PI_FSTATE_K_BLOCK;
1423 bp->group_prom = PI_FSTATE_K_BLOCK;
1425 spin_lock_init(&bp->lock);
1427 /* Reset and initialize adapter */
1429 bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */
1430 if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1432 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1433 free_irq(dev->irq, dev);
1437 /* Set device structure info */
1438 netif_start_queue(dev);
1449 * Closes the device/module.
1455 * dev - pointer to device information
1457 * Functional Description:
1458 * This routine closes the adapter and brings it to a safe state.
1459 * The interrupt service routine is deregistered with the OS.
1460 * The adapter can be opened again with another call to dfx_open().
1466 * No further requests for this adapter are made after this routine is
1467 * called. dfx_open() can be called to reset and reinitialize the
1471 * Adapter should be in DMA_UNAVAILABLE state upon completion of this
1475 static int dfx_close(struct net_device *dev)
1477 DFX_board_t *bp = netdev_priv(dev);
1479 DBG_printk("In dfx_close...\n");
1481 /* Disable PDQ interrupts first */
1483 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1485 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1487 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1490 * Flush any pending transmit buffers
1492 * Note: It's important that we flush the transmit buffers
1493 * BEFORE we clear our copy of the Type 2 register.
1494 * Otherwise, we'll have no idea how many buffers
1501 * Clear Type 1 and Type 2 registers after adapter reset
1503 * Note: Even though we're closing the adapter, it's
1504 * possible that an interrupt will occur after
1505 * dfx_close is called. Without some assurance to
1506 * the contrary we want to make sure that we don't
1507 * process receive and transmit LLC frames and update
1508 * the Type 2 register with bad information.
1511 bp->cmd_req_reg.lword = 0;
1512 bp->cmd_rsp_reg.lword = 0;
1513 bp->rcv_xmt_reg.lword = 0;
1515 /* Clear consumer block for the same reason given above */
1517 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1519 /* Release all dynamically allocate skb in the receive ring. */
1523 /* Clear device structure flags */
1525 netif_stop_queue(dev);
1527 /* Deregister (free) IRQ */
1529 free_irq(dev->irq, dev);
1536 * ======================
1537 * = dfx_int_pr_halt_id =
1538 * ======================
1541 * Displays halt id's in string form.
1547 * bp - pointer to board information
1549 * Functional Description:
1550 * Determine current halt id and display appropriate string.
1562 static void dfx_int_pr_halt_id(DFX_board_t *bp)
1564 PI_UINT32 port_status; /* PDQ port status register value */
1565 PI_UINT32 halt_id; /* PDQ port status halt ID */
1567 /* Read the latest port status */
1569 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1571 /* Display halt state transition information */
1573 halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1576 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1577 printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1580 case PI_HALT_ID_K_PARITY_ERROR:
1581 printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1584 case PI_HALT_ID_K_HOST_DIR_HALT:
1585 printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1588 case PI_HALT_ID_K_SW_FAULT:
1589 printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1592 case PI_HALT_ID_K_HW_FAULT:
1593 printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1596 case PI_HALT_ID_K_PC_TRACE:
1597 printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1600 case PI_HALT_ID_K_DMA_ERROR:
1601 printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1604 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1605 printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1608 case PI_HALT_ID_K_BUS_EXCEPTION:
1609 printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1613 printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1620 * ==========================
1621 * = dfx_int_type_0_process =
1622 * ==========================
1625 * Processes Type 0 interrupts.
1631 * bp - pointer to board information
1633 * Functional Description:
1634 * Processes all enabled Type 0 interrupts. If the reason for the interrupt
1635 * is a serious fault on the adapter, then an error message is displayed
1636 * and the adapter is reset.
1638 * One tricky potential timing window is the rapid succession of "link avail"
1639 * "link unavail" state change interrupts. The acknowledgement of the Type 0
1640 * interrupt must be done before reading the state from the Port Status
1641 * register. This is true because a state change could occur after reading
1642 * the data, but before acknowledging the interrupt. If this state change
1643 * does happen, it would be lost because the driver is using the old state,
1644 * and it will never know about the new state because it subsequently
1645 * acknowledges the state change interrupt.
1648 * read type 0 int reasons read type 0 int reasons
1649 * read adapter state ack type 0 interrupts
1650 * ack type 0 interrupts read adapter state
1651 * ... process interrupt ... ... process interrupt ...
1660 * An adapter reset may occur if the adapter has any Type 0 error interrupts
1661 * or if the port status indicates that the adapter is halted. The driver
1662 * is responsible for reinitializing the adapter with the current CAM
1663 * contents and adapter filter settings.
1666 static void dfx_int_type_0_process(DFX_board_t *bp)
1669 PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */
1670 PI_UINT32 state; /* current adap state (from port status) */
1673 * Read host interrupt Type 0 register to determine which Type 0
1674 * interrupts are pending. Immediately write it back out to clear
1678 dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1679 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1681 /* Check for Type 0 error interrupts */
1683 if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1684 PI_TYPE_0_STAT_M_PM_PAR_ERR |
1685 PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1687 /* Check for Non-Existent Memory error */
1689 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1690 printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1692 /* Check for Packet Memory Parity error */
1694 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1695 printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1697 /* Check for Host Bus Parity error */
1699 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1700 printk("%s: Host Bus Parity Error\n", bp->dev->name);
1702 /* Reset adapter and bring it back on-line */
1704 bp->link_available = PI_K_FALSE; /* link is no longer available */
1705 bp->reset_type = 0; /* rerun on-board diagnostics */
1706 printk("%s: Resetting adapter...\n", bp->dev->name);
1707 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1709 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1710 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1713 printk("%s: Adapter reset successful!\n", bp->dev->name);
1717 /* Check for transmit flush interrupt */
1719 if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1721 /* Flush any pending xmt's and acknowledge the flush interrupt */
1723 bp->link_available = PI_K_FALSE; /* link is no longer available */
1724 dfx_xmt_flush(bp); /* flush any outstanding packets */
1725 (void) dfx_hw_port_ctrl_req(bp,
1726 PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1732 /* Check for adapter state change */
1734 if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1736 /* Get latest adapter state */
1738 state = dfx_hw_adap_state_rd(bp); /* get adapter state */
1739 if (state == PI_STATE_K_HALTED)
1742 * Adapter has transitioned to HALTED state, try to reset
1743 * adapter to bring it back on-line. If reset fails,
1744 * leave the adapter in the broken state.
1747 printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1748 dfx_int_pr_halt_id(bp); /* display halt id as string */
1750 /* Reset adapter and bring it back on-line */
1752 bp->link_available = PI_K_FALSE; /* link is no longer available */
1753 bp->reset_type = 0; /* rerun on-board diagnostics */
1754 printk("%s: Resetting adapter...\n", bp->dev->name);
1755 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1757 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1758 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1761 printk("%s: Adapter reset successful!\n", bp->dev->name);
1763 else if (state == PI_STATE_K_LINK_AVAIL)
1765 bp->link_available = PI_K_TRUE; /* set link available flag */
1772 * ==================
1773 * = dfx_int_common =
1774 * ==================
1777 * Interrupt service routine (ISR)
1783 * bp - pointer to board information
1785 * Functional Description:
1786 * This is the ISR which processes incoming adapter interrupts.
1792 * This routine assumes PDQ interrupts have not been disabled.
1793 * When interrupts are disabled at the PDQ, the Port Status register
1794 * is automatically cleared. This routine uses the Port Status
1795 * register value to determine whether a Type 0 interrupt occurred,
1796 * so it's important that adapter interrupts are not normally
1797 * enabled/disabled at the PDQ.
1799 * It's vital that this routine is NOT reentered for the
1800 * same board and that the OS is not in another section of
1801 * code (eg. dfx_xmt_queue_pkt) for the same board on a
1805 * Pending interrupts are serviced. Depending on the type of
1806 * interrupt, acknowledging and clearing the interrupt at the
1807 * PDQ involves writing a register to clear the interrupt bit
1808 * or updating completion indices.
1811 static void dfx_int_common(struct net_device *dev)
1813 DFX_board_t *bp = netdev_priv(dev);
1814 PI_UINT32 port_status; /* Port Status register */
1816 /* Process xmt interrupts - frequent case, so always call this routine */
1818 if(dfx_xmt_done(bp)) /* free consumed xmt packets */
1819 netif_wake_queue(dev);
1821 /* Process rcv interrupts - frequent case, so always call this routine */
1823 dfx_rcv_queue_process(bp); /* service received LLC frames */
1826 * Transmit and receive producer and completion indices are updated on the
1827 * adapter by writing to the Type 2 Producer register. Since the frequent
1828 * case is that we'll be processing either LLC transmit or receive buffers,
1829 * we'll optimize I/O writes by doing a single register write here.
1832 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1834 /* Read PDQ Port Status register to find out which interrupts need processing */
1836 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1838 /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1840 if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1841 dfx_int_type_0_process(bp); /* process Type 0 interrupts */
1851 * Interrupt processing routine
1854 * Whether a valid interrupt was seen.
1857 * irq - interrupt vector
1858 * dev_id - pointer to device information
1860 * Functional Description:
1861 * This routine calls the interrupt processing routine for this adapter. It
1862 * disables and reenables adapter interrupts, as appropriate. We can support
1863 * shared interrupts since the incoming dev_id pointer provides our device
1864 * structure context.
1867 * IRQ_HANDLED - an IRQ was handled.
1868 * IRQ_NONE - no IRQ was handled.
1871 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1872 * on Intel-based systems) is done by the operating system outside this
1875 * System interrupts are enabled through this call.
1878 * Interrupts are disabled, then reenabled at the adapter.
1881 static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1883 struct net_device *dev = dev_id;
1884 DFX_board_t *bp = netdev_priv(dev);
1885 struct device *bdev = bp->bus_dev;
1886 int dfx_bus_pci = DFX_BUS_PCI(bdev);
1887 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1888 int dfx_bus_tc = DFX_BUS_TC(bdev);
1890 /* Service adapter interrupts */
1895 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1896 if (!(status & PFI_STATUS_M_PDQ_INT))
1899 spin_lock(&bp->lock);
1901 /* Disable PDQ-PFI interrupts at PFI */
1902 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1903 PFI_MODE_M_DMA_ENB);
1905 /* Call interrupt service routine for this adapter */
1906 dfx_int_common(dev);
1908 /* Clear PDQ interrupt status bit and reenable interrupts */
1909 dfx_port_write_long(bp, PFI_K_REG_STATUS,
1910 PFI_STATUS_M_PDQ_INT);
1911 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1912 (PFI_MODE_M_PDQ_INT_ENB |
1913 PFI_MODE_M_DMA_ENB));
1915 spin_unlock(&bp->lock);
1918 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1921 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1922 if (!(status & PI_CONFIG_STAT_0_M_PEND))
1925 spin_lock(&bp->lock);
1927 /* Disable interrupts at the ESIC */
1928 status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1929 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1931 /* Call interrupt service routine for this adapter */
1932 dfx_int_common(dev);
1934 /* Reenable interrupts at the ESIC */
1935 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1936 status |= PI_CONFIG_STAT_0_M_INT_ENB;
1937 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1939 spin_unlock(&bp->lock);
1944 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
1945 if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
1946 PI_PSTATUS_M_XMT_DATA_PENDING |
1947 PI_PSTATUS_M_SMT_HOST_PENDING |
1948 PI_PSTATUS_M_UNSOL_PENDING |
1949 PI_PSTATUS_M_CMD_RSP_PENDING |
1950 PI_PSTATUS_M_CMD_REQ_PENDING |
1951 PI_PSTATUS_M_TYPE_0_PENDING)))
1954 spin_lock(&bp->lock);
1956 /* Call interrupt service routine for this adapter */
1957 dfx_int_common(dev);
1959 spin_unlock(&bp->lock);
1967 * =====================
1968 * = dfx_ctl_get_stats =
1969 * =====================
1972 * Get statistics for FDDI adapter
1975 * Pointer to FDDI statistics structure
1978 * dev - pointer to device information
1980 * Functional Description:
1981 * Gets current MIB objects from adapter, then
1982 * returns FDDI statistics structure as defined
1985 * Note: Since the FDDI statistics structure is
1986 * still new and the device structure doesn't
1987 * have an FDDI-specific get statistics handler,
1988 * we'll return the FDDI statistics structure as
1989 * a pointer to an Ethernet statistics structure.
1990 * That way, at least the first part of the statistics
1991 * structure can be decoded properly, and it allows
1992 * "smart" applications to perform a second cast to
1993 * decode the FDDI-specific statistics.
1995 * We'll have to pay attention to this routine as the
1996 * device structure becomes more mature and LAN media
2009 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2011 DFX_board_t *bp = netdev_priv(dev);
2013 /* Fill the bp->stats structure with driver-maintained counters */
2015 bp->stats.gen.rx_packets = bp->rcv_total_frames;
2016 bp->stats.gen.tx_packets = bp->xmt_total_frames;
2017 bp->stats.gen.rx_bytes = bp->rcv_total_bytes;
2018 bp->stats.gen.tx_bytes = bp->xmt_total_bytes;
2019 bp->stats.gen.rx_errors = bp->rcv_crc_errors +
2020 bp->rcv_frame_status_errors +
2021 bp->rcv_length_errors;
2022 bp->stats.gen.tx_errors = bp->xmt_length_errors;
2023 bp->stats.gen.rx_dropped = bp->rcv_discards;
2024 bp->stats.gen.tx_dropped = bp->xmt_discards;
2025 bp->stats.gen.multicast = bp->rcv_multicast_frames;
2026 bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */
2028 /* Get FDDI SMT MIB objects */
2030 bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2031 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2032 return((struct net_device_stats *) &bp->stats);
2034 /* Fill the bp->stats structure with the SMT MIB object values */
2036 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2037 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2038 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2039 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2040 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2041 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2042 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2043 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2044 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2045 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2046 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2047 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2048 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2049 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2050 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2051 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2052 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2053 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2054 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2055 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2056 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2057 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2058 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2059 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2060 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2061 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2062 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2063 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2064 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2065 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2066 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2067 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2068 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2069 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2070 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2071 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2072 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2073 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2074 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2075 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2076 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2077 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2078 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2079 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2080 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2081 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2082 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2083 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2084 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2085 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2086 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2087 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2088 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2089 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2090 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2091 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2092 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2093 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2094 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2095 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2096 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2097 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2098 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2099 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2100 memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2101 memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2102 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2103 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2104 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2105 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2106 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2107 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2108 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2109 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2110 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2111 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2112 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2113 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2114 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2115 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2116 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2117 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2118 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2119 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2120 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2121 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2122 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2123 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2124 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2125 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2126 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2127 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2129 /* Get FDDI counters */
2131 bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2132 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2133 return((struct net_device_stats *) &bp->stats);
2135 /* Fill the bp->stats structure with the FDDI counter values */
2137 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2138 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2139 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2140 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2141 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2142 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2143 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2144 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2145 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2146 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2147 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2149 return((struct net_device_stats *) &bp->stats);
2154 * ==============================
2155 * = dfx_ctl_set_multicast_list =
2156 * ==============================
2159 * Enable/Disable LLC frame promiscuous mode reception
2160 * on the adapter and/or update multicast address table.
2166 * dev - pointer to device information
2168 * Functional Description:
2169 * This routine follows a fairly simple algorithm for setting the
2170 * adapter filters and CAM:
2172 * if IFF_PROMISC flag is set
2173 * enable LLC individual/group promiscuous mode
2175 * disable LLC individual/group promiscuous mode
2176 * if number of incoming multicast addresses >
2177 * (CAM max size - number of unicast addresses in CAM)
2178 * enable LLC group promiscuous mode
2179 * set driver-maintained multicast address count to zero
2181 * disable LLC group promiscuous mode
2182 * set driver-maintained multicast address count to incoming count
2183 * update adapter CAM
2184 * update adapter filters
2190 * Multicast addresses are presented in canonical (LSB) format.
2193 * On-board adapter CAM and filters are updated.
2196 static void dfx_ctl_set_multicast_list(struct net_device *dev)
2198 DFX_board_t *bp = netdev_priv(dev);
2199 int i; /* used as index in for loop */
2200 struct dev_mc_list *dmi; /* ptr to multicast addr entry */
2202 /* Enable LLC frame promiscuous mode, if necessary */
2204 if (dev->flags & IFF_PROMISC)
2205 bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */
2207 /* Else, update multicast address table */
2211 bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */
2213 * Check whether incoming multicast address count exceeds table size
2215 * Note: The adapters utilize an on-board 64 entry CAM for
2216 * supporting perfect filtering of multicast packets
2217 * and bridge functions when adding unicast addresses.
2218 * There is no hash function available. To support
2219 * additional multicast addresses, the all multicast
2220 * filter (LLC group promiscuous mode) must be enabled.
2222 * The firmware reserves two CAM entries for SMT-related
2223 * multicast addresses, which leaves 62 entries available.
2224 * The following code ensures that we're not being asked
2225 * to add more than 62 addresses to the CAM. If we are,
2226 * the driver will enable the all multicast filter.
2227 * Should the number of multicast addresses drop below
2228 * the high water mark, the filter will be disabled and
2229 * perfect filtering will be used.
2232 if (dev->mc_count > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2234 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2235 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2239 bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */
2240 bp->mc_count = dev->mc_count; /* Add mc addrs to CAM */
2243 /* Copy addresses to multicast address table, then update adapter CAM */
2245 dmi = dev->mc_list; /* point to first multicast addr */
2246 for (i=0; i < bp->mc_count; i++)
2248 memcpy(&bp->mc_table[i*FDDI_K_ALEN], dmi->dmi_addr, FDDI_K_ALEN);
2249 dmi = dmi->next; /* point to next multicast addr */
2251 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2253 DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2257 DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count);
2261 /* Update adapter filters */
2263 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2265 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2269 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2275 * ===========================
2276 * = dfx_ctl_set_mac_address =
2277 * ===========================
2280 * Add node address override (unicast address) to adapter
2281 * CAM and update dev_addr field in device table.
2287 * dev - pointer to device information
2288 * addr - pointer to sockaddr structure containing unicast address to add
2290 * Functional Description:
2291 * The adapter supports node address overrides by adding one or more
2292 * unicast addresses to the adapter CAM. This is similar to adding
2293 * multicast addresses. In this routine we'll update the driver and
2294 * device structures with the new address, then update the adapter CAM
2295 * to ensure that the adapter will copy and strip frames destined and
2296 * sourced by that address.
2299 * Always returns zero.
2302 * The address pointed to by addr->sa_data is a valid unicast
2303 * address and is presented in canonical (LSB) format.
2306 * On-board adapter CAM is updated. On-board adapter filters
2310 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2312 struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
2313 DFX_board_t *bp = netdev_priv(dev);
2315 /* Copy unicast address to driver-maintained structs and update count */
2317 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */
2318 memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */
2322 * Verify we're not exceeding the CAM size by adding unicast address
2324 * Note: It's possible that before entering this routine we've
2325 * already filled the CAM with 62 multicast addresses.
2326 * Since we need to place the node address override into
2327 * the CAM, we have to check to see that we're not
2328 * exceeding the CAM size. If we are, we have to enable
2329 * the LLC group (multicast) promiscuous mode filter as
2330 * in dfx_ctl_set_multicast_list.
2333 if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2335 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2336 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2338 /* Update adapter filters */
2340 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2342 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2346 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2350 /* Update adapter CAM with new unicast address */
2352 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2354 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2358 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2360 return(0); /* always return zero */
2365 * ======================
2366 * = dfx_ctl_update_cam =
2367 * ======================
2370 * Procedure to update adapter CAM (Content Addressable Memory)
2371 * with desired unicast and multicast address entries.
2377 * bp - pointer to board information
2379 * Functional Description:
2380 * Updates adapter CAM with current contents of board structure
2381 * unicast and multicast address tables. Since there are only 62
2382 * free entries in CAM, this routine ensures that the command
2383 * request buffer is not overrun.
2386 * DFX_K_SUCCESS - Request succeeded
2387 * DFX_K_FAILURE - Request failed
2390 * All addresses being added (unicast and multicast) are in canonical
2394 * On-board adapter CAM is updated.
2397 static int dfx_ctl_update_cam(DFX_board_t *bp)
2399 int i; /* used as index */
2400 PI_LAN_ADDR *p_addr; /* pointer to CAM entry */
2403 * Fill in command request information
2405 * Note: Even though both the unicast and multicast address
2406 * table entries are stored as contiguous 6 byte entries,
2407 * the firmware address filter set command expects each
2408 * entry to be two longwords (8 bytes total). We must be
2409 * careful to only copy the six bytes of each unicast and
2410 * multicast table entry into each command entry. This
2411 * is also why we must first clear the entire command
2415 memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */
2416 bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2417 p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2419 /* Now add unicast addresses to command request buffer, if any */
2421 for (i=0; i < (int)bp->uc_count; i++)
2423 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2425 memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2426 p_addr++; /* point to next command entry */
2430 /* Now add multicast addresses to command request buffer, if any */
2432 for (i=0; i < (int)bp->mc_count; i++)
2434 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2436 memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2437 p_addr++; /* point to next command entry */
2441 /* Issue command to update adapter CAM, then return */
2443 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2444 return(DFX_K_FAILURE);
2445 return(DFX_K_SUCCESS);
2450 * ==========================
2451 * = dfx_ctl_update_filters =
2452 * ==========================
2455 * Procedure to update adapter filters with desired
2462 * bp - pointer to board information
2464 * Functional Description:
2465 * Enables or disables filter using current filter settings.
2468 * DFX_K_SUCCESS - Request succeeded.
2469 * DFX_K_FAILURE - Request failed.
2472 * We must always pass up packets destined to the broadcast
2473 * address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2474 * broadcast filter enabled.
2477 * On-board adapter filters are updated.
2480 static int dfx_ctl_update_filters(DFX_board_t *bp)
2482 int i = 0; /* used as index */
2484 /* Fill in command request information */
2486 bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2488 /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2490 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST;
2491 bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS;
2493 /* Initialize LLC Individual/Group Promiscuous filter */
2495 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM;
2496 bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom;
2498 /* Initialize LLC Group Promiscuous filter */
2500 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM;
2501 bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom;
2503 /* Terminate the item code list */
2505 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL;
2507 /* Issue command to update adapter filters, then return */
2509 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2510 return(DFX_K_FAILURE);
2511 return(DFX_K_SUCCESS);
2516 * ======================
2517 * = dfx_hw_dma_cmd_req =
2518 * ======================
2521 * Sends PDQ DMA command to adapter firmware
2527 * bp - pointer to board information
2529 * Functional Description:
2530 * The command request and response buffers are posted to the adapter in the manner
2531 * described in the PDQ Port Specification:
2533 * 1. Command Response Buffer is posted to adapter.
2534 * 2. Command Request Buffer is posted to adapter.
2535 * 3. Command Request consumer index is polled until it indicates that request
2536 * buffer has been DMA'd to adapter.
2537 * 4. Command Response consumer index is polled until it indicates that response
2538 * buffer has been DMA'd from adapter.
2540 * This ordering ensures that a response buffer is already available for the firmware
2541 * to use once it's done processing the request buffer.
2544 * DFX_K_SUCCESS - DMA command succeeded
2545 * DFX_K_OUTSTATE - Adapter is NOT in proper state
2546 * DFX_K_HW_TIMEOUT - DMA command timed out
2549 * Command request buffer has already been filled with desired DMA command.
2555 static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2557 int status; /* adapter status */
2558 int timeout_cnt; /* used in for loops */
2560 /* Make sure the adapter is in a state that we can issue the DMA command in */
2562 status = dfx_hw_adap_state_rd(bp);
2563 if ((status == PI_STATE_K_RESET) ||
2564 (status == PI_STATE_K_HALTED) ||
2565 (status == PI_STATE_K_DMA_UNAVAIL) ||
2566 (status == PI_STATE_K_UPGRADE))
2567 return(DFX_K_OUTSTATE);
2569 /* Put response buffer on the command response queue */
2571 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2572 ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2573 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2575 /* Bump (and wrap) the producer index and write out to register */
2577 bp->cmd_rsp_reg.index.prod += 1;
2578 bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2579 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2581 /* Put request buffer on the command request queue */
2583 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2584 PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2585 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2587 /* Bump (and wrap) the producer index and write out to register */
2589 bp->cmd_req_reg.index.prod += 1;
2590 bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2591 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2594 * Here we wait for the command request consumer index to be equal
2595 * to the producer, indicating that the adapter has DMAed the request.
2598 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2600 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2602 udelay(100); /* wait for 100 microseconds */
2604 if (timeout_cnt == 0)
2605 return(DFX_K_HW_TIMEOUT);
2607 /* Bump (and wrap) the completion index and write out to register */
2609 bp->cmd_req_reg.index.comp += 1;
2610 bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2611 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2614 * Here we wait for the command response consumer index to be equal
2615 * to the producer, indicating that the adapter has DMAed the response.
2618 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2620 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2622 udelay(100); /* wait for 100 microseconds */
2624 if (timeout_cnt == 0)
2625 return(DFX_K_HW_TIMEOUT);
2627 /* Bump (and wrap) the completion index and write out to register */
2629 bp->cmd_rsp_reg.index.comp += 1;
2630 bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2631 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2632 return(DFX_K_SUCCESS);
2637 * ========================
2638 * = dfx_hw_port_ctrl_req =
2639 * ========================
2642 * Sends PDQ port control command to adapter firmware
2645 * Host data register value in host_data if ptr is not NULL
2648 * bp - pointer to board information
2649 * command - port control command
2650 * data_a - port data A register value
2651 * data_b - port data B register value
2652 * host_data - ptr to host data register value
2654 * Functional Description:
2655 * Send generic port control command to adapter by writing
2656 * to various PDQ port registers, then polling for completion.
2659 * DFX_K_SUCCESS - port control command succeeded
2660 * DFX_K_HW_TIMEOUT - port control command timed out
2669 static int dfx_hw_port_ctrl_req(
2674 PI_UINT32 *host_data
2678 PI_UINT32 port_cmd; /* Port Control command register value */
2679 int timeout_cnt; /* used in for loops */
2681 /* Set Command Error bit in command longword */
2683 port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2685 /* Issue port command to the adapter */
2687 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2688 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2689 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2691 /* Now wait for command to complete */
2693 if (command == PI_PCTRL_M_BLAST_FLASH)
2694 timeout_cnt = 600000; /* set command timeout count to 60 seconds */
2696 timeout_cnt = 20000; /* set command timeout count to 2 seconds */
2698 for (; timeout_cnt > 0; timeout_cnt--)
2700 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2701 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2703 udelay(100); /* wait for 100 microseconds */
2705 if (timeout_cnt == 0)
2706 return(DFX_K_HW_TIMEOUT);
2709 * If the address of host_data is non-zero, assume caller has supplied a
2710 * non NULL pointer, and return the contents of the HOST_DATA register in
2714 if (host_data != NULL)
2715 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2716 return(DFX_K_SUCCESS);
2721 * =====================
2722 * = dfx_hw_adap_reset =
2723 * =====================
2732 * bp - pointer to board information
2733 * type - type of reset to perform
2735 * Functional Description:
2736 * Issue soft reset to adapter by writing to PDQ Port Reset
2737 * register. Use incoming reset type to tell adapter what
2738 * kind of reset operation to perform.
2744 * This routine merely issues a soft reset to the adapter.
2745 * It is expected that after this routine returns, the caller
2746 * will appropriately poll the Port Status register for the
2747 * adapter to enter the proper state.
2750 * Internal adapter registers are cleared.
2753 static void dfx_hw_adap_reset(
2759 /* Set Reset type and assert reset */
2761 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */
2762 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2764 /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2768 /* Deassert reset */
2770 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2775 * ========================
2776 * = dfx_hw_adap_state_rd =
2777 * ========================
2780 * Returns current adapter state
2783 * Adapter state per PDQ Port Specification
2786 * bp - pointer to board information
2788 * Functional Description:
2789 * Reads PDQ Port Status register and returns adapter state.
2801 static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2803 PI_UINT32 port_status; /* Port Status register value */
2805 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2806 return((port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE);
2811 * =====================
2812 * = dfx_hw_dma_uninit =
2813 * =====================
2816 * Brings adapter to DMA_UNAVAILABLE state
2822 * bp - pointer to board information
2823 * type - type of reset to perform
2825 * Functional Description:
2826 * Bring adapter to DMA_UNAVAILABLE state by performing the following:
2827 * 1. Set reset type bit in Port Data A Register then reset adapter.
2828 * 2. Check that adapter is in DMA_UNAVAILABLE state.
2831 * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state
2832 * DFX_K_HW_TIMEOUT - adapter did not reset properly
2838 * Internal adapter registers are cleared.
2841 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2843 int timeout_cnt; /* used in for loops */
2845 /* Set reset type bit and reset adapter */
2847 dfx_hw_adap_reset(bp, type);
2849 /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2851 for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2853 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2855 udelay(100); /* wait for 100 microseconds */
2857 if (timeout_cnt == 0)
2858 return(DFX_K_HW_TIMEOUT);
2859 return(DFX_K_SUCCESS);
2863 * Align an sk_buff to a boundary power of 2
2867 static void my_skb_align(struct sk_buff *skb, int n)
2869 unsigned long x = (unsigned long)skb->data;
2872 v = ALIGN(x, n); /* Where we want to be */
2874 skb_reserve(skb, v - x);
2884 * Produces buffers to adapter LLC Host receive descriptor block
2890 * bp - pointer to board information
2891 * get_buffers - non-zero if buffers to be allocated
2893 * Functional Description:
2894 * This routine can be called during dfx_adap_init() or during an adapter
2895 * reset. It initializes the descriptor block and produces all allocated
2896 * LLC Host queue receive buffers.
2899 * Return 0 on success or -ENOMEM if buffer allocation failed (when using
2900 * dynamic buffer allocation). If the buffer allocation failed, the
2901 * already allocated buffers will not be released and the caller should do
2905 * The PDQ has been reset and the adapter and driver maintained Type 2
2906 * register indices are cleared.
2909 * Receive buffers are posted to the adapter LLC queue and the adapter
2913 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2915 int i, j; /* used in for loop */
2918 * Since each receive buffer is a single fragment of same length, initialize
2919 * first longword in each receive descriptor for entire LLC Host descriptor
2920 * block. Also initialize second longword in each receive descriptor with
2921 * physical address of receive buffer. We'll always allocate receive
2922 * buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2923 * block and produce new receive buffers by simply updating the receive
2927 * To support all shipping versions of PDQ, the receive buffer size
2928 * must be mod 128 in length and the physical address must be 128 byte
2929 * aligned. In other words, bits 0-6 of the length and address must
2930 * be zero for the following descriptor field entries to be correct on
2931 * all PDQ-based boards. We guaranteed both requirements during
2932 * driver initialization when we allocated memory for the receive buffers.
2936 #ifdef DYNAMIC_BUFFERS
2937 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2938 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2940 struct sk_buff *newskb = __dev_alloc_skb(NEW_SKB_SIZE, GFP_NOIO);
2943 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2944 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2946 * align to 128 bytes for compatibility with
2947 * the old EISA boards.
2950 my_skb_align(newskb, 128);
2951 bp->descr_block_virt->rcv_data[i + j].long_1 =
2952 (u32)dma_map_single(bp->bus_dev, newskb->data,
2956 * p_rcv_buff_va is only used inside the
2957 * kernel so we put the skb pointer here.
2959 bp->p_rcv_buff_va[i+j] = (char *) newskb;
2962 for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2963 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2965 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2966 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2967 bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
2968 bp->p_rcv_buff_va[i+j] = (char *) (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
2973 /* Update receive producer and Type 2 register */
2975 bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2976 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2982 * =========================
2983 * = dfx_rcv_queue_process =
2984 * =========================
2987 * Process received LLC frames.
2993 * bp - pointer to board information
2995 * Functional Description:
2996 * Received LLC frames are processed until there are no more consumed frames.
2997 * Once all frames are processed, the receive buffers are returned to the
2998 * adapter. Note that this algorithm fixes the length of time that can be spent
2999 * in this routine, because there are a fixed number of receive buffers to
3000 * process and buffers are not produced until this routine exits and returns
3013 static void dfx_rcv_queue_process(
3018 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3019 char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */
3020 u32 descr, pkt_len; /* FMC descriptor field and packet length */
3021 struct sk_buff *skb; /* pointer to a sk_buff to hold incoming packet data */
3023 /* Service all consumed LLC receive frames */
3025 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3026 while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3028 /* Process any errors */
3032 entry = bp->rcv_xmt_reg.index.rcv_comp;
3033 #ifdef DYNAMIC_BUFFERS
3034 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3036 p_buff = (char *) bp->p_rcv_buff_va[entry];
3038 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3040 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3042 if (descr & PI_FMC_DESCR_M_RCC_CRC)
3043 bp->rcv_crc_errors++;
3045 bp->rcv_frame_status_errors++;
3049 int rx_in_place = 0;
3051 /* The frame was received without errors - verify packet length */
3053 pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3054 pkt_len -= 4; /* subtract 4 byte CRC */
3055 if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3056 bp->rcv_length_errors++;
3058 #ifdef DYNAMIC_BUFFERS
3059 if (pkt_len > SKBUFF_RX_COPYBREAK) {
3060 struct sk_buff *newskb;
3062 newskb = dev_alloc_skb(NEW_SKB_SIZE);
3066 my_skb_align(newskb, 128);
3067 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3068 dma_unmap_single(bp->bus_dev,
3069 bp->descr_block_virt->rcv_data[entry].long_1,
3072 skb_reserve(skb, RCV_BUFF_K_PADDING);
3073 bp->p_rcv_buff_va[entry] = (char *)newskb;
3074 bp->descr_block_virt->rcv_data[entry].long_1 =
3075 (u32)dma_map_single(bp->bus_dev,
3083 skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */
3086 printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name);
3091 #ifndef DYNAMIC_BUFFERS
3095 /* Receive buffer allocated, pass receive packet up */
3097 skb_copy_to_linear_data(skb,
3098 p_buff + RCV_BUFF_K_PADDING,
3102 skb_reserve(skb,3); /* adjust data field so that it points to FC byte */
3103 skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */
3104 skb->protocol = fddi_type_trans(skb, bp->dev);
3105 bp->rcv_total_bytes += skb->len;
3108 /* Update the rcv counters */
3109 bp->rcv_total_frames++;
3110 if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3111 bp->rcv_multicast_frames++;
3117 * Advance the producer (for recycling) and advance the completion
3118 * (for servicing received frames). Note that it is okay to
3119 * advance the producer without checking that it passes the
3120 * completion index because they are both advanced at the same
3124 bp->rcv_xmt_reg.index.rcv_prod += 1;
3125 bp->rcv_xmt_reg.index.rcv_comp += 1;
3131 * =====================
3132 * = dfx_xmt_queue_pkt =
3133 * =====================
3136 * Queues packets for transmission
3142 * skb - pointer to sk_buff to queue for transmission
3143 * dev - pointer to device information
3145 * Functional Description:
3146 * Here we assume that an incoming skb transmit request
3147 * is contained in a single physically contiguous buffer
3148 * in which the virtual address of the start of packet
3149 * (skb->data) can be converted to a physical address
3150 * by using pci_map_single().
3152 * Since the adapter architecture requires a three byte
3153 * packet request header to prepend the start of packet,
3154 * we'll write the three byte field immediately prior to
3155 * the FC byte. This assumption is valid because we've
3156 * ensured that dev->hard_header_len includes three pad
3157 * bytes. By posting a single fragment to the adapter,
3158 * we'll reduce the number of descriptor fetches and
3159 * bus traffic needed to send the request.
3161 * Also, we can't free the skb until after it's been DMA'd
3162 * out by the adapter, so we'll queue it in the driver and
3163 * return it in dfx_xmt_done.
3166 * 0 - driver queued packet, link is unavailable, or skbuff was bad
3167 * 1 - caller should requeue the sk_buff for later transmission
3170 * First and foremost, we assume the incoming skb pointer
3171 * is NOT NULL and is pointing to a valid sk_buff structure.
3173 * The outgoing packet is complete, starting with the
3174 * frame control byte including the last byte of data,
3175 * but NOT including the 4 byte CRC. We'll let the
3176 * adapter hardware generate and append the CRC.
3178 * The entire packet is stored in one physically
3179 * contiguous buffer which is not cached and whose
3180 * 32-bit physical address can be determined.
3182 * It's vital that this routine is NOT reentered for the
3183 * same board and that the OS is not in another section of
3184 * code (eg. dfx_int_common) for the same board on a
3191 static int dfx_xmt_queue_pkt(
3192 struct sk_buff *skb,
3193 struct net_device *dev
3197 DFX_board_t *bp = netdev_priv(dev);
3198 u8 prod; /* local transmit producer index */
3199 PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */
3200 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3201 unsigned long flags;
3203 netif_stop_queue(dev);
3206 * Verify that incoming transmit request is OK
3208 * Note: The packet size check is consistent with other
3209 * Linux device drivers, although the correct packet
3210 * size should be verified before calling the
3214 if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3216 printk("%s: Invalid packet length - %u bytes\n",
3217 dev->name, skb->len);
3218 bp->xmt_length_errors++; /* bump error counter */
3219 netif_wake_queue(dev);
3221 return(0); /* return "success" */
3224 * See if adapter link is available, if not, free buffer
3226 * Note: If the link isn't available, free buffer and return 0
3227 * rather than tell the upper layer to requeue the packet.
3228 * The methodology here is that by the time the link
3229 * becomes available, the packet to be sent will be
3230 * fairly stale. By simply dropping the packet, the
3231 * higher layer protocols will eventually time out
3232 * waiting for response packets which it won't receive.
3235 if (bp->link_available == PI_K_FALSE)
3237 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */
3238 bp->link_available = PI_K_TRUE; /* if so, set flag and continue */
3241 bp->xmt_discards++; /* bump error counter */
3242 dev_kfree_skb(skb); /* free sk_buff now */
3243 netif_wake_queue(dev);
3244 return(0); /* return "success" */
3248 spin_lock_irqsave(&bp->lock, flags);
3250 /* Get the current producer and the next free xmt data descriptor */
3252 prod = bp->rcv_xmt_reg.index.xmt_prod;
3253 p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3256 * Get pointer to auxiliary queue entry to contain information
3259 * Note: The current xmt producer index will become the
3260 * current xmt completion index when we complete this
3261 * packet later on. So, we'll get the pointer to the
3262 * next auxiliary queue entry now before we bump the
3266 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */
3268 /* Write the three PRH bytes immediately before the FC byte */
3271 skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */
3272 skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */
3273 skb->data[2] = DFX_PRH2_BYTE; /* specification */
3276 * Write the descriptor with buffer info and bump producer
3278 * Note: Since we need to start DMA from the packet request
3279 * header, we'll add 3 bytes to the DMA buffer length,
3280 * and we'll determine the physical address of the
3281 * buffer from the PRH, not skb->data.
3284 * 1. Packet starts with the frame control (FC) byte
3286 * 2. The 4-byte CRC is not appended to the buffer or
3287 * included in the length.
3288 * 3. Packet length (skb->len) is from FC to end of
3290 * 4. The packet length does not exceed the maximum
3291 * FDDI LLC frame length of 4491 bytes.
3292 * 5. The entire packet is contained in a physically
3293 * contiguous, non-cached, locked memory space
3294 * comprised of a single buffer pointed to by
3296 * 6. The physical address of the start of packet
3297 * can be determined from the virtual address
3298 * by using pci_map_single() and is only 32-bits
3302 p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3303 p_xmt_descr->long_1 = (u32)dma_map_single(bp->bus_dev, skb->data,
3304 skb->len, DMA_TO_DEVICE);
3307 * Verify that descriptor is actually available
3309 * Note: If descriptor isn't available, return 1 which tells
3310 * the upper layer to requeue the packet for later
3313 * We need to ensure that the producer never reaches the
3314 * completion, except to indicate that the queue is empty.
3317 if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3320 spin_unlock_irqrestore(&bp->lock, flags);
3321 return(1); /* requeue packet for later */
3325 * Save info for this packet for xmt done indication routine
3327 * Normally, we'd save the producer index in the p_xmt_drv_descr
3328 * structure so that we'd have it handy when we complete this
3329 * packet later (in dfx_xmt_done). However, since the current
3330 * transmit architecture guarantees a single fragment for the
3331 * entire packet, we can simply bump the completion index by
3332 * one (1) for each completed packet.
3334 * Note: If this assumption changes and we're presented with
3335 * an inconsistent number of transmit fragments for packet
3336 * data, we'll need to modify this code to save the current
3337 * transmit producer index.
3340 p_xmt_drv_descr->p_skb = skb;
3342 /* Update Type 2 register */
3344 bp->rcv_xmt_reg.index.xmt_prod = prod;
3345 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3346 spin_unlock_irqrestore(&bp->lock, flags);
3347 netif_wake_queue(dev);
3348 return(0); /* packet queued to adapter */
3358 * Processes all frames that have been transmitted.
3364 * bp - pointer to board information
3366 * Functional Description:
3367 * For all consumed transmit descriptors that have not
3368 * yet been completed, we'll free the skb we were holding
3369 * onto using dev_kfree_skb and bump the appropriate
3376 * The Type 2 register is not updated in this routine. It is
3377 * assumed that it will be updated in the ISR when dfx_xmt_done
3384 static int dfx_xmt_done(DFX_board_t *bp)
3386 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3387 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3388 u8 comp; /* local transmit completion index */
3389 int freed = 0; /* buffers freed */
3391 /* Service all consumed transmit frames */
3393 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3394 while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3396 /* Get pointer to the transmit driver descriptor block information */
3398 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3400 /* Increment transmit counters */
3402 bp->xmt_total_frames++;
3403 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3405 /* Return skb to operating system */
3406 comp = bp->rcv_xmt_reg.index.xmt_comp;
3407 dma_unmap_single(bp->bus_dev,
3408 bp->descr_block_virt->xmt_data[comp].long_1,
3409 p_xmt_drv_descr->p_skb->len,
3411 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3414 * Move to start of next packet by updating completion index
3416 * Here we assume that a transmit packet request is always
3417 * serviced by posting one fragment. We can therefore
3418 * simplify the completion code by incrementing the
3419 * completion index by one. This code will need to be
3420 * modified if this assumption changes. See comments
3421 * in dfx_xmt_queue_pkt for more details.
3424 bp->rcv_xmt_reg.index.xmt_comp += 1;
3437 * Remove all skb's in the receive ring.
3443 * bp - pointer to board information
3445 * Functional Description:
3446 * Free's all the dynamically allocated skb's that are
3447 * currently attached to the device receive ring. This
3448 * function is typically only used when the device is
3449 * initialized or reinitialized.
3457 #ifdef DYNAMIC_BUFFERS
3458 static void dfx_rcv_flush( DFX_board_t *bp )
3462 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3463 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3465 struct sk_buff *skb;
3466 skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3469 bp->p_rcv_buff_va[i+j] = NULL;
3474 static inline void dfx_rcv_flush( DFX_board_t *bp )
3477 #endif /* DYNAMIC_BUFFERS */
3485 * Processes all frames whether they've been transmitted
3492 * bp - pointer to board information
3494 * Functional Description:
3495 * For all produced transmit descriptors that have not
3496 * yet been completed, we'll free the skb we were holding
3497 * onto using dev_kfree_skb and bump the appropriate
3498 * counters. Of course, it's possible that some of
3499 * these transmit requests actually did go out, but we
3500 * won't make that distinction here. Finally, we'll
3501 * update the consumer index to match the producer.
3507 * This routine does NOT update the Type 2 register. It
3508 * is assumed that this routine is being called during a
3509 * transmit flush interrupt, or a shutdown or close routine.
3515 static void dfx_xmt_flush( DFX_board_t *bp )
3517 u32 prod_cons; /* rcv/xmt consumer block longword */
3518 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3519 u8 comp; /* local transmit completion index */
3521 /* Flush all outstanding transmit frames */
3523 while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3525 /* Get pointer to the transmit driver descriptor block information */
3527 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3529 /* Return skb to operating system */
3530 comp = bp->rcv_xmt_reg.index.xmt_comp;
3531 dma_unmap_single(bp->bus_dev,
3532 bp->descr_block_virt->xmt_data[comp].long_1,
3533 p_xmt_drv_descr->p_skb->len,
3535 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3537 /* Increment transmit error counter */
3542 * Move to start of next packet by updating completion index
3544 * Here we assume that a transmit packet request is always
3545 * serviced by posting one fragment. We can therefore
3546 * simplify the completion code by incrementing the
3547 * completion index by one. This code will need to be
3548 * modified if this assumption changes. See comments
3549 * in dfx_xmt_queue_pkt for more details.
3552 bp->rcv_xmt_reg.index.xmt_comp += 1;
3555 /* Update the transmit consumer index in the consumer block */
3557 prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3558 prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3559 bp->cons_block_virt->xmt_rcv_data = prod_cons;
3563 * ==================
3564 * = dfx_unregister =
3565 * ==================
3568 * Shuts down an FDDI controller
3574 * bdev - pointer to device information
3576 * Functional Description:
3582 * It compiles so it should work :-( (PCI cards do :-)
3585 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
3588 static void __devexit dfx_unregister(struct device *bdev)
3590 struct net_device *dev = dev_get_drvdata(bdev);
3591 DFX_board_t *bp = netdev_priv(dev);
3592 int dfx_bus_pci = DFX_BUS_PCI(bdev);
3593 int dfx_bus_tc = DFX_BUS_TC(bdev);
3594 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3595 resource_size_t bar_start = 0; /* pointer to port */
3596 resource_size_t bar_len = 0; /* resource length */
3597 int alloc_size; /* total buffer size used */
3599 unregister_netdev(dev);
3601 alloc_size = sizeof(PI_DESCR_BLOCK) +
3602 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3603 #ifndef DYNAMIC_BUFFERS
3604 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3606 sizeof(PI_CONSUMER_BLOCK) +
3607 (PI_ALIGN_K_DESC_BLK - 1);
3609 dma_free_coherent(bdev, alloc_size,
3610 bp->kmalloced, bp->kmalloced_dma);
3612 dfx_bus_uninit(dev);
3614 dfx_get_bars(bdev, &bar_start, &bar_len);
3616 iounmap(bp->base.mem);
3617 release_mem_region(bar_start, bar_len);
3619 release_region(bar_start, bar_len);
3622 pci_disable_device(to_pci_dev(bdev));
3628 static int __devinit __maybe_unused dfx_dev_register(struct device *);
3629 static int __devexit __maybe_unused dfx_dev_unregister(struct device *);
3632 static int __devinit dfx_pci_register(struct pci_dev *,
3633 const struct pci_device_id *);
3634 static void __devexit dfx_pci_unregister(struct pci_dev *);
3636 static struct pci_device_id dfx_pci_table[] = {
3637 { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3640 MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3642 static struct pci_driver dfx_pci_driver = {
3644 .id_table = dfx_pci_table,
3645 .probe = dfx_pci_register,
3646 .remove = __devexit_p(dfx_pci_unregister),
3649 static __devinit int dfx_pci_register(struct pci_dev *pdev,
3650 const struct pci_device_id *ent)
3652 return dfx_register(&pdev->dev);
3655 static void __devexit dfx_pci_unregister(struct pci_dev *pdev)
3657 dfx_unregister(&pdev->dev);
3659 #endif /* CONFIG_PCI */
3662 static struct eisa_device_id dfx_eisa_table[] = {
3663 { "DEC3001", DEFEA_PROD_ID_1 },
3664 { "DEC3002", DEFEA_PROD_ID_2 },
3665 { "DEC3003", DEFEA_PROD_ID_3 },
3666 { "DEC3004", DEFEA_PROD_ID_4 },
3669 MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3671 static struct eisa_driver dfx_eisa_driver = {
3672 .id_table = dfx_eisa_table,
3675 .bus = &eisa_bus_type,
3676 .probe = dfx_dev_register,
3677 .remove = __devexit_p(dfx_dev_unregister),
3680 #endif /* CONFIG_EISA */
3683 static struct tc_device_id const dfx_tc_table[] = {
3684 { "DEC ", "PMAF-FA " },
3685 { "DEC ", "PMAF-FD " },
3686 { "DEC ", "PMAF-FS " },
3687 { "DEC ", "PMAF-FU " },
3690 MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3692 static struct tc_driver dfx_tc_driver = {
3693 .id_table = dfx_tc_table,
3696 .bus = &tc_bus_type,
3697 .probe = dfx_dev_register,
3698 .remove = __devexit_p(dfx_dev_unregister),
3701 #endif /* CONFIG_TC */
3703 static int __devinit __maybe_unused dfx_dev_register(struct device *dev)
3707 status = dfx_register(dev);
3713 static int __devexit __maybe_unused dfx_dev_unregister(struct device *dev)
3716 dfx_unregister(dev);
3721 static int __devinit dfx_init(void)
3725 status = pci_register_driver(&dfx_pci_driver);
3727 status = eisa_driver_register(&dfx_eisa_driver);
3729 status = tc_register_driver(&dfx_tc_driver);
3733 static void __devexit dfx_cleanup(void)
3735 tc_unregister_driver(&dfx_tc_driver);
3736 eisa_driver_unregister(&dfx_eisa_driver);
3737 pci_unregister_driver(&dfx_pci_driver);
3740 module_init(dfx_init);
3741 module_exit(dfx_cleanup);
3742 MODULE_AUTHOR("Lawrence V. Stefani");
3743 MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3744 DRV_VERSION " " DRV_RELDATE);
3745 MODULE_LICENSE("GPL");
3750 * kernel-compile-command: "gcc -D__KERNEL__ -I/root/linux/include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -c defxx.c"