ath9k: Protect config() callback with a mutex
[linux-2.6] / drivers / net / wireless / ath9k / main.c
1 /*
2  * Copyright (c) 2008 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "core.h"
19 #include "reg.h"
20 #include "hw.h"
21
22 #define ATH_PCI_VERSION "0.1"
23
24 static char *dev_info = "ath9k";
25
26 MODULE_AUTHOR("Atheros Communications");
27 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
28 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
29 MODULE_LICENSE("Dual BSD/GPL");
30
31 static struct pci_device_id ath_pci_id_table[] __devinitdata = {
32         { PCI_VDEVICE(ATHEROS, 0x0023) }, /* PCI   */
33         { PCI_VDEVICE(ATHEROS, 0x0024) }, /* PCI-E */
34         { PCI_VDEVICE(ATHEROS, 0x0027) }, /* PCI   */
35         { PCI_VDEVICE(ATHEROS, 0x0029) }, /* PCI   */
36         { PCI_VDEVICE(ATHEROS, 0x002A) }, /* PCI-E */
37         { PCI_VDEVICE(ATHEROS, 0x002B) }, /* PCI-E */
38         { 0 }
39 };
40
41 static void ath_detach(struct ath_softc *sc);
42
43 /* return bus cachesize in 4B word units */
44
45 static void bus_read_cachesize(struct ath_softc *sc, int *csz)
46 {
47         u8 u8tmp;
48
49         pci_read_config_byte(sc->pdev, PCI_CACHE_LINE_SIZE, (u8 *)&u8tmp);
50         *csz = (int)u8tmp;
51
52         /*
53          * This check was put in to avoid "unplesant" consequences if
54          * the bootrom has not fully initialized all PCI devices.
55          * Sometimes the cache line size register is not set
56          */
57
58         if (*csz == 0)
59                 *csz = DEFAULT_CACHELINE >> 2;   /* Use the default size */
60 }
61
62 static void ath_setcurmode(struct ath_softc *sc, enum wireless_mode mode)
63 {
64         sc->cur_rate_table = sc->hw_rate_table[mode];
65         /*
66          * All protection frames are transmited at 2Mb/s for
67          * 11g, otherwise at 1Mb/s.
68          * XXX select protection rate index from rate table.
69          */
70         sc->sc_protrix = (mode == ATH9K_MODE_11G ? 1 : 0);
71 }
72
73 static enum wireless_mode ath_chan2mode(struct ath9k_channel *chan)
74 {
75         if (chan->chanmode == CHANNEL_A)
76                 return ATH9K_MODE_11A;
77         else if (chan->chanmode == CHANNEL_G)
78                 return ATH9K_MODE_11G;
79         else if (chan->chanmode == CHANNEL_B)
80                 return ATH9K_MODE_11B;
81         else if (chan->chanmode == CHANNEL_A_HT20)
82                 return ATH9K_MODE_11NA_HT20;
83         else if (chan->chanmode == CHANNEL_G_HT20)
84                 return ATH9K_MODE_11NG_HT20;
85         else if (chan->chanmode == CHANNEL_A_HT40PLUS)
86                 return ATH9K_MODE_11NA_HT40PLUS;
87         else if (chan->chanmode == CHANNEL_A_HT40MINUS)
88                 return ATH9K_MODE_11NA_HT40MINUS;
89         else if (chan->chanmode == CHANNEL_G_HT40PLUS)
90                 return ATH9K_MODE_11NG_HT40PLUS;
91         else if (chan->chanmode == CHANNEL_G_HT40MINUS)
92                 return ATH9K_MODE_11NG_HT40MINUS;
93
94         WARN_ON(1); /* should not get here */
95
96         return ATH9K_MODE_11B;
97 }
98
99 static void ath_update_txpow(struct ath_softc *sc)
100 {
101         struct ath_hal *ah = sc->sc_ah;
102         u32 txpow;
103
104         if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
105                 ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
106                 /* read back in case value is clamped */
107                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
108                 sc->sc_curtxpow = txpow;
109         }
110 }
111
112 static u8 parse_mpdudensity(u8 mpdudensity)
113 {
114         /*
115          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
116          *   0 for no restriction
117          *   1 for 1/4 us
118          *   2 for 1/2 us
119          *   3 for 1 us
120          *   4 for 2 us
121          *   5 for 4 us
122          *   6 for 8 us
123          *   7 for 16 us
124          */
125         switch (mpdudensity) {
126         case 0:
127                 return 0;
128         case 1:
129         case 2:
130         case 3:
131                 /* Our lower layer calculations limit our precision to
132                    1 microsecond */
133                 return 1;
134         case 4:
135                 return 2;
136         case 5:
137                 return 4;
138         case 6:
139                 return 8;
140         case 7:
141                 return 16;
142         default:
143                 return 0;
144         }
145 }
146
147 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
148 {
149         struct ath_rate_table *rate_table = NULL;
150         struct ieee80211_supported_band *sband;
151         struct ieee80211_rate *rate;
152         int i, maxrates;
153
154         switch (band) {
155         case IEEE80211_BAND_2GHZ:
156                 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
157                 break;
158         case IEEE80211_BAND_5GHZ:
159                 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
160                 break;
161         default:
162                 break;
163         }
164
165         if (rate_table == NULL)
166                 return;
167
168         sband = &sc->sbands[band];
169         rate = sc->rates[band];
170
171         if (rate_table->rate_cnt > ATH_RATE_MAX)
172                 maxrates = ATH_RATE_MAX;
173         else
174                 maxrates = rate_table->rate_cnt;
175
176         for (i = 0; i < maxrates; i++) {
177                 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
178                 rate[i].hw_value = rate_table->info[i].ratecode;
179                 sband->n_bitrates++;
180                 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
181                         rate[i].bitrate / 10, rate[i].hw_value);
182         }
183 }
184
185 static int ath_setup_channels(struct ath_softc *sc)
186 {
187         struct ath_hal *ah = sc->sc_ah;
188         int nchan, i, a = 0, b = 0;
189         u8 regclassids[ATH_REGCLASSIDS_MAX];
190         u32 nregclass = 0;
191         struct ieee80211_supported_band *band_2ghz;
192         struct ieee80211_supported_band *band_5ghz;
193         struct ieee80211_channel *chan_2ghz;
194         struct ieee80211_channel *chan_5ghz;
195         struct ath9k_channel *c;
196
197         /* Fill in ah->ah_channels */
198         if (!ath9k_regd_init_channels(ah, ATH_CHAN_MAX, (u32 *)&nchan,
199                                       regclassids, ATH_REGCLASSIDS_MAX,
200                                       &nregclass, CTRY_DEFAULT, false, 1)) {
201                 u32 rd = ah->ah_currentRD;
202                 DPRINTF(sc, ATH_DBG_FATAL,
203                         "Unable to collect channel list; "
204                         "regdomain likely %u country code %u\n",
205                         rd, CTRY_DEFAULT);
206                 return -EINVAL;
207         }
208
209         band_2ghz = &sc->sbands[IEEE80211_BAND_2GHZ];
210         band_5ghz = &sc->sbands[IEEE80211_BAND_5GHZ];
211         chan_2ghz = sc->channels[IEEE80211_BAND_2GHZ];
212         chan_5ghz = sc->channels[IEEE80211_BAND_5GHZ];
213
214         for (i = 0; i < nchan; i++) {
215                 c = &ah->ah_channels[i];
216                 if (IS_CHAN_2GHZ(c)) {
217                         chan_2ghz[a].band = IEEE80211_BAND_2GHZ;
218                         chan_2ghz[a].center_freq = c->channel;
219                         chan_2ghz[a].max_power = c->maxTxPower;
220
221                         if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
222                                 chan_2ghz[a].flags |= IEEE80211_CHAN_NO_IBSS;
223                         if (c->channelFlags & CHANNEL_PASSIVE)
224                                 chan_2ghz[a].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
225
226                         band_2ghz->n_channels = ++a;
227
228                         DPRINTF(sc, ATH_DBG_CONFIG, "2MHz channel: %d, "
229                                 "channelFlags: 0x%x\n",
230                                 c->channel, c->channelFlags);
231                 } else if (IS_CHAN_5GHZ(c)) {
232                         chan_5ghz[b].band = IEEE80211_BAND_5GHZ;
233                         chan_5ghz[b].center_freq = c->channel;
234                         chan_5ghz[b].max_power = c->maxTxPower;
235
236                         if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
237                                 chan_5ghz[b].flags |= IEEE80211_CHAN_NO_IBSS;
238                         if (c->channelFlags & CHANNEL_PASSIVE)
239                                 chan_5ghz[b].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
240
241                         band_5ghz->n_channels = ++b;
242
243                         DPRINTF(sc, ATH_DBG_CONFIG, "5MHz channel: %d, "
244                                 "channelFlags: 0x%x\n",
245                                 c->channel, c->channelFlags);
246                 }
247         }
248
249         return 0;
250 }
251
252 /*
253  * Set/change channels.  If the channel is really being changed, it's done
254  * by reseting the chip.  To accomplish this we must first cleanup any pending
255  * DMA, then restart stuff.
256 */
257 static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
258 {
259         struct ath_hal *ah = sc->sc_ah;
260         bool fastcc = true, stopped;
261
262         if (sc->sc_flags & SC_OP_INVALID)
263                 return -EIO;
264
265         if (hchan->channel != sc->sc_ah->ah_curchan->channel ||
266             hchan->channelFlags != sc->sc_ah->ah_curchan->channelFlags ||
267             (sc->sc_flags & SC_OP_CHAINMASK_UPDATE) ||
268             (sc->sc_flags & SC_OP_FULL_RESET)) {
269                 int status;
270                 /*
271                  * This is only performed if the channel settings have
272                  * actually changed.
273                  *
274                  * To switch channels clear any pending DMA operations;
275                  * wait long enough for the RX fifo to drain, reset the
276                  * hardware at the new frequency, and then re-enable
277                  * the relevant bits of the h/w.
278                  */
279                 ath9k_hw_set_interrupts(ah, 0);
280                 ath_draintxq(sc, false);
281                 stopped = ath_stoprecv(sc);
282
283                 /* XXX: do not flush receive queue here. We don't want
284                  * to flush data frames already in queue because of
285                  * changing channel. */
286
287                 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
288                         fastcc = false;
289
290                 DPRINTF(sc, ATH_DBG_CONFIG,
291                         "(%u MHz) -> (%u MHz), cflags:%x, chanwidth: %d\n",
292                         sc->sc_ah->ah_curchan->channel,
293                         hchan->channel, hchan->channelFlags, sc->tx_chan_width);
294
295                 spin_lock_bh(&sc->sc_resetlock);
296                 if (!ath9k_hw_reset(ah, hchan, sc->tx_chan_width,
297                                     sc->sc_tx_chainmask, sc->sc_rx_chainmask,
298                                     sc->sc_ht_extprotspacing, fastcc, &status)) {
299                         DPRINTF(sc, ATH_DBG_FATAL,
300                                 "Unable to reset channel %u (%uMhz) "
301                                 "flags 0x%x hal status %u\n",
302                                 ath9k_hw_mhz2ieee(ah, hchan->channel,
303                                                   hchan->channelFlags),
304                                 hchan->channel, hchan->channelFlags, status);
305                         spin_unlock_bh(&sc->sc_resetlock);
306                         return -EIO;
307                 }
308                 spin_unlock_bh(&sc->sc_resetlock);
309
310                 sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
311                 sc->sc_flags &= ~SC_OP_FULL_RESET;
312
313                 if (ath_startrecv(sc) != 0) {
314                         DPRINTF(sc, ATH_DBG_FATAL,
315                                 "Unable to restart recv logic\n");
316                         return -EIO;
317                 }
318
319                 ath_setcurmode(sc, ath_chan2mode(hchan));
320                 ath_update_txpow(sc);
321                 ath9k_hw_set_interrupts(ah, sc->sc_imask);
322         }
323         return 0;
324 }
325
326 /*
327  *  This routine performs the periodic noise floor calibration function
328  *  that is used to adjust and optimize the chip performance.  This
329  *  takes environmental changes (location, temperature) into account.
330  *  When the task is complete, it reschedules itself depending on the
331  *  appropriate interval that was calculated.
332  */
333 static void ath_ani_calibrate(unsigned long data)
334 {
335         struct ath_softc *sc;
336         struct ath_hal *ah;
337         bool longcal = false;
338         bool shortcal = false;
339         bool aniflag = false;
340         unsigned int timestamp = jiffies_to_msecs(jiffies);
341         u32 cal_interval;
342
343         sc = (struct ath_softc *)data;
344         ah = sc->sc_ah;
345
346         /*
347         * don't calibrate when we're scanning.
348         * we are most likely not on our home channel.
349         */
350         if (sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)
351                 return;
352
353         /* Long calibration runs independently of short calibration. */
354         if ((timestamp - sc->sc_ani.sc_longcal_timer) >= ATH_LONG_CALINTERVAL) {
355                 longcal = true;
356                 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
357                 sc->sc_ani.sc_longcal_timer = timestamp;
358         }
359
360         /* Short calibration applies only while sc_caldone is false */
361         if (!sc->sc_ani.sc_caldone) {
362                 if ((timestamp - sc->sc_ani.sc_shortcal_timer) >=
363                     ATH_SHORT_CALINTERVAL) {
364                         shortcal = true;
365                         DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
366                         sc->sc_ani.sc_shortcal_timer = timestamp;
367                         sc->sc_ani.sc_resetcal_timer = timestamp;
368                 }
369         } else {
370                 if ((timestamp - sc->sc_ani.sc_resetcal_timer) >=
371                     ATH_RESTART_CALINTERVAL) {
372                         ath9k_hw_reset_calvalid(ah, ah->ah_curchan,
373                                                 &sc->sc_ani.sc_caldone);
374                         if (sc->sc_ani.sc_caldone)
375                                 sc->sc_ani.sc_resetcal_timer = timestamp;
376                 }
377         }
378
379         /* Verify whether we must check ANI */
380         if ((timestamp - sc->sc_ani.sc_checkani_timer) >=
381            ATH_ANI_POLLINTERVAL) {
382                 aniflag = true;
383                 sc->sc_ani.sc_checkani_timer = timestamp;
384         }
385
386         /* Skip all processing if there's nothing to do. */
387         if (longcal || shortcal || aniflag) {
388                 /* Call ANI routine if necessary */
389                 if (aniflag)
390                         ath9k_hw_ani_monitor(ah, &sc->sc_halstats,
391                                              ah->ah_curchan);
392
393                 /* Perform calibration if necessary */
394                 if (longcal || shortcal) {
395                         bool iscaldone = false;
396
397                         if (ath9k_hw_calibrate(ah, ah->ah_curchan,
398                                                sc->sc_rx_chainmask, longcal,
399                                                &iscaldone)) {
400                                 if (longcal)
401                                         sc->sc_ani.sc_noise_floor =
402                                                 ath9k_hw_getchan_noise(ah,
403                                                                ah->ah_curchan);
404
405                                 DPRINTF(sc, ATH_DBG_ANI,
406                                         "calibrate chan %u/%x nf: %d\n",
407                                         ah->ah_curchan->channel,
408                                         ah->ah_curchan->channelFlags,
409                                         sc->sc_ani.sc_noise_floor);
410                         } else {
411                                 DPRINTF(sc, ATH_DBG_ANY,
412                                         "calibrate chan %u/%x failed\n",
413                                         ah->ah_curchan->channel,
414                                         ah->ah_curchan->channelFlags);
415                         }
416                         sc->sc_ani.sc_caldone = iscaldone;
417                 }
418         }
419
420         /*
421         * Set timer interval based on previous results.
422         * The interval must be the shortest necessary to satisfy ANI,
423         * short calibration and long calibration.
424         */
425         cal_interval = ATH_LONG_CALINTERVAL;
426         if (sc->sc_ah->ah_config.enable_ani)
427                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
428         if (!sc->sc_ani.sc_caldone)
429                 cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL);
430
431         mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(cal_interval));
432 }
433
434 /*
435  * Update tx/rx chainmask. For legacy association,
436  * hard code chainmask to 1x1, for 11n association, use
437  * the chainmask configuration.
438  */
439 static void ath_update_chainmask(struct ath_softc *sc, int is_ht)
440 {
441         sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
442         if (is_ht) {
443                 sc->sc_tx_chainmask = sc->sc_ah->ah_caps.tx_chainmask;
444                 sc->sc_rx_chainmask = sc->sc_ah->ah_caps.rx_chainmask;
445         } else {
446                 sc->sc_tx_chainmask = 1;
447                 sc->sc_rx_chainmask = 1;
448         }
449
450         DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
451                 sc->sc_tx_chainmask, sc->sc_rx_chainmask);
452 }
453
454 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
455 {
456         struct ath_node *an;
457
458         an = (struct ath_node *)sta->drv_priv;
459
460         if (sc->sc_flags & SC_OP_TXAGGR)
461                 ath_tx_node_init(sc, an);
462
463         an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
464                              sta->ht_cap.ampdu_factor);
465         an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
466 }
467
468 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
469 {
470         struct ath_node *an = (struct ath_node *)sta->drv_priv;
471
472         if (sc->sc_flags & SC_OP_TXAGGR)
473                 ath_tx_node_cleanup(sc, an);
474 }
475
476 static void ath9k_tasklet(unsigned long data)
477 {
478         struct ath_softc *sc = (struct ath_softc *)data;
479         u32 status = sc->sc_intrstatus;
480
481         if (status & ATH9K_INT_FATAL) {
482                 /* need a chip reset */
483                 ath_reset(sc, false);
484                 return;
485         } else {
486
487                 if (status &
488                     (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
489                         spin_lock_bh(&sc->rx.rxflushlock);
490                         ath_rx_tasklet(sc, 0);
491                         spin_unlock_bh(&sc->rx.rxflushlock);
492                 }
493                 /* XXX: optimize this */
494                 if (status & ATH9K_INT_TX)
495                         ath_tx_tasklet(sc);
496         }
497
498         /* re-enable hardware interrupt */
499         ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
500 }
501
502 static irqreturn_t ath_isr(int irq, void *dev)
503 {
504         struct ath_softc *sc = dev;
505         struct ath_hal *ah = sc->sc_ah;
506         enum ath9k_int status;
507         bool sched = false;
508
509         do {
510                 if (sc->sc_flags & SC_OP_INVALID) {
511                         /*
512                          * The hardware is not ready/present, don't
513                          * touch anything. Note this can happen early
514                          * on if the IRQ is shared.
515                          */
516                         return IRQ_NONE;
517                 }
518                 if (!ath9k_hw_intrpend(ah)) {   /* shared irq, not for us */
519                         return IRQ_NONE;
520                 }
521
522                 /*
523                  * Figure out the reason(s) for the interrupt.  Note
524                  * that the hal returns a pseudo-ISR that may include
525                  * bits we haven't explicitly enabled so we mask the
526                  * value to insure we only process bits we requested.
527                  */
528                 ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
529
530                 status &= sc->sc_imask; /* discard unasked-for bits */
531
532                 /*
533                  * If there are no status bits set, then this interrupt was not
534                  * for me (should have been caught above).
535                  */
536                 if (!status)
537                         return IRQ_NONE;
538
539                 sc->sc_intrstatus = status;
540
541                 if (status & ATH9K_INT_FATAL) {
542                         /* need a chip reset */
543                         sched = true;
544                 } else if (status & ATH9K_INT_RXORN) {
545                         /* need a chip reset */
546                         sched = true;
547                 } else {
548                         if (status & ATH9K_INT_SWBA) {
549                                 /* schedule a tasklet for beacon handling */
550                                 tasklet_schedule(&sc->bcon_tasklet);
551                         }
552                         if (status & ATH9K_INT_RXEOL) {
553                                 /*
554                                  * NB: the hardware should re-read the link when
555                                  *     RXE bit is written, but it doesn't work
556                                  *     at least on older hardware revs.
557                                  */
558                                 sched = true;
559                         }
560
561                         if (status & ATH9K_INT_TXURN)
562                                 /* bump tx trigger level */
563                                 ath9k_hw_updatetxtriglevel(ah, true);
564                         /* XXX: optimize this */
565                         if (status & ATH9K_INT_RX)
566                                 sched = true;
567                         if (status & ATH9K_INT_TX)
568                                 sched = true;
569                         if (status & ATH9K_INT_BMISS)
570                                 sched = true;
571                         /* carrier sense timeout */
572                         if (status & ATH9K_INT_CST)
573                                 sched = true;
574                         if (status & ATH9K_INT_MIB) {
575                                 /*
576                                  * Disable interrupts until we service the MIB
577                                  * interrupt; otherwise it will continue to
578                                  * fire.
579                                  */
580                                 ath9k_hw_set_interrupts(ah, 0);
581                                 /*
582                                  * Let the hal handle the event. We assume
583                                  * it will clear whatever condition caused
584                                  * the interrupt.
585                                  */
586                                 ath9k_hw_procmibevent(ah, &sc->sc_halstats);
587                                 ath9k_hw_set_interrupts(ah, sc->sc_imask);
588                         }
589                         if (status & ATH9K_INT_TIM_TIMER) {
590                                 if (!(ah->ah_caps.hw_caps &
591                                       ATH9K_HW_CAP_AUTOSLEEP)) {
592                                         /* Clear RxAbort bit so that we can
593                                          * receive frames */
594                                         ath9k_hw_setrxabort(ah, 0);
595                                         sched = true;
596                                 }
597                         }
598                 }
599         } while (0);
600
601         ath_debug_stat_interrupt(sc, status);
602
603         if (sched) {
604                 /* turn off every interrupt except SWBA */
605                 ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA));
606                 tasklet_schedule(&sc->intr_tq);
607         }
608
609         return IRQ_HANDLED;
610 }
611
612 static int ath_get_channel(struct ath_softc *sc,
613                            struct ieee80211_channel *chan)
614 {
615         int i;
616
617         for (i = 0; i < sc->sc_ah->ah_nchan; i++) {
618                 if (sc->sc_ah->ah_channels[i].channel == chan->center_freq)
619                         return i;
620         }
621
622         return -1;
623 }
624
625 static u32 ath_get_extchanmode(struct ath_softc *sc,
626                                struct ieee80211_channel *chan,
627                                enum nl80211_channel_type channel_type)
628 {
629         u32 chanmode = 0;
630
631         switch (chan->band) {
632         case IEEE80211_BAND_2GHZ:
633                 switch(channel_type) {
634                 case NL80211_CHAN_NO_HT:
635                 case NL80211_CHAN_HT20:
636                         chanmode = CHANNEL_G_HT20;
637                         break;
638                 case NL80211_CHAN_HT40PLUS:
639                         chanmode = CHANNEL_G_HT40PLUS;
640                         break;
641                 case NL80211_CHAN_HT40MINUS:
642                         chanmode = CHANNEL_G_HT40MINUS;
643                         break;
644                 }
645                 break;
646         case IEEE80211_BAND_5GHZ:
647                 switch(channel_type) {
648                 case NL80211_CHAN_NO_HT:
649                 case NL80211_CHAN_HT20:
650                         chanmode = CHANNEL_A_HT20;
651                         break;
652                 case NL80211_CHAN_HT40PLUS:
653                         chanmode = CHANNEL_A_HT40PLUS;
654                         break;
655                 case NL80211_CHAN_HT40MINUS:
656                         chanmode = CHANNEL_A_HT40MINUS;
657                         break;
658                 }
659                 break;
660         default:
661                 break;
662         }
663
664         return chanmode;
665 }
666
667 static int ath_keyset(struct ath_softc *sc, u16 keyix,
668                struct ath9k_keyval *hk, const u8 mac[ETH_ALEN])
669 {
670         bool status;
671
672         status = ath9k_hw_set_keycache_entry(sc->sc_ah,
673                 keyix, hk, mac, false);
674
675         return status != false;
676 }
677
678 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
679                            struct ath9k_keyval *hk,
680                            const u8 *addr)
681 {
682         const u8 *key_rxmic;
683         const u8 *key_txmic;
684
685         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
686         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
687
688         if (addr == NULL) {
689                 /* Group key installation */
690                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
691                 return ath_keyset(sc, keyix, hk, addr);
692         }
693         if (!sc->sc_splitmic) {
694                 /*
695                  * data key goes at first index,
696                  * the hal handles the MIC keys at index+64.
697                  */
698                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
699                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
700                 return ath_keyset(sc, keyix, hk, addr);
701         }
702         /*
703          * TX key goes at first index, RX key at +32.
704          * The hal handles the MIC keys at index+64.
705          */
706         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
707         if (!ath_keyset(sc, keyix, hk, NULL)) {
708                 /* Txmic entry failed. No need to proceed further */
709                 DPRINTF(sc, ATH_DBG_KEYCACHE,
710                         "Setting TX MIC Key Failed\n");
711                 return 0;
712         }
713
714         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
715         /* XXX delete tx key on failure? */
716         return ath_keyset(sc, keyix + 32, hk, addr);
717 }
718
719 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
720 {
721         int i;
722
723         for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
724                 if (test_bit(i, sc->sc_keymap) ||
725                     test_bit(i + 64, sc->sc_keymap))
726                         continue; /* At least one part of TKIP key allocated */
727                 if (sc->sc_splitmic &&
728                     (test_bit(i + 32, sc->sc_keymap) ||
729                      test_bit(i + 64 + 32, sc->sc_keymap)))
730                         continue; /* At least one part of TKIP key allocated */
731
732                 /* Found a free slot for a TKIP key */
733                 return i;
734         }
735         return -1;
736 }
737
738 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
739 {
740         int i;
741
742         /* First, try to find slots that would not be available for TKIP. */
743         if (sc->sc_splitmic) {
744                 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 4; i++) {
745                         if (!test_bit(i, sc->sc_keymap) &&
746                             (test_bit(i + 32, sc->sc_keymap) ||
747                              test_bit(i + 64, sc->sc_keymap) ||
748                              test_bit(i + 64 + 32, sc->sc_keymap)))
749                                 return i;
750                         if (!test_bit(i + 32, sc->sc_keymap) &&
751                             (test_bit(i, sc->sc_keymap) ||
752                              test_bit(i + 64, sc->sc_keymap) ||
753                              test_bit(i + 64 + 32, sc->sc_keymap)))
754                                 return i + 32;
755                         if (!test_bit(i + 64, sc->sc_keymap) &&
756                             (test_bit(i , sc->sc_keymap) ||
757                              test_bit(i + 32, sc->sc_keymap) ||
758                              test_bit(i + 64 + 32, sc->sc_keymap)))
759                                 return i;
760                         if (!test_bit(i + 64 + 32, sc->sc_keymap) &&
761                             (test_bit(i, sc->sc_keymap) ||
762                              test_bit(i + 32, sc->sc_keymap) ||
763                              test_bit(i + 64, sc->sc_keymap)))
764                                 return i;
765                 }
766         } else {
767                 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
768                         if (!test_bit(i, sc->sc_keymap) &&
769                             test_bit(i + 64, sc->sc_keymap))
770                                 return i;
771                         if (test_bit(i, sc->sc_keymap) &&
772                             !test_bit(i + 64, sc->sc_keymap))
773                                 return i + 64;
774                 }
775         }
776
777         /* No partially used TKIP slots, pick any available slot */
778         for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax; i++) {
779                 if (!test_bit(i, sc->sc_keymap))
780                         return i; /* Found a free slot for a key */
781         }
782
783         /* No free slot found */
784         return -1;
785 }
786
787 static int ath_key_config(struct ath_softc *sc,
788                           const u8 *addr,
789                           struct ieee80211_key_conf *key)
790 {
791         struct ath9k_keyval hk;
792         const u8 *mac = NULL;
793         int ret = 0;
794         int idx;
795
796         memset(&hk, 0, sizeof(hk));
797
798         switch (key->alg) {
799         case ALG_WEP:
800                 hk.kv_type = ATH9K_CIPHER_WEP;
801                 break;
802         case ALG_TKIP:
803                 hk.kv_type = ATH9K_CIPHER_TKIP;
804                 break;
805         case ALG_CCMP:
806                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
807                 break;
808         default:
809                 return -EINVAL;
810         }
811
812         hk.kv_len = key->keylen;
813         memcpy(hk.kv_val, key->key, key->keylen);
814
815         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
816                 /* For now, use the default keys for broadcast keys. This may
817                  * need to change with virtual interfaces. */
818                 idx = key->keyidx;
819         } else if (key->keyidx) {
820                 struct ieee80211_vif *vif;
821
822                 mac = addr;
823                 vif = sc->sc_vaps[0];
824                 if (vif->type != NL80211_IFTYPE_AP) {
825                         /* Only keyidx 0 should be used with unicast key, but
826                          * allow this for client mode for now. */
827                         idx = key->keyidx;
828                 } else
829                         return -EIO;
830         } else {
831                 mac = addr;
832                 if (key->alg == ALG_TKIP)
833                         idx = ath_reserve_key_cache_slot_tkip(sc);
834                 else
835                         idx = ath_reserve_key_cache_slot(sc);
836                 if (idx < 0)
837                         return -EIO; /* no free key cache entries */
838         }
839
840         if (key->alg == ALG_TKIP)
841                 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac);
842         else
843                 ret = ath_keyset(sc, idx, &hk, mac);
844
845         if (!ret)
846                 return -EIO;
847
848         set_bit(idx, sc->sc_keymap);
849         if (key->alg == ALG_TKIP) {
850                 set_bit(idx + 64, sc->sc_keymap);
851                 if (sc->sc_splitmic) {
852                         set_bit(idx + 32, sc->sc_keymap);
853                         set_bit(idx + 64 + 32, sc->sc_keymap);
854                 }
855         }
856
857         return idx;
858 }
859
860 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
861 {
862         ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
863         if (key->hw_key_idx < IEEE80211_WEP_NKID)
864                 return;
865
866         clear_bit(key->hw_key_idx, sc->sc_keymap);
867         if (key->alg != ALG_TKIP)
868                 return;
869
870         clear_bit(key->hw_key_idx + 64, sc->sc_keymap);
871         if (sc->sc_splitmic) {
872                 clear_bit(key->hw_key_idx + 32, sc->sc_keymap);
873                 clear_bit(key->hw_key_idx + 64 + 32, sc->sc_keymap);
874         }
875 }
876
877 static void setup_ht_cap(struct ieee80211_sta_ht_cap *ht_info)
878 {
879 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3       /* 2 ^ 16 */
880 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6          /* 8 usec */
881
882         ht_info->ht_supported = true;
883         ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
884                        IEEE80211_HT_CAP_SM_PS |
885                        IEEE80211_HT_CAP_SGI_40 |
886                        IEEE80211_HT_CAP_DSSSCCK40;
887
888         ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
889         ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
890         /* set up supported mcs set */
891         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
892         ht_info->mcs.rx_mask[0] = 0xff;
893         ht_info->mcs.rx_mask[1] = 0xff;
894         ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
895 }
896
897 static void ath9k_bss_assoc_info(struct ath_softc *sc,
898                                  struct ieee80211_vif *vif,
899                                  struct ieee80211_bss_conf *bss_conf)
900 {
901         struct ath_vap *avp = (void *)vif->drv_priv;
902
903         if (bss_conf->assoc) {
904                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
905                         bss_conf->aid, sc->sc_curbssid);
906
907                 /* New association, store aid */
908                 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
909                         sc->sc_curaid = bss_conf->aid;
910                         ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
911                                                sc->sc_curaid);
912                 }
913
914                 /* Configure the beacon */
915                 ath_beacon_config(sc, 0);
916                 sc->sc_flags |= SC_OP_BEACONS;
917
918                 /* Reset rssi stats */
919                 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
920                 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
921                 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
922                 sc->sc_halstats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
923
924                 /* Start ANI */
925                 mod_timer(&sc->sc_ani.timer,
926                         jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
927
928         } else {
929                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
930                 sc->sc_curaid = 0;
931         }
932 }
933
934 /********************************/
935 /*       LED functions          */
936 /********************************/
937
938 static void ath_led_brightness(struct led_classdev *led_cdev,
939                                enum led_brightness brightness)
940 {
941         struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
942         struct ath_softc *sc = led->sc;
943
944         switch (brightness) {
945         case LED_OFF:
946                 if (led->led_type == ATH_LED_ASSOC ||
947                     led->led_type == ATH_LED_RADIO)
948                         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
949                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
950                                 (led->led_type == ATH_LED_RADIO) ? 1 :
951                                 !!(sc->sc_flags & SC_OP_LED_ASSOCIATED));
952                 break;
953         case LED_FULL:
954                 if (led->led_type == ATH_LED_ASSOC)
955                         sc->sc_flags |= SC_OP_LED_ASSOCIATED;
956                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
957                 break;
958         default:
959                 break;
960         }
961 }
962
963 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
964                             char *trigger)
965 {
966         int ret;
967
968         led->sc = sc;
969         led->led_cdev.name = led->name;
970         led->led_cdev.default_trigger = trigger;
971         led->led_cdev.brightness_set = ath_led_brightness;
972
973         ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
974         if (ret)
975                 DPRINTF(sc, ATH_DBG_FATAL,
976                         "Failed to register led:%s", led->name);
977         else
978                 led->registered = 1;
979         return ret;
980 }
981
982 static void ath_unregister_led(struct ath_led *led)
983 {
984         if (led->registered) {
985                 led_classdev_unregister(&led->led_cdev);
986                 led->registered = 0;
987         }
988 }
989
990 static void ath_deinit_leds(struct ath_softc *sc)
991 {
992         ath_unregister_led(&sc->assoc_led);
993         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
994         ath_unregister_led(&sc->tx_led);
995         ath_unregister_led(&sc->rx_led);
996         ath_unregister_led(&sc->radio_led);
997         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
998 }
999
1000 static void ath_init_leds(struct ath_softc *sc)
1001 {
1002         char *trigger;
1003         int ret;
1004
1005         /* Configure gpio 1 for output */
1006         ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1007                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1008         /* LED off, active low */
1009         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1010
1011         trigger = ieee80211_get_radio_led_name(sc->hw);
1012         snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1013                 "ath9k-%s:radio", wiphy_name(sc->hw->wiphy));
1014         ret = ath_register_led(sc, &sc->radio_led, trigger);
1015         sc->radio_led.led_type = ATH_LED_RADIO;
1016         if (ret)
1017                 goto fail;
1018
1019         trigger = ieee80211_get_assoc_led_name(sc->hw);
1020         snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1021                 "ath9k-%s:assoc", wiphy_name(sc->hw->wiphy));
1022         ret = ath_register_led(sc, &sc->assoc_led, trigger);
1023         sc->assoc_led.led_type = ATH_LED_ASSOC;
1024         if (ret)
1025                 goto fail;
1026
1027         trigger = ieee80211_get_tx_led_name(sc->hw);
1028         snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1029                 "ath9k-%s:tx", wiphy_name(sc->hw->wiphy));
1030         ret = ath_register_led(sc, &sc->tx_led, trigger);
1031         sc->tx_led.led_type = ATH_LED_TX;
1032         if (ret)
1033                 goto fail;
1034
1035         trigger = ieee80211_get_rx_led_name(sc->hw);
1036         snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1037                 "ath9k-%s:rx", wiphy_name(sc->hw->wiphy));
1038         ret = ath_register_led(sc, &sc->rx_led, trigger);
1039         sc->rx_led.led_type = ATH_LED_RX;
1040         if (ret)
1041                 goto fail;
1042
1043         return;
1044
1045 fail:
1046         ath_deinit_leds(sc);
1047 }
1048
1049 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1050
1051 /*******************/
1052 /*      Rfkill     */
1053 /*******************/
1054
1055 static void ath_radio_enable(struct ath_softc *sc)
1056 {
1057         struct ath_hal *ah = sc->sc_ah;
1058         int status;
1059
1060         spin_lock_bh(&sc->sc_resetlock);
1061         if (!ath9k_hw_reset(ah, ah->ah_curchan,
1062                             sc->tx_chan_width,
1063                             sc->sc_tx_chainmask,
1064                             sc->sc_rx_chainmask,
1065                             sc->sc_ht_extprotspacing,
1066                             false, &status)) {
1067                 DPRINTF(sc, ATH_DBG_FATAL,
1068                         "Unable to reset channel %u (%uMhz) "
1069                         "flags 0x%x hal status %u\n",
1070                         ath9k_hw_mhz2ieee(ah,
1071                                           ah->ah_curchan->channel,
1072                                           ah->ah_curchan->channelFlags),
1073                         ah->ah_curchan->channel,
1074                         ah->ah_curchan->channelFlags, status);
1075         }
1076         spin_unlock_bh(&sc->sc_resetlock);
1077
1078         ath_update_txpow(sc);
1079         if (ath_startrecv(sc) != 0) {
1080                 DPRINTF(sc, ATH_DBG_FATAL,
1081                         "Unable to restart recv logic\n");
1082                 return;
1083         }
1084
1085         if (sc->sc_flags & SC_OP_BEACONS)
1086                 ath_beacon_config(sc, ATH_IF_ID_ANY);   /* restart beacons */
1087
1088         /* Re-Enable  interrupts */
1089         ath9k_hw_set_interrupts(ah, sc->sc_imask);
1090
1091         /* Enable LED */
1092         ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1093                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1094         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1095
1096         ieee80211_wake_queues(sc->hw);
1097 }
1098
1099 static void ath_radio_disable(struct ath_softc *sc)
1100 {
1101         struct ath_hal *ah = sc->sc_ah;
1102         int status;
1103
1104
1105         ieee80211_stop_queues(sc->hw);
1106
1107         /* Disable LED */
1108         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1109         ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1110
1111         /* Disable interrupts */
1112         ath9k_hw_set_interrupts(ah, 0);
1113
1114         ath_draintxq(sc, false);        /* clear pending tx frames */
1115         ath_stoprecv(sc);               /* turn off frame recv */
1116         ath_flushrecv(sc);              /* flush recv queue */
1117
1118         spin_lock_bh(&sc->sc_resetlock);
1119         if (!ath9k_hw_reset(ah, ah->ah_curchan,
1120                             sc->tx_chan_width,
1121                             sc->sc_tx_chainmask,
1122                             sc->sc_rx_chainmask,
1123                             sc->sc_ht_extprotspacing,
1124                             false, &status)) {
1125                 DPRINTF(sc, ATH_DBG_FATAL,
1126                         "Unable to reset channel %u (%uMhz) "
1127                         "flags 0x%x hal status %u\n",
1128                         ath9k_hw_mhz2ieee(ah,
1129                                 ah->ah_curchan->channel,
1130                                 ah->ah_curchan->channelFlags),
1131                         ah->ah_curchan->channel,
1132                         ah->ah_curchan->channelFlags, status);
1133         }
1134         spin_unlock_bh(&sc->sc_resetlock);
1135
1136         ath9k_hw_phy_disable(ah);
1137         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1138 }
1139
1140 static bool ath_is_rfkill_set(struct ath_softc *sc)
1141 {
1142         struct ath_hal *ah = sc->sc_ah;
1143
1144         return ath9k_hw_gpio_get(ah, ah->ah_rfkill_gpio) ==
1145                                   ah->ah_rfkill_polarity;
1146 }
1147
1148 /* h/w rfkill poll function */
1149 static void ath_rfkill_poll(struct work_struct *work)
1150 {
1151         struct ath_softc *sc = container_of(work, struct ath_softc,
1152                                             rf_kill.rfkill_poll.work);
1153         bool radio_on;
1154
1155         if (sc->sc_flags & SC_OP_INVALID)
1156                 return;
1157
1158         radio_on = !ath_is_rfkill_set(sc);
1159
1160         /*
1161          * enable/disable radio only when there is a
1162          * state change in RF switch
1163          */
1164         if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1165                 enum rfkill_state state;
1166
1167                 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1168                         state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1169                                 : RFKILL_STATE_HARD_BLOCKED;
1170                 } else if (radio_on) {
1171                         ath_radio_enable(sc);
1172                         state = RFKILL_STATE_UNBLOCKED;
1173                 } else {
1174                         ath_radio_disable(sc);
1175                         state = RFKILL_STATE_HARD_BLOCKED;
1176                 }
1177
1178                 if (state == RFKILL_STATE_HARD_BLOCKED)
1179                         sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1180                 else
1181                         sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1182
1183                 rfkill_force_state(sc->rf_kill.rfkill, state);
1184         }
1185
1186         queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1187                            msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1188 }
1189
1190 /* s/w rfkill handler */
1191 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1192 {
1193         struct ath_softc *sc = data;
1194
1195         switch (state) {
1196         case RFKILL_STATE_SOFT_BLOCKED:
1197                 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1198                     SC_OP_RFKILL_SW_BLOCKED)))
1199                         ath_radio_disable(sc);
1200                 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1201                 return 0;
1202         case RFKILL_STATE_UNBLOCKED:
1203                 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1204                         sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1205                         if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1206                                 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1207                                         "radio as it is disabled by h/w\n");
1208                                 return -EPERM;
1209                         }
1210                         ath_radio_enable(sc);
1211                 }
1212                 return 0;
1213         default:
1214                 return -EINVAL;
1215         }
1216 }
1217
1218 /* Init s/w rfkill */
1219 static int ath_init_sw_rfkill(struct ath_softc *sc)
1220 {
1221         sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1222                                              RFKILL_TYPE_WLAN);
1223         if (!sc->rf_kill.rfkill) {
1224                 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1225                 return -ENOMEM;
1226         }
1227
1228         snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1229                 "ath9k-%s:rfkill", wiphy_name(sc->hw->wiphy));
1230         sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1231         sc->rf_kill.rfkill->data = sc;
1232         sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1233         sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1234         sc->rf_kill.rfkill->user_claim_unsupported = 1;
1235
1236         return 0;
1237 }
1238
1239 /* Deinitialize rfkill */
1240 static void ath_deinit_rfkill(struct ath_softc *sc)
1241 {
1242         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1243                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1244
1245         if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1246                 rfkill_unregister(sc->rf_kill.rfkill);
1247                 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1248                 sc->rf_kill.rfkill = NULL;
1249         }
1250 }
1251
1252 static int ath_start_rfkill_poll(struct ath_softc *sc)
1253 {
1254         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1255                 queue_delayed_work(sc->hw->workqueue,
1256                                    &sc->rf_kill.rfkill_poll, 0);
1257
1258         if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1259                 if (rfkill_register(sc->rf_kill.rfkill)) {
1260                         DPRINTF(sc, ATH_DBG_FATAL,
1261                                 "Unable to register rfkill\n");
1262                         rfkill_free(sc->rf_kill.rfkill);
1263
1264                         /* Deinitialize the device */
1265                         ath_detach(sc);
1266                         if (sc->pdev->irq)
1267                                 free_irq(sc->pdev->irq, sc);
1268                         pci_iounmap(sc->pdev, sc->mem);
1269                         pci_release_region(sc->pdev, 0);
1270                         pci_disable_device(sc->pdev);
1271                         ieee80211_free_hw(sc->hw);
1272                         return -EIO;
1273                 } else {
1274                         sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1275                 }
1276         }
1277
1278         return 0;
1279 }
1280 #endif /* CONFIG_RFKILL */
1281
1282 static void ath_detach(struct ath_softc *sc)
1283 {
1284         struct ieee80211_hw *hw = sc->hw;
1285         int i = 0;
1286
1287         DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1288
1289 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1290         ath_deinit_rfkill(sc);
1291 #endif
1292         ath_deinit_leds(sc);
1293
1294         ieee80211_unregister_hw(hw);
1295         ath_rx_cleanup(sc);
1296         ath_tx_cleanup(sc);
1297
1298         tasklet_kill(&sc->intr_tq);
1299         tasklet_kill(&sc->bcon_tasklet);
1300
1301         if (!(sc->sc_flags & SC_OP_INVALID))
1302                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1303
1304         /* cleanup tx queues */
1305         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1306                 if (ATH_TXQ_SETUP(sc, i))
1307                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1308
1309         ath9k_hw_detach(sc->sc_ah);
1310         ath9k_exit_debug(sc);
1311 }
1312
1313 static int ath_init(u16 devid, struct ath_softc *sc)
1314 {
1315         struct ath_hal *ah = NULL;
1316         int status;
1317         int error = 0, i;
1318         int csz = 0;
1319
1320         /* XXX: hardware will not be ready until ath_open() being called */
1321         sc->sc_flags |= SC_OP_INVALID;
1322
1323         if (ath9k_init_debug(sc) < 0)
1324                 printk(KERN_ERR "Unable to create debugfs files\n");
1325
1326         spin_lock_init(&sc->sc_resetlock);
1327         mutex_init(&sc->mutex);
1328         tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1329         tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
1330                      (unsigned long)sc);
1331
1332         /*
1333          * Cache line size is used to size and align various
1334          * structures used to communicate with the hardware.
1335          */
1336         bus_read_cachesize(sc, &csz);
1337         /* XXX assert csz is non-zero */
1338         sc->sc_cachelsz = csz << 2;     /* convert to bytes */
1339
1340         ah = ath9k_hw_attach(devid, sc, sc->mem, &status);
1341         if (ah == NULL) {
1342                 DPRINTF(sc, ATH_DBG_FATAL,
1343                         "Unable to attach hardware; HAL status %u\n", status);
1344                 error = -ENXIO;
1345                 goto bad;
1346         }
1347         sc->sc_ah = ah;
1348
1349         /* Get the hardware key cache size. */
1350         sc->sc_keymax = ah->ah_caps.keycache_size;
1351         if (sc->sc_keymax > ATH_KEYMAX) {
1352                 DPRINTF(sc, ATH_DBG_KEYCACHE,
1353                         "Warning, using only %u entries in %u key cache\n",
1354                         ATH_KEYMAX, sc->sc_keymax);
1355                 sc->sc_keymax = ATH_KEYMAX;
1356         }
1357
1358         /*
1359          * Reset the key cache since some parts do not
1360          * reset the contents on initial power up.
1361          */
1362         for (i = 0; i < sc->sc_keymax; i++)
1363                 ath9k_hw_keyreset(ah, (u16) i);
1364         /*
1365          * Mark key cache slots associated with global keys
1366          * as in use.  If we knew TKIP was not to be used we
1367          * could leave the +32, +64, and +32+64 slots free.
1368          */
1369         for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1370                 set_bit(i, sc->sc_keymap);
1371                 set_bit(i + 64, sc->sc_keymap);
1372                 if (ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1373                                            0, NULL)) {
1374                         set_bit(i + 32, sc->sc_keymap);
1375                         set_bit(i + 32 + 64, sc->sc_keymap);
1376                 }
1377         }
1378
1379         /* Collect the channel list using the default country code */
1380
1381         error = ath_setup_channels(sc);
1382         if (error)
1383                 goto bad;
1384
1385         /* default to MONITOR mode */
1386         sc->sc_ah->ah_opmode = NL80211_IFTYPE_MONITOR;
1387
1388
1389         /* Setup rate tables */
1390
1391         ath_rate_attach(sc);
1392         ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1393         ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1394
1395         /*
1396          * Allocate hardware transmit queues: one queue for
1397          * beacon frames and one data queue for each QoS
1398          * priority.  Note that the hal handles reseting
1399          * these queues at the needed time.
1400          */
1401         sc->beacon.beaconq = ath_beaconq_setup(ah);
1402         if (sc->beacon.beaconq == -1) {
1403                 DPRINTF(sc, ATH_DBG_FATAL,
1404                         "Unable to setup a beacon xmit queue\n");
1405                 error = -EIO;
1406                 goto bad2;
1407         }
1408         sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1409         if (sc->beacon.cabq == NULL) {
1410                 DPRINTF(sc, ATH_DBG_FATAL,
1411                         "Unable to setup CAB xmit queue\n");
1412                 error = -EIO;
1413                 goto bad2;
1414         }
1415
1416         sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME;
1417         ath_cabq_update(sc);
1418
1419         for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1420                 sc->tx.hwq_map[i] = -1;
1421
1422         /* Setup data queues */
1423         /* NB: ensure BK queue is the lowest priority h/w queue */
1424         if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1425                 DPRINTF(sc, ATH_DBG_FATAL,
1426                         "Unable to setup xmit queue for BK traffic\n");
1427                 error = -EIO;
1428                 goto bad2;
1429         }
1430
1431         if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1432                 DPRINTF(sc, ATH_DBG_FATAL,
1433                         "Unable to setup xmit queue for BE traffic\n");
1434                 error = -EIO;
1435                 goto bad2;
1436         }
1437         if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1438                 DPRINTF(sc, ATH_DBG_FATAL,
1439                         "Unable to setup xmit queue for VI traffic\n");
1440                 error = -EIO;
1441                 goto bad2;
1442         }
1443         if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1444                 DPRINTF(sc, ATH_DBG_FATAL,
1445                         "Unable to setup xmit queue for VO traffic\n");
1446                 error = -EIO;
1447                 goto bad2;
1448         }
1449
1450         /* Initializes the noise floor to a reasonable default value.
1451          * Later on this will be updated during ANI processing. */
1452
1453         sc->sc_ani.sc_noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1454         setup_timer(&sc->sc_ani.timer, ath_ani_calibrate, (unsigned long)sc);
1455
1456         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1457                                    ATH9K_CIPHER_TKIP, NULL)) {
1458                 /*
1459                  * Whether we should enable h/w TKIP MIC.
1460                  * XXX: if we don't support WME TKIP MIC, then we wouldn't
1461                  * report WMM capable, so it's always safe to turn on
1462                  * TKIP MIC in this case.
1463                  */
1464                 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1465                                        0, 1, NULL);
1466         }
1467
1468         /*
1469          * Check whether the separate key cache entries
1470          * are required to handle both tx+rx MIC keys.
1471          * With split mic keys the number of stations is limited
1472          * to 27 otherwise 59.
1473          */
1474         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1475                                    ATH9K_CIPHER_TKIP, NULL)
1476             && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1477                                       ATH9K_CIPHER_MIC, NULL)
1478             && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1479                                       0, NULL))
1480                 sc->sc_splitmic = 1;
1481
1482         /* turn on mcast key search if possible */
1483         if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1484                 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1485                                              1, NULL);
1486
1487         sc->sc_config.txpowlimit = ATH_TXPOWER_MAX;
1488         sc->sc_config.txpowlimit_override = 0;
1489
1490         /* 11n Capabilities */
1491         if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1492                 sc->sc_flags |= SC_OP_TXAGGR;
1493                 sc->sc_flags |= SC_OP_RXAGGR;
1494         }
1495
1496         sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
1497         sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
1498
1499         ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1500         sc->rx.defant = ath9k_hw_getdefantenna(ah);
1501
1502         ath9k_hw_getmac(ah, sc->sc_myaddr);
1503         if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
1504                 ath9k_hw_getbssidmask(ah, sc->sc_bssidmask);
1505                 ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
1506                 ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
1507         }
1508
1509         sc->beacon.slottime = ATH9K_SLOT_TIME_9;        /* default to short slot time */
1510
1511         /* initialize beacon slots */
1512         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
1513                 sc->beacon.bslot[i] = ATH_IF_ID_ANY;
1514
1515         /* save MISC configurations */
1516         sc->sc_config.swBeaconProcess = 1;
1517
1518         /* setup channels and rates */
1519
1520         sc->sbands[IEEE80211_BAND_2GHZ].channels =
1521                 sc->channels[IEEE80211_BAND_2GHZ];
1522         sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1523                 sc->rates[IEEE80211_BAND_2GHZ];
1524         sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1525
1526         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) {
1527                 sc->sbands[IEEE80211_BAND_5GHZ].channels =
1528                         sc->channels[IEEE80211_BAND_5GHZ];
1529                 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1530                         sc->rates[IEEE80211_BAND_5GHZ];
1531                 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1532         }
1533
1534         return 0;
1535 bad2:
1536         /* cleanup tx queues */
1537         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1538                 if (ATH_TXQ_SETUP(sc, i))
1539                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1540 bad:
1541         if (ah)
1542                 ath9k_hw_detach(ah);
1543
1544         return error;
1545 }
1546
1547 static int ath_attach(u16 devid, struct ath_softc *sc)
1548 {
1549         struct ieee80211_hw *hw = sc->hw;
1550         int error = 0;
1551
1552         DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1553
1554         error = ath_init(devid, sc);
1555         if (error != 0)
1556                 return error;
1557
1558         /* get mac address from hardware and set in mac80211 */
1559
1560         SET_IEEE80211_PERM_ADDR(hw, sc->sc_myaddr);
1561
1562         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1563                 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1564                 IEEE80211_HW_SIGNAL_DBM |
1565                 IEEE80211_HW_AMPDU_AGGREGATION;
1566
1567         hw->wiphy->interface_modes =
1568                 BIT(NL80211_IFTYPE_AP) |
1569                 BIT(NL80211_IFTYPE_STATION) |
1570                 BIT(NL80211_IFTYPE_ADHOC);
1571
1572         hw->queues = 4;
1573         hw->max_rates = 4;
1574         hw->max_rate_tries = ATH_11N_TXMAXTRY;
1575         hw->sta_data_size = sizeof(struct ath_node);
1576         hw->vif_data_size = sizeof(struct ath_vap);
1577
1578         hw->rate_control_algorithm = "ath9k_rate_control";
1579
1580         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1581                 setup_ht_cap(&sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1582                 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1583                         setup_ht_cap(&sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1584         }
1585
1586         hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ];
1587         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1588                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1589                         &sc->sbands[IEEE80211_BAND_5GHZ];
1590
1591         /* initialize tx/rx engine */
1592         error = ath_tx_init(sc, ATH_TXBUF);
1593         if (error != 0)
1594                 goto detach;
1595
1596         error = ath_rx_init(sc, ATH_RXBUF);
1597         if (error != 0)
1598                 goto detach;
1599
1600 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1601         /* Initialze h/w Rfkill */
1602         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1603                 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1604
1605         /* Initialize s/w rfkill */
1606         if (ath_init_sw_rfkill(sc))
1607                 goto detach;
1608 #endif
1609
1610         error = ieee80211_register_hw(hw);
1611
1612         /* Initialize LED control */
1613         ath_init_leds(sc);
1614
1615         return 0;
1616 detach:
1617         ath_detach(sc);
1618         return error;
1619 }
1620
1621 int ath_reset(struct ath_softc *sc, bool retry_tx)
1622 {
1623         struct ath_hal *ah = sc->sc_ah;
1624         int status;
1625         int error = 0;
1626
1627         ath9k_hw_set_interrupts(ah, 0);
1628         ath_draintxq(sc, retry_tx);
1629         ath_stoprecv(sc);
1630         ath_flushrecv(sc);
1631
1632         spin_lock_bh(&sc->sc_resetlock);
1633         if (!ath9k_hw_reset(ah, sc->sc_ah->ah_curchan,
1634                             sc->tx_chan_width,
1635                             sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1636                             sc->sc_ht_extprotspacing, false, &status)) {
1637                 DPRINTF(sc, ATH_DBG_FATAL,
1638                         "Unable to reset hardware; hal status %u\n", status);
1639                 error = -EIO;
1640         }
1641         spin_unlock_bh(&sc->sc_resetlock);
1642
1643         if (ath_startrecv(sc) != 0)
1644                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1645
1646         /*
1647          * We may be doing a reset in response to a request
1648          * that changes the channel so update any state that
1649          * might change as a result.
1650          */
1651         ath_setcurmode(sc, ath_chan2mode(sc->sc_ah->ah_curchan));
1652
1653         ath_update_txpow(sc);
1654
1655         if (sc->sc_flags & SC_OP_BEACONS)
1656                 ath_beacon_config(sc, ATH_IF_ID_ANY);   /* restart beacons */
1657
1658         ath9k_hw_set_interrupts(ah, sc->sc_imask);
1659
1660         if (retry_tx) {
1661                 int i;
1662                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1663                         if (ATH_TXQ_SETUP(sc, i)) {
1664                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1665                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
1666                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1667                         }
1668                 }
1669         }
1670
1671         return error;
1672 }
1673
1674 /*
1675  *  This function will allocate both the DMA descriptor structure, and the
1676  *  buffers it contains.  These are used to contain the descriptors used
1677  *  by the system.
1678 */
1679 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1680                       struct list_head *head, const char *name,
1681                       int nbuf, int ndesc)
1682 {
1683 #define DS2PHYS(_dd, _ds)                                               \
1684         ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1685 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1686 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1687
1688         struct ath_desc *ds;
1689         struct ath_buf *bf;
1690         int i, bsize, error;
1691
1692         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1693                 name, nbuf, ndesc);
1694
1695         /* ath_desc must be a multiple of DWORDs */
1696         if ((sizeof(struct ath_desc) % 4) != 0) {
1697                 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1698                 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1699                 error = -ENOMEM;
1700                 goto fail;
1701         }
1702
1703         dd->dd_name = name;
1704         dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1705
1706         /*
1707          * Need additional DMA memory because we can't use
1708          * descriptors that cross the 4K page boundary. Assume
1709          * one skipped descriptor per 4K page.
1710          */
1711         if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1712                 u32 ndesc_skipped =
1713                         ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1714                 u32 dma_len;
1715
1716                 while (ndesc_skipped) {
1717                         dma_len = ndesc_skipped * sizeof(struct ath_desc);
1718                         dd->dd_desc_len += dma_len;
1719
1720                         ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1721                 };
1722         }
1723
1724         /* allocate descriptors */
1725         dd->dd_desc = pci_alloc_consistent(sc->pdev,
1726                               dd->dd_desc_len,
1727                               &dd->dd_desc_paddr);
1728         if (dd->dd_desc == NULL) {
1729                 error = -ENOMEM;
1730                 goto fail;
1731         }
1732         ds = dd->dd_desc;
1733         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1734                 dd->dd_name, ds, (u32) dd->dd_desc_len,
1735                 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1736
1737         /* allocate buffers */
1738         bsize = sizeof(struct ath_buf) * nbuf;
1739         bf = kmalloc(bsize, GFP_KERNEL);
1740         if (bf == NULL) {
1741                 error = -ENOMEM;
1742                 goto fail2;
1743         }
1744         memset(bf, 0, bsize);
1745         dd->dd_bufptr = bf;
1746
1747         INIT_LIST_HEAD(head);
1748         for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1749                 bf->bf_desc = ds;
1750                 bf->bf_daddr = DS2PHYS(dd, ds);
1751
1752                 if (!(sc->sc_ah->ah_caps.hw_caps &
1753                       ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1754                         /*
1755                          * Skip descriptor addresses which can cause 4KB
1756                          * boundary crossing (addr + length) with a 32 dword
1757                          * descriptor fetch.
1758                          */
1759                         while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1760                                 ASSERT((caddr_t) bf->bf_desc <
1761                                        ((caddr_t) dd->dd_desc +
1762                                         dd->dd_desc_len));
1763
1764                                 ds += ndesc;
1765                                 bf->bf_desc = ds;
1766                                 bf->bf_daddr = DS2PHYS(dd, ds);
1767                         }
1768                 }
1769                 list_add_tail(&bf->list, head);
1770         }
1771         return 0;
1772 fail2:
1773         pci_free_consistent(sc->pdev,
1774                 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1775 fail:
1776         memset(dd, 0, sizeof(*dd));
1777         return error;
1778 #undef ATH_DESC_4KB_BOUND_CHECK
1779 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1780 #undef DS2PHYS
1781 }
1782
1783 void ath_descdma_cleanup(struct ath_softc *sc,
1784                          struct ath_descdma *dd,
1785                          struct list_head *head)
1786 {
1787         pci_free_consistent(sc->pdev,
1788                 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1789
1790         INIT_LIST_HEAD(head);
1791         kfree(dd->dd_bufptr);
1792         memset(dd, 0, sizeof(*dd));
1793 }
1794
1795 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1796 {
1797         int qnum;
1798
1799         switch (queue) {
1800         case 0:
1801                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1802                 break;
1803         case 1:
1804                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1805                 break;
1806         case 2:
1807                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1808                 break;
1809         case 3:
1810                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1811                 break;
1812         default:
1813                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1814                 break;
1815         }
1816
1817         return qnum;
1818 }
1819
1820 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1821 {
1822         int qnum;
1823
1824         switch (queue) {
1825         case ATH9K_WME_AC_VO:
1826                 qnum = 0;
1827                 break;
1828         case ATH9K_WME_AC_VI:
1829                 qnum = 1;
1830                 break;
1831         case ATH9K_WME_AC_BE:
1832                 qnum = 2;
1833                 break;
1834         case ATH9K_WME_AC_BK:
1835                 qnum = 3;
1836                 break;
1837         default:
1838                 qnum = -1;
1839                 break;
1840         }
1841
1842         return qnum;
1843 }
1844
1845 /**********************/
1846 /* mac80211 callbacks */
1847 /**********************/
1848
1849 static int ath9k_start(struct ieee80211_hw *hw)
1850 {
1851         struct ath_softc *sc = hw->priv;
1852         struct ieee80211_channel *curchan = hw->conf.channel;
1853         struct ath9k_channel *init_channel;
1854         int error = 0, pos, status;
1855
1856         DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1857                 "initial channel: %d MHz\n", curchan->center_freq);
1858
1859         /* setup initial channel */
1860
1861         pos = ath_get_channel(sc, curchan);
1862         if (pos == -1) {
1863                 DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n", curchan->center_freq);
1864                 error = -EINVAL;
1865                 goto error;
1866         }
1867
1868         sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1869         sc->sc_ah->ah_channels[pos].chanmode =
1870                 (curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A;
1871         init_channel = &sc->sc_ah->ah_channels[pos];
1872
1873         /* Reset SERDES registers */
1874         ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1875
1876         /*
1877          * The basic interface to setting the hardware in a good
1878          * state is ``reset''.  On return the hardware is known to
1879          * be powered up and with interrupts disabled.  This must
1880          * be followed by initialization of the appropriate bits
1881          * and then setup of the interrupt mask.
1882          */
1883         spin_lock_bh(&sc->sc_resetlock);
1884         if (!ath9k_hw_reset(sc->sc_ah, init_channel,
1885                             sc->tx_chan_width,
1886                             sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1887                             sc->sc_ht_extprotspacing, false, &status)) {
1888                 DPRINTF(sc, ATH_DBG_FATAL,
1889                         "Unable to reset hardware; hal status %u "
1890                         "(freq %u flags 0x%x)\n", status,
1891                         init_channel->channel, init_channel->channelFlags);
1892                 error = -EIO;
1893                 spin_unlock_bh(&sc->sc_resetlock);
1894                 goto error;
1895         }
1896         spin_unlock_bh(&sc->sc_resetlock);
1897
1898         /*
1899          * This is needed only to setup initial state
1900          * but it's best done after a reset.
1901          */
1902         ath_update_txpow(sc);
1903
1904         /*
1905          * Setup the hardware after reset:
1906          * The receive engine is set going.
1907          * Frame transmit is handled entirely
1908          * in the frame output path; there's nothing to do
1909          * here except setup the interrupt mask.
1910          */
1911         if (ath_startrecv(sc) != 0) {
1912                 DPRINTF(sc, ATH_DBG_FATAL,
1913                         "Unable to start recv logic\n");
1914                 error = -EIO;
1915                 goto error;
1916         }
1917
1918         /* Setup our intr mask. */
1919         sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX
1920                 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1921                 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1922
1923         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT)
1924                 sc->sc_imask |= ATH9K_INT_GTT;
1925
1926         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
1927                 sc->sc_imask |= ATH9K_INT_CST;
1928
1929         /*
1930          * Enable MIB interrupts when there are hardware phy counters.
1931          * Note we only do this (at the moment) for station mode.
1932          */
1933         if (ath9k_hw_phycounters(sc->sc_ah) &&
1934             ((sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) ||
1935              (sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC)))
1936                 sc->sc_imask |= ATH9K_INT_MIB;
1937         /*
1938          * Some hardware processes the TIM IE and fires an
1939          * interrupt when the TIM bit is set.  For hardware
1940          * that does, if not overridden by configuration,
1941          * enable the TIM interrupt when operating as station.
1942          */
1943         if ((sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
1944             (sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) &&
1945             !sc->sc_config.swBeaconProcess)
1946                 sc->sc_imask |= ATH9K_INT_TIM;
1947
1948         ath_setcurmode(sc, ath_chan2mode(init_channel));
1949
1950         sc->sc_flags &= ~SC_OP_INVALID;
1951
1952         /* Disable BMISS interrupt when we're not associated */
1953         sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1954         ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
1955
1956         ieee80211_wake_queues(sc->hw);
1957
1958 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1959         error = ath_start_rfkill_poll(sc);
1960 #endif
1961
1962 error:
1963         return error;
1964 }
1965
1966 static int ath9k_tx(struct ieee80211_hw *hw,
1967                     struct sk_buff *skb)
1968 {
1969         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1970         struct ath_softc *sc = hw->priv;
1971         struct ath_tx_control txctl;
1972         int hdrlen, padsize;
1973
1974         memset(&txctl, 0, sizeof(struct ath_tx_control));
1975
1976         /*
1977          * As a temporary workaround, assign seq# here; this will likely need
1978          * to be cleaned up to work better with Beacon transmission and virtual
1979          * BSSes.
1980          */
1981         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1982                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1983                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1984                         sc->tx.seq_no += 0x10;
1985                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1986                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1987         }
1988
1989         /* Add the padding after the header if this is not already done */
1990         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1991         if (hdrlen & 3) {
1992                 padsize = hdrlen % 4;
1993                 if (skb_headroom(skb) < padsize)
1994                         return -1;
1995                 skb_push(skb, padsize);
1996                 memmove(skb->data, skb->data + padsize, hdrlen);
1997         }
1998
1999         /* Check if a tx queue is available */
2000
2001         txctl.txq = ath_test_get_txq(sc, skb);
2002         if (!txctl.txq)
2003                 goto exit;
2004
2005         DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2006
2007         if (ath_tx_start(sc, skb, &txctl) != 0) {
2008                 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2009                 goto exit;
2010         }
2011
2012         return 0;
2013 exit:
2014         dev_kfree_skb_any(skb);
2015         return 0;
2016 }
2017
2018 static void ath9k_stop(struct ieee80211_hw *hw)
2019 {
2020         struct ath_softc *sc = hw->priv;
2021
2022         if (sc->sc_flags & SC_OP_INVALID) {
2023                 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2024                 return;
2025         }
2026
2027         DPRINTF(sc, ATH_DBG_CONFIG, "Cleaning up\n");
2028
2029         ieee80211_stop_queues(sc->hw);
2030
2031         /* make sure h/w will not generate any interrupt
2032          * before setting the invalid flag. */
2033         ath9k_hw_set_interrupts(sc->sc_ah, 0);
2034
2035         if (!(sc->sc_flags & SC_OP_INVALID)) {
2036                 ath_draintxq(sc, false);
2037                 ath_stoprecv(sc);
2038                 ath9k_hw_phy_disable(sc->sc_ah);
2039         } else
2040                 sc->rx.rxlink = NULL;
2041
2042 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2043         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2044                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2045 #endif
2046         /* disable HAL and put h/w to sleep */
2047         ath9k_hw_disable(sc->sc_ah);
2048         ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2049
2050         sc->sc_flags |= SC_OP_INVALID;
2051
2052         DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2053 }
2054
2055 static int ath9k_add_interface(struct ieee80211_hw *hw,
2056                                struct ieee80211_if_init_conf *conf)
2057 {
2058         struct ath_softc *sc = hw->priv;
2059         struct ath_vap *avp = (void *)conf->vif->drv_priv;
2060         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2061
2062         /* Support only vap for now */
2063
2064         if (sc->sc_nvaps)
2065                 return -ENOBUFS;
2066
2067         switch (conf->type) {
2068         case NL80211_IFTYPE_STATION:
2069                 ic_opmode = NL80211_IFTYPE_STATION;
2070                 break;
2071         case NL80211_IFTYPE_ADHOC:
2072                 ic_opmode = NL80211_IFTYPE_ADHOC;
2073                 break;
2074         case NL80211_IFTYPE_AP:
2075                 ic_opmode = NL80211_IFTYPE_AP;
2076                 break;
2077         default:
2078                 DPRINTF(sc, ATH_DBG_FATAL,
2079                         "Interface type %d not yet supported\n", conf->type);
2080                 return -EOPNOTSUPP;
2081         }
2082
2083         DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VAP of type: %d\n", ic_opmode);
2084
2085         /* Set the VAP opmode */
2086         avp->av_opmode = ic_opmode;
2087         avp->av_bslot = -1;
2088
2089         if (ic_opmode == NL80211_IFTYPE_AP)
2090                 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2091
2092         sc->sc_vaps[0] = conf->vif;
2093         sc->sc_nvaps++;
2094
2095         /* Set the device opmode */
2096         sc->sc_ah->ah_opmode = ic_opmode;
2097
2098         if (conf->type == NL80211_IFTYPE_AP) {
2099                 /* TODO: is this a suitable place to start ANI for AP mode? */
2100                 /* Start ANI */
2101                 mod_timer(&sc->sc_ani.timer,
2102                           jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2103         }
2104
2105         return 0;
2106 }
2107
2108 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2109                                    struct ieee80211_if_init_conf *conf)
2110 {
2111         struct ath_softc *sc = hw->priv;
2112         struct ath_vap *avp = (void *)conf->vif->drv_priv;
2113
2114         DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2115
2116         /* Stop ANI */
2117         del_timer_sync(&sc->sc_ani.timer);
2118
2119         /* Reclaim beacon resources */
2120         if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_AP ||
2121             sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC) {
2122                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2123                 ath_beacon_return(sc, avp);
2124         }
2125
2126         sc->sc_flags &= ~SC_OP_BEACONS;
2127
2128         sc->sc_vaps[0] = NULL;
2129         sc->sc_nvaps--;
2130 }
2131
2132 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2133 {
2134         struct ath_softc *sc = hw->priv;
2135         struct ieee80211_conf *conf = &hw->conf;
2136
2137         mutex_lock(&sc->mutex);
2138         if (changed & (IEEE80211_CONF_CHANGE_CHANNEL |
2139                        IEEE80211_CONF_CHANGE_HT)) {
2140                 struct ieee80211_channel *curchan = hw->conf.channel;
2141                 int pos;
2142
2143                 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2144                         curchan->center_freq);
2145
2146                 pos = ath_get_channel(sc, curchan);
2147                 if (pos == -1) {
2148                         DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n",
2149                                 curchan->center_freq);
2150                         mutex_unlock(&sc->mutex);
2151                         return -EINVAL;
2152                 }
2153
2154                 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
2155                 sc->sc_ah->ah_channels[pos].chanmode =
2156                         (curchan->band == IEEE80211_BAND_2GHZ) ?
2157                         CHANNEL_G : CHANNEL_A;
2158
2159                 if (conf->ht.enabled) {
2160                         if (conf->ht.channel_type == NL80211_CHAN_HT40PLUS ||
2161                             conf->ht.channel_type == NL80211_CHAN_HT40MINUS)
2162                                 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
2163
2164                         sc->sc_ah->ah_channels[pos].chanmode =
2165                                 ath_get_extchanmode(sc, curchan,
2166                                                     conf->ht.channel_type);
2167                 }
2168
2169                 if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0) {
2170                         DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2171                         mutex_unlock(&sc->mutex);
2172                         return -EINVAL;
2173                 }
2174
2175                 ath_update_chainmask(sc, conf->ht.enabled);
2176         }
2177
2178         if (changed & IEEE80211_CONF_CHANGE_POWER)
2179                 sc->sc_config.txpowlimit = 2 * conf->power_level;
2180
2181         mutex_unlock(&sc->mutex);
2182         return 0;
2183 }
2184
2185 static int ath9k_config_interface(struct ieee80211_hw *hw,
2186                                   struct ieee80211_vif *vif,
2187                                   struct ieee80211_if_conf *conf)
2188 {
2189         struct ath_softc *sc = hw->priv;
2190         struct ath_hal *ah = sc->sc_ah;
2191         struct ath_vap *avp = (void *)vif->drv_priv;
2192         u32 rfilt = 0;
2193         int error, i;
2194
2195         /* TODO: Need to decide which hw opmode to use for multi-interface
2196          * cases */
2197         if (vif->type == NL80211_IFTYPE_AP &&
2198             ah->ah_opmode != NL80211_IFTYPE_AP) {
2199                 ah->ah_opmode = NL80211_IFTYPE_STATION;
2200                 ath9k_hw_setopmode(ah);
2201                 ath9k_hw_write_associd(ah, sc->sc_myaddr, 0);
2202                 /* Request full reset to get hw opmode changed properly */
2203                 sc->sc_flags |= SC_OP_FULL_RESET;
2204         }
2205
2206         if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2207             !is_zero_ether_addr(conf->bssid)) {
2208                 switch (vif->type) {
2209                 case NL80211_IFTYPE_STATION:
2210                 case NL80211_IFTYPE_ADHOC:
2211                         /* Set BSSID */
2212                         memcpy(sc->sc_curbssid, conf->bssid, ETH_ALEN);
2213                         sc->sc_curaid = 0;
2214                         ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
2215                                                sc->sc_curaid);
2216
2217                         /* Set aggregation protection mode parameters */
2218                         sc->sc_config.ath_aggr_prot = 0;
2219
2220                         DPRINTF(sc, ATH_DBG_CONFIG,
2221                                 "RX filter 0x%x bssid %pM aid 0x%x\n",
2222                                 rfilt, sc->sc_curbssid, sc->sc_curaid);
2223
2224                         /* need to reconfigure the beacon */
2225                         sc->sc_flags &= ~SC_OP_BEACONS ;
2226
2227                         break;
2228                 default:
2229                         break;
2230                 }
2231         }
2232
2233         if ((conf->changed & IEEE80211_IFCC_BEACON) &&
2234             ((vif->type == NL80211_IFTYPE_ADHOC) ||
2235              (vif->type == NL80211_IFTYPE_AP))) {
2236                 /*
2237                  * Allocate and setup the beacon frame.
2238                  *
2239                  * Stop any previous beacon DMA.  This may be
2240                  * necessary, for example, when an ibss merge
2241                  * causes reconfiguration; we may be called
2242                  * with beacon transmission active.
2243                  */
2244                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2245
2246                 error = ath_beacon_alloc(sc, 0);
2247                 if (error != 0)
2248                         return error;
2249
2250                 ath_beacon_sync(sc, 0);
2251         }
2252
2253         /* Check for WLAN_CAPABILITY_PRIVACY ? */
2254         if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2255                 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2256                         if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2257                                 ath9k_hw_keysetmac(sc->sc_ah,
2258                                                    (u16)i,
2259                                                    sc->sc_curbssid);
2260         }
2261
2262         /* Only legacy IBSS for now */
2263         if (vif->type == NL80211_IFTYPE_ADHOC)
2264                 ath_update_chainmask(sc, 0);
2265
2266         return 0;
2267 }
2268
2269 #define SUPPORTED_FILTERS                       \
2270         (FIF_PROMISC_IN_BSS |                   \
2271         FIF_ALLMULTI |                          \
2272         FIF_CONTROL |                           \
2273         FIF_OTHER_BSS |                         \
2274         FIF_BCN_PRBRESP_PROMISC |               \
2275         FIF_FCSFAIL)
2276
2277 /* FIXME: sc->sc_full_reset ? */
2278 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2279                                    unsigned int changed_flags,
2280                                    unsigned int *total_flags,
2281                                    int mc_count,
2282                                    struct dev_mc_list *mclist)
2283 {
2284         struct ath_softc *sc = hw->priv;
2285         u32 rfilt;
2286
2287         changed_flags &= SUPPORTED_FILTERS;
2288         *total_flags &= SUPPORTED_FILTERS;
2289
2290         sc->rx.rxfilter = *total_flags;
2291         rfilt = ath_calcrxfilter(sc);
2292         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2293
2294         if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
2295                 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
2296                         ath9k_hw_write_associd(sc->sc_ah, ath_bcast_mac, 0);
2297         }
2298
2299         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2300 }
2301
2302 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2303                              struct ieee80211_vif *vif,
2304                              enum sta_notify_cmd cmd,
2305                              struct ieee80211_sta *sta)
2306 {
2307         struct ath_softc *sc = hw->priv;
2308
2309         switch (cmd) {
2310         case STA_NOTIFY_ADD:
2311                 ath_node_attach(sc, sta);
2312                 break;
2313         case STA_NOTIFY_REMOVE:
2314                 ath_node_detach(sc, sta);
2315                 break;
2316         default:
2317                 break;
2318         }
2319 }
2320
2321 static int ath9k_conf_tx(struct ieee80211_hw *hw,
2322                          u16 queue,
2323                          const struct ieee80211_tx_queue_params *params)
2324 {
2325         struct ath_softc *sc = hw->priv;
2326         struct ath9k_tx_queue_info qi;
2327         int ret = 0, qnum;
2328
2329         if (queue >= WME_NUM_AC)
2330                 return 0;
2331
2332         qi.tqi_aifs = params->aifs;
2333         qi.tqi_cwmin = params->cw_min;
2334         qi.tqi_cwmax = params->cw_max;
2335         qi.tqi_burstTime = params->txop;
2336         qnum = ath_get_hal_qnum(queue, sc);
2337
2338         DPRINTF(sc, ATH_DBG_CONFIG,
2339                 "Configure tx [queue/halq] [%d/%d],  "
2340                 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2341                 queue, qnum, params->aifs, params->cw_min,
2342                 params->cw_max, params->txop);
2343
2344         ret = ath_txq_update(sc, qnum, &qi);
2345         if (ret)
2346                 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2347
2348         return ret;
2349 }
2350
2351 static int ath9k_set_key(struct ieee80211_hw *hw,
2352                          enum set_key_cmd cmd,
2353                          const u8 *local_addr,
2354                          const u8 *addr,
2355                          struct ieee80211_key_conf *key)
2356 {
2357         struct ath_softc *sc = hw->priv;
2358         int ret = 0;
2359
2360         DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
2361
2362         switch (cmd) {
2363         case SET_KEY:
2364                 ret = ath_key_config(sc, addr, key);
2365                 if (ret >= 0) {
2366                         key->hw_key_idx = ret;
2367                         /* push IV and Michael MIC generation to stack */
2368                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2369                         if (key->alg == ALG_TKIP)
2370                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2371                         ret = 0;
2372                 }
2373                 break;
2374         case DISABLE_KEY:
2375                 ath_key_delete(sc, key);
2376                 break;
2377         default:
2378                 ret = -EINVAL;
2379         }
2380
2381         return ret;
2382 }
2383
2384 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2385                                    struct ieee80211_vif *vif,
2386                                    struct ieee80211_bss_conf *bss_conf,
2387                                    u32 changed)
2388 {
2389         struct ath_softc *sc = hw->priv;
2390
2391         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2392                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2393                         bss_conf->use_short_preamble);
2394                 if (bss_conf->use_short_preamble)
2395                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2396                 else
2397                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2398         }
2399
2400         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2401                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2402                         bss_conf->use_cts_prot);
2403                 if (bss_conf->use_cts_prot &&
2404                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2405                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2406                 else
2407                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2408         }
2409
2410         if (changed & BSS_CHANGED_ASSOC) {
2411                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2412                         bss_conf->assoc);
2413                 ath9k_bss_assoc_info(sc, vif, bss_conf);
2414         }
2415 }
2416
2417 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2418 {
2419         u64 tsf;
2420         struct ath_softc *sc = hw->priv;
2421         struct ath_hal *ah = sc->sc_ah;
2422
2423         tsf = ath9k_hw_gettsf64(ah);
2424
2425         return tsf;
2426 }
2427
2428 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2429 {
2430         struct ath_softc *sc = hw->priv;
2431         struct ath_hal *ah = sc->sc_ah;
2432
2433         ath9k_hw_reset_tsf(ah);
2434 }
2435
2436 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2437                        enum ieee80211_ampdu_mlme_action action,
2438                        struct ieee80211_sta *sta,
2439                        u16 tid, u16 *ssn)
2440 {
2441         struct ath_softc *sc = hw->priv;
2442         int ret = 0;
2443
2444         switch (action) {
2445         case IEEE80211_AMPDU_RX_START:
2446                 if (!(sc->sc_flags & SC_OP_RXAGGR))
2447                         ret = -ENOTSUPP;
2448                 break;
2449         case IEEE80211_AMPDU_RX_STOP:
2450                 break;
2451         case IEEE80211_AMPDU_TX_START:
2452                 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2453                 if (ret < 0)
2454                         DPRINTF(sc, ATH_DBG_FATAL,
2455                                 "Unable to start TX aggregation\n");
2456                 else
2457                         ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2458                 break;
2459         case IEEE80211_AMPDU_TX_STOP:
2460                 ret = ath_tx_aggr_stop(sc, sta, tid);
2461                 if (ret < 0)
2462                         DPRINTF(sc, ATH_DBG_FATAL,
2463                                 "Unable to stop TX aggregation\n");
2464
2465                 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2466                 break;
2467         case IEEE80211_AMPDU_TX_RESUME:
2468                 ath_tx_aggr_resume(sc, sta, tid);
2469                 break;
2470         default:
2471                 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2472         }
2473
2474         return ret;
2475 }
2476
2477 static struct ieee80211_ops ath9k_ops = {
2478         .tx                 = ath9k_tx,
2479         .start              = ath9k_start,
2480         .stop               = ath9k_stop,
2481         .add_interface      = ath9k_add_interface,
2482         .remove_interface   = ath9k_remove_interface,
2483         .config             = ath9k_config,
2484         .config_interface   = ath9k_config_interface,
2485         .configure_filter   = ath9k_configure_filter,
2486         .sta_notify         = ath9k_sta_notify,
2487         .conf_tx            = ath9k_conf_tx,
2488         .bss_info_changed   = ath9k_bss_info_changed,
2489         .set_key            = ath9k_set_key,
2490         .get_tsf            = ath9k_get_tsf,
2491         .reset_tsf          = ath9k_reset_tsf,
2492         .ampdu_action       = ath9k_ampdu_action,
2493 };
2494
2495 static struct {
2496         u32 version;
2497         const char * name;
2498 } ath_mac_bb_names[] = {
2499         { AR_SREV_VERSION_5416_PCI,     "5416" },
2500         { AR_SREV_VERSION_5416_PCIE,    "5418" },
2501         { AR_SREV_VERSION_9100,         "9100" },
2502         { AR_SREV_VERSION_9160,         "9160" },
2503         { AR_SREV_VERSION_9280,         "9280" },
2504         { AR_SREV_VERSION_9285,         "9285" }
2505 };
2506
2507 static struct {
2508         u16 version;
2509         const char * name;
2510 } ath_rf_names[] = {
2511         { 0,                            "5133" },
2512         { AR_RAD5133_SREV_MAJOR,        "5133" },
2513         { AR_RAD5122_SREV_MAJOR,        "5122" },
2514         { AR_RAD2133_SREV_MAJOR,        "2133" },
2515         { AR_RAD2122_SREV_MAJOR,        "2122" }
2516 };
2517
2518 /*
2519  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2520  */
2521 static const char *
2522 ath_mac_bb_name(u32 mac_bb_version)
2523 {
2524         int i;
2525
2526         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2527                 if (ath_mac_bb_names[i].version == mac_bb_version) {
2528                         return ath_mac_bb_names[i].name;
2529                 }
2530         }
2531
2532         return "????";
2533 }
2534
2535 /*
2536  * Return the RF name. "????" is returned if the RF is unknown.
2537  */
2538 static const char *
2539 ath_rf_name(u16 rf_version)
2540 {
2541         int i;
2542
2543         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2544                 if (ath_rf_names[i].version == rf_version) {
2545                         return ath_rf_names[i].name;
2546                 }
2547         }
2548
2549         return "????";
2550 }
2551
2552 static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2553 {
2554         void __iomem *mem;
2555         struct ath_softc *sc;
2556         struct ieee80211_hw *hw;
2557         u8 csz;
2558         u32 val;
2559         int ret = 0;
2560         struct ath_hal *ah;
2561
2562         if (pci_enable_device(pdev))
2563                 return -EIO;
2564
2565         ret =  pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2566
2567         if (ret) {
2568                 printk(KERN_ERR "ath9k: 32-bit DMA not available\n");
2569                 goto bad;
2570         }
2571
2572         ret = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2573
2574         if (ret) {
2575                 printk(KERN_ERR "ath9k: 32-bit DMA consistent "
2576                         "DMA enable failed\n");
2577                 goto bad;
2578         }
2579
2580         /*
2581          * Cache line size is used to size and align various
2582          * structures used to communicate with the hardware.
2583          */
2584         pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
2585         if (csz == 0) {
2586                 /*
2587                  * Linux 2.4.18 (at least) writes the cache line size
2588                  * register as a 16-bit wide register which is wrong.
2589                  * We must have this setup properly for rx buffer
2590                  * DMA to work so force a reasonable value here if it
2591                  * comes up zero.
2592                  */
2593                 csz = L1_CACHE_BYTES / sizeof(u32);
2594                 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
2595         }
2596         /*
2597          * The default setting of latency timer yields poor results,
2598          * set it to the value used by other systems. It may be worth
2599          * tweaking this setting more.
2600          */
2601         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
2602
2603         pci_set_master(pdev);
2604
2605         /*
2606          * Disable the RETRY_TIMEOUT register (0x41) to keep
2607          * PCI Tx retries from interfering with C3 CPU state.
2608          */
2609         pci_read_config_dword(pdev, 0x40, &val);
2610         if ((val & 0x0000ff00) != 0)
2611                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2612
2613         ret = pci_request_region(pdev, 0, "ath9k");
2614         if (ret) {
2615                 dev_err(&pdev->dev, "PCI memory region reserve error\n");
2616                 ret = -ENODEV;
2617                 goto bad;
2618         }
2619
2620         mem = pci_iomap(pdev, 0, 0);
2621         if (!mem) {
2622                 printk(KERN_ERR "PCI memory map error\n") ;
2623                 ret = -EIO;
2624                 goto bad1;
2625         }
2626
2627         hw = ieee80211_alloc_hw(sizeof(struct ath_softc), &ath9k_ops);
2628         if (hw == NULL) {
2629                 printk(KERN_ERR "ath_pci: no memory for ieee80211_hw\n");
2630                 goto bad2;
2631         }
2632
2633         SET_IEEE80211_DEV(hw, &pdev->dev);
2634         pci_set_drvdata(pdev, hw);
2635
2636         sc = hw->priv;
2637         sc->hw = hw;
2638         sc->pdev = pdev;
2639         sc->mem = mem;
2640
2641         if (ath_attach(id->device, sc) != 0) {
2642                 ret = -ENODEV;
2643                 goto bad3;
2644         }
2645
2646         /* setup interrupt service routine */
2647
2648         if (request_irq(pdev->irq, ath_isr, IRQF_SHARED, "ath", sc)) {
2649                 printk(KERN_ERR "%s: request_irq failed\n",
2650                         wiphy_name(hw->wiphy));
2651                 ret = -EIO;
2652                 goto bad4;
2653         }
2654
2655         ah = sc->sc_ah;
2656         printk(KERN_INFO
2657                "%s: Atheros AR%s MAC/BB Rev:%x "
2658                "AR%s RF Rev:%x: mem=0x%lx, irq=%d\n",
2659                wiphy_name(hw->wiphy),
2660                ath_mac_bb_name(ah->ah_macVersion),
2661                ah->ah_macRev,
2662                ath_rf_name((ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR)),
2663                ah->ah_phyRev,
2664                (unsigned long)mem, pdev->irq);
2665
2666         return 0;
2667 bad4:
2668         ath_detach(sc);
2669 bad3:
2670         ieee80211_free_hw(hw);
2671 bad2:
2672         pci_iounmap(pdev, mem);
2673 bad1:
2674         pci_release_region(pdev, 0);
2675 bad:
2676         pci_disable_device(pdev);
2677         return ret;
2678 }
2679
2680 static void ath_pci_remove(struct pci_dev *pdev)
2681 {
2682         struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2683         struct ath_softc *sc = hw->priv;
2684
2685         ath_detach(sc);
2686         if (pdev->irq)
2687                 free_irq(pdev->irq, sc);
2688         pci_iounmap(pdev, sc->mem);
2689         pci_release_region(pdev, 0);
2690         pci_disable_device(pdev);
2691         ieee80211_free_hw(hw);
2692 }
2693
2694 #ifdef CONFIG_PM
2695
2696 static int ath_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2697 {
2698         struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2699         struct ath_softc *sc = hw->priv;
2700
2701         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2702
2703 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2704         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2705                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2706 #endif
2707
2708         pci_save_state(pdev);
2709         pci_disable_device(pdev);
2710         pci_set_power_state(pdev, 3);
2711
2712         return 0;
2713 }
2714
2715 static int ath_pci_resume(struct pci_dev *pdev)
2716 {
2717         struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2718         struct ath_softc *sc = hw->priv;
2719         u32 val;
2720         int err;
2721
2722         err = pci_enable_device(pdev);
2723         if (err)
2724                 return err;
2725         pci_restore_state(pdev);
2726         /*
2727          * Suspend/Resume resets the PCI configuration space, so we have to
2728          * re-disable the RETRY_TIMEOUT register (0x41) to keep
2729          * PCI Tx retries from interfering with C3 CPU state
2730          */
2731         pci_read_config_dword(pdev, 0x40, &val);
2732         if ((val & 0x0000ff00) != 0)
2733                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2734
2735         /* Enable LED */
2736         ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
2737                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
2738         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2739
2740 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2741         /*
2742          * check the h/w rfkill state on resume
2743          * and start the rfkill poll timer
2744          */
2745         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2746                 queue_delayed_work(sc->hw->workqueue,
2747                                    &sc->rf_kill.rfkill_poll, 0);
2748 #endif
2749
2750         return 0;
2751 }
2752
2753 #endif /* CONFIG_PM */
2754
2755 MODULE_DEVICE_TABLE(pci, ath_pci_id_table);
2756
2757 static struct pci_driver ath_pci_driver = {
2758         .name       = "ath9k",
2759         .id_table   = ath_pci_id_table,
2760         .probe      = ath_pci_probe,
2761         .remove     = ath_pci_remove,
2762 #ifdef CONFIG_PM
2763         .suspend    = ath_pci_suspend,
2764         .resume     = ath_pci_resume,
2765 #endif /* CONFIG_PM */
2766 };
2767
2768 static int __init init_ath_pci(void)
2769 {
2770         int error;
2771
2772         printk(KERN_INFO "%s: %s\n", dev_info, ATH_PCI_VERSION);
2773
2774         /* Register rate control algorithm */
2775         error = ath_rate_control_register();
2776         if (error != 0) {
2777                 printk(KERN_ERR
2778                         "Unable to register rate control algorithm: %d\n",
2779                         error);
2780                 ath_rate_control_unregister();
2781                 return error;
2782         }
2783
2784         if (pci_register_driver(&ath_pci_driver) < 0) {
2785                 printk(KERN_ERR
2786                         "ath_pci: No devices found, driver not installed.\n");
2787                 ath_rate_control_unregister();
2788                 pci_unregister_driver(&ath_pci_driver);
2789                 return -ENODEV;
2790         }
2791
2792         return 0;
2793 }
2794 module_init(init_ath_pci);
2795
2796 static void __exit exit_ath_pci(void)
2797 {
2798         ath_rate_control_unregister();
2799         pci_unregister_driver(&ath_pci_driver);
2800         printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2801 }
2802 module_exit(exit_ath_pci);