Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / drivers / staging / panel / panel.c
1 /*
2  * Front panel driver for Linux
3  * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version
8  * 2 of the License, or (at your option) any later version.
9  *
10  * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11  * connected to a parallel printer port.
12  *
13  * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14  * serial module compatible with Samsung's KS0074. The pins may be connected in
15  * any combination, everything is programmable.
16  *
17  * The keypad consists in a matrix of push buttons connecting input pins to
18  * data output pins or to the ground. The combinations have to be hard-coded
19  * in the driver, though several profiles exist and adding new ones is easy.
20  *
21  * Several profiles are provided for commonly found LCD+keypad modules on the
22  * market, such as those found in Nexcom's appliances.
23  *
24  * FIXME:
25  *      - the initialization/deinitialization process is very dirty and should
26  *        be rewritten. It may even be buggy.
27  *
28  * TODO:
29  *      - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30  *      - make the LCD a part of a virtual screen of Vx*Vy
31  *      - make the inputs list smp-safe
32  *      - change the keyboard to a double mapping : signals -> key_id -> values
33  *        so that applications can change values without knowing signals
34  *
35  */
36
37 #include <linux/module.h>
38
39 #include <linux/types.h>
40 #include <linux/errno.h>
41 #include <linux/signal.h>
42 #include <linux/sched.h>
43 #include <linux/spinlock.h>
44 #include <linux/smp_lock.h>
45 #include <linux/interrupt.h>
46 #include <linux/miscdevice.h>
47 #include <linux/slab.h>
48 #include <linux/ioport.h>
49 #include <linux/fcntl.h>
50 #include <linux/init.h>
51 #include <linux/delay.h>
52 #include <linux/ctype.h>
53 #include <linux/parport.h>
54 #include <linux/version.h>
55 #include <linux/list.h>
56 #include <linux/notifier.h>
57 #include <linux/reboot.h>
58 #include <linux/utsrelease.h>
59
60 #include <linux/io.h>
61 #include <asm/uaccess.h>
62 #include <asm/system.h>
63
64 #define LCD_MINOR               156
65 #define KEYPAD_MINOR            185
66
67 #define PANEL_VERSION           "0.9.5"
68
69 #define LCD_MAXBYTES            256     /* max burst write */
70
71 #define KEYPAD_BUFFER           64
72 #define INPUT_POLL_TIME         (HZ/50) /* poll the keyboard this every second */
73 #define KEYPAD_REP_START        (10)    /* a key starts to repeat after this times INPUT_POLL_TIME */
74 #define KEYPAD_REP_DELAY        (2)     /* a key repeats this times INPUT_POLL_TIME */
75
76 #define FLASH_LIGHT_TEMPO       (200)   /* keep the light on this times INPUT_POLL_TIME for each flash */
77
78 /* converts an r_str() input to an active high, bits string : 000BAOSE */
79 #define PNL_PINPUT(a)           ((((unsigned char)(a)) ^ 0x7F) >> 3)
80
81 #define PNL_PBUSY               0x80    /* inverted input, active low */
82 #define PNL_PACK                0x40    /* direct input, active low */
83 #define PNL_POUTPA              0x20    /* direct input, active high */
84 #define PNL_PSELECD             0x10    /* direct input, active high */
85 #define PNL_PERRORP             0x08    /* direct input, active low */
86
87 #define PNL_PBIDIR              0x20    /* bi-directional ports */
88 #define PNL_PINTEN              0x10    /* high to read data in or-ed with data out */
89 #define PNL_PSELECP             0x08    /* inverted output, active low */
90 #define PNL_PINITP              0x04    /* direct output, active low */
91 #define PNL_PAUTOLF             0x02    /* inverted output, active low */
92 #define PNL_PSTROBE             0x01    /* inverted output */
93
94 #define PNL_PD0                 0x01
95 #define PNL_PD1                 0x02
96 #define PNL_PD2                 0x04
97 #define PNL_PD3                 0x08
98 #define PNL_PD4                 0x10
99 #define PNL_PD5                 0x20
100 #define PNL_PD6                 0x40
101 #define PNL_PD7                 0x80
102
103 #define PIN_NONE                0
104 #define PIN_STROBE              1
105 #define PIN_D0                  2
106 #define PIN_D1                  3
107 #define PIN_D2                  4
108 #define PIN_D3                  5
109 #define PIN_D4                  6
110 #define PIN_D5                  7
111 #define PIN_D6                  8
112 #define PIN_D7                  9
113 #define PIN_AUTOLF              14
114 #define PIN_INITP               16
115 #define PIN_SELECP              17
116 #define PIN_NOT_SET             127
117
118 #define LCD_FLAG_S              0x0001
119 #define LCD_FLAG_ID             0x0002
120 #define LCD_FLAG_B              0x0004  /* blink on */
121 #define LCD_FLAG_C              0x0008  /* cursor on */
122 #define LCD_FLAG_D              0x0010  /* display on */
123 #define LCD_FLAG_F              0x0020  /* large font mode */
124 #define LCD_FLAG_N              0x0040  /* 2-rows mode */
125 #define LCD_FLAG_L              0x0080  /* backlight enabled */
126
127 #define LCD_ESCAPE_LEN          24      /* 24 chars max for an LCD escape command */
128 #define LCD_ESCAPE_CHAR 27      /* use char 27 for escape command */
129
130 /* macros to simplify use of the parallel port */
131 #define r_ctr(x)        (parport_read_control((x)->port))
132 #define r_dtr(x)        (parport_read_data((x)->port))
133 #define r_str(x)        (parport_read_status((x)->port))
134 #define w_ctr(x, y)     do { parport_write_control((x)->port, (y)); } while (0)
135 #define w_dtr(x, y)     do { parport_write_data((x)->port, (y)); } while (0)
136
137 /* this defines which bits are to be used and which ones to be ignored */
138 static __u8 scan_mask_o;        /* logical or of the output bits involved in the scan matrix */
139 static __u8 scan_mask_i;        /* logical or of the input bits involved in the scan matrix */
140
141 typedef __u64 pmask_t;
142
143 enum input_type {
144         INPUT_TYPE_STD,
145         INPUT_TYPE_KBD,
146 };
147
148 enum input_state {
149         INPUT_ST_LOW,
150         INPUT_ST_RISING,
151         INPUT_ST_HIGH,
152         INPUT_ST_FALLING,
153 };
154
155 struct logical_input {
156         struct list_head list;
157         pmask_t mask;
158         pmask_t value;
159         enum input_type type;
160         enum input_state state;
161         __u8 rise_time, fall_time;
162         __u8 rise_timer, fall_timer, high_timer;
163
164         union {
165                 struct {        /* this structure is valid when type == INPUT_TYPE_STD */
166                         void (*press_fct) (int);
167                         void (*release_fct) (int);
168                         int press_data;
169                         int release_data;
170                 } std;
171                 struct {        /* this structure is valid when type == INPUT_TYPE_KBD */
172                         /* strings can be full-length (ie. non null-terminated) */
173                         char press_str[sizeof(void *) + sizeof(int)];
174                         char repeat_str[sizeof(void *) + sizeof(int)];
175                         char release_str[sizeof(void *) + sizeof(int)];
176                 } kbd;
177         } u;
178 };
179
180 LIST_HEAD(logical_inputs);      /* list of all defined logical inputs */
181
182 /* physical contacts history
183  * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
184  * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
185  * corresponds to the ground.
186  * Within each group, bits are stored in the same order as read on the port :
187  * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
188  * So, each __u64 (or pmask_t) is represented like this :
189  * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
190  * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
191  */
192 static pmask_t phys_read;       /* what has just been read from the I/O ports */
193 static pmask_t phys_read_prev;  /* previous phys_read */
194 static pmask_t phys_curr;       /* stabilized phys_read (phys_read|phys_read_prev) */
195 static pmask_t phys_prev;       /* previous phys_curr */
196 static char inputs_stable;      /* 0 means that at least one logical signal needs be computed */
197
198 /* these variables are specific to the keypad */
199 static char keypad_buffer[KEYPAD_BUFFER];
200 static int keypad_buflen;
201 static int keypad_start;
202 static char keypressed;
203 static wait_queue_head_t keypad_read_wait;
204
205 /* lcd-specific variables */
206 static unsigned long int lcd_flags;     /* contains the LCD config state */
207 static unsigned long int lcd_addr_x;    /* contains the LCD X offset */
208 static unsigned long int lcd_addr_y;    /* contains the LCD Y offset */
209 static char lcd_escape[LCD_ESCAPE_LEN + 1];     /* current escape sequence, 0 terminated */
210 static int lcd_escape_len = -1; /* not in escape state. >=0 = escape cmd len */
211
212 /*
213  * Bit masks to convert LCD signals to parallel port outputs.
214  * _d_ are values for data port, _c_ are for control port.
215  * [0] = signal OFF, [1] = signal ON, [2] = mask
216  */
217 #define BIT_CLR         0
218 #define BIT_SET         1
219 #define BIT_MSK         2
220 #define BIT_STATES      3
221 /*
222  * one entry for each bit on the LCD
223  */
224 #define LCD_BIT_E       0
225 #define LCD_BIT_RS      1
226 #define LCD_BIT_RW      2
227 #define LCD_BIT_BL      3
228 #define LCD_BIT_CL      4
229 #define LCD_BIT_DA      5
230 #define LCD_BITS        6
231
232 /*
233  * each bit can be either connected to a DATA or CTRL port
234  */
235 #define LCD_PORT_C      0
236 #define LCD_PORT_D      1
237 #define LCD_PORTS       2
238
239 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
240
241 /*
242  * LCD protocols
243  */
244 #define LCD_PROTO_PARALLEL      0
245 #define LCD_PROTO_SERIAL        1
246
247 /*
248  * LCD character sets
249  */
250 #define LCD_CHARSET_NORMAL      0
251 #define LCD_CHARSET_KS0074      1
252
253 /*
254  * LCD types
255  */
256 #define LCD_TYPE_NONE           0
257 #define LCD_TYPE_OLD            1
258 #define LCD_TYPE_KS0074         2
259 #define LCD_TYPE_HANTRONIX      3
260 #define LCD_TYPE_NEXCOM         4
261 #define LCD_TYPE_CUSTOM         5
262
263 /*
264  * keypad types
265  */
266 #define KEYPAD_TYPE_NONE        0
267 #define KEYPAD_TYPE_OLD         1
268 #define KEYPAD_TYPE_NEW         2
269 #define KEYPAD_TYPE_NEXCOM      3
270
271 /*
272  * panel profiles
273  */
274 #define PANEL_PROFILE_CUSTOM    0
275 #define PANEL_PROFILE_OLD       1
276 #define PANEL_PROFILE_NEW       2
277 #define PANEL_PROFILE_HANTRONIX 3
278 #define PANEL_PROFILE_NEXCOM    4
279 #define PANEL_PROFILE_LARGE     5
280
281 /*
282  * Construct custom config from the kernel's configuration
283  */
284 #define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
285 #define DEFAULT_PARPORT         0
286 #define DEFAULT_LCD             LCD_TYPE_OLD
287 #define DEFAULT_KEYPAD          KEYPAD_TYPE_OLD
288 #define DEFAULT_LCD_WIDTH       40
289 #define DEFAULT_LCD_BWIDTH      40
290 #define DEFAULT_LCD_HWIDTH      64
291 #define DEFAULT_LCD_HEIGHT      2
292 #define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
293
294 #define DEFAULT_LCD_PIN_E       PIN_AUTOLF
295 #define DEFAULT_LCD_PIN_RS      PIN_SELECP
296 #define DEFAULT_LCD_PIN_RW      PIN_INITP
297 #define DEFAULT_LCD_PIN_SCL     PIN_STROBE
298 #define DEFAULT_LCD_PIN_SDA     PIN_D0
299 #define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
300 #define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
301
302 #ifdef CONFIG_PANEL_PROFILE
303 #undef DEFAULT_PROFILE
304 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
305 #endif
306
307 #ifdef CONFIG_PANEL_PARPORT
308 #undef DEFAULT_PARPORT
309 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
310 #endif
311
312 #if DEFAULT_PROFILE == 0        /* custom */
313 #ifdef CONFIG_PANEL_KEYPAD
314 #undef DEFAULT_KEYPAD
315 #define DEFAULT_KEYPAD CONFIG_PANEL_KEYPAD
316 #endif
317
318 #ifdef CONFIG_PANEL_LCD
319 #undef DEFAULT_LCD
320 #define DEFAULT_LCD CONFIG_PANEL_LCD
321 #endif
322
323 #ifdef CONFIG_PANEL_LCD_WIDTH
324 #undef DEFAULT_LCD_WIDTH
325 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
326 #endif
327
328 #ifdef CONFIG_PANEL_LCD_BWIDTH
329 #undef DEFAULT_LCD_BWIDTH
330 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
331 #endif
332
333 #ifdef CONFIG_PANEL_LCD_HWIDTH
334 #undef DEFAULT_LCD_HWIDTH
335 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
336 #endif
337
338 #ifdef CONFIG_PANEL_LCD_HEIGHT
339 #undef DEFAULT_LCD_HEIGHT
340 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
341 #endif
342
343 #ifdef CONFIG_PANEL_LCD_PROTO
344 #undef DEFAULT_LCD_PROTO
345 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
346 #endif
347
348 #ifdef CONFIG_PANEL_LCD_PIN_E
349 #undef DEFAULT_LCD_PIN_E
350 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
351 #endif
352
353 #ifdef CONFIG_PANEL_LCD_PIN_RS
354 #undef DEFAULT_LCD_PIN_RS
355 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
356 #endif
357
358 #ifdef CONFIG_PANEL_LCD_PIN_RW
359 #undef DEFAULT_LCD_PIN_RW
360 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
361 #endif
362
363 #ifdef CONFIG_PANEL_LCD_PIN_SCL
364 #undef DEFAULT_LCD_PIN_SCL
365 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
366 #endif
367
368 #ifdef CONFIG_PANEL_LCD_PIN_SDA
369 #undef DEFAULT_LCD_PIN_SDA
370 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
371 #endif
372
373 #ifdef CONFIG_PANEL_LCD_PIN_BL
374 #undef DEFAULT_LCD_PIN_BL
375 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
376 #endif
377
378 #ifdef CONFIG_PANEL_LCD_CHARSET
379 #undef DEFAULT_LCD_CHARSET
380 #define DEFAULT_LCD_CHARSET
381 #endif
382
383 #endif /* DEFAULT_PROFILE == 0 */
384
385 /* global variables */
386 static int keypad_open_cnt;     /* #times opened */
387 static int lcd_open_cnt;        /* #times opened */
388 static struct pardevice *pprt;
389
390 static int lcd_initialized;
391 static int keypad_initialized;
392
393 static int light_tempo;
394
395 static char lcd_must_clear;
396 static char lcd_left_shift;
397 static char init_in_progress;
398
399 static void (*lcd_write_cmd) (int);
400 static void (*lcd_write_data) (int);
401 static void (*lcd_clear_fast) (void);
402
403 static DEFINE_SPINLOCK(pprt_lock);
404 static struct timer_list scan_timer;
405
406 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
407
408 static int parport = -1;
409 module_param(parport, int, 0000);
410 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
411
412 static int lcd_height = -1;
413 module_param(lcd_height, int, 0000);
414 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
415
416 static int lcd_width = -1;
417 module_param(lcd_width, int, 0000);
418 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
419
420 static int lcd_bwidth = -1;     /* internal buffer width (usually 40) */
421 module_param(lcd_bwidth, int, 0000);
422 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
423
424 static int lcd_hwidth = -1;     /* hardware buffer width (usually 64) */
425 module_param(lcd_hwidth, int, 0000);
426 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
427
428 static int lcd_enabled = -1;
429 module_param(lcd_enabled, int, 0000);
430 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
431
432 static int keypad_enabled = -1;
433 module_param(keypad_enabled, int, 0000);
434 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
435
436 static int lcd_type = -1;
437 module_param(lcd_type, int, 0000);
438 MODULE_PARM_DESC(lcd_type,
439                  "LCD type: 0=none, 1=old //, 2=serial ks0074, 3=hantronix //, 4=nexcom //, 5=compiled-in");
440
441 static int lcd_proto = -1;
442 module_param(lcd_proto, int, 0000);
443 MODULE_PARM_DESC(lcd_proto, "LCD communication: 0=parallel (//), 1=serial");
444
445 static int lcd_charset = -1;
446 module_param(lcd_charset, int, 0000);
447 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
448
449 static int keypad_type = -1;
450 module_param(keypad_type, int, 0000);
451 MODULE_PARM_DESC(keypad_type,
452                  "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
453
454 static int profile = DEFAULT_PROFILE;
455 module_param(profile, int, 0000);
456 MODULE_PARM_DESC(profile,
457                  "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; 4=16x2 nexcom; default=40x2, old kp");
458
459 /*
460  * These are the parallel port pins the LCD control signals are connected to.
461  * Set this to 0 if the signal is not used. Set it to its opposite value
462  * (negative) if the signal is negated. -MAXINT is used to indicate that the
463  * pin has not been explicitly specified.
464  *
465  * WARNING! no check will be performed about collisions with keypad !
466  */
467
468 static int lcd_e_pin  = PIN_NOT_SET;
469 module_param(lcd_e_pin, int, 0000);
470 MODULE_PARM_DESC(lcd_e_pin,
471                  "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
472
473 static int lcd_rs_pin = PIN_NOT_SET;
474 module_param(lcd_rs_pin, int, 0000);
475 MODULE_PARM_DESC(lcd_rs_pin,
476                  "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
477
478 static int lcd_rw_pin = PIN_NOT_SET;
479 module_param(lcd_rw_pin, int, 0000);
480 MODULE_PARM_DESC(lcd_rw_pin,
481                  "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
482
483 static int lcd_bl_pin = PIN_NOT_SET;
484 module_param(lcd_bl_pin, int, 0000);
485 MODULE_PARM_DESC(lcd_bl_pin,
486                  "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
487
488 static int lcd_da_pin = PIN_NOT_SET;
489 module_param(lcd_da_pin, int, 0000);
490 MODULE_PARM_DESC(lcd_da_pin,
491                  "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
492
493 static int lcd_cl_pin = PIN_NOT_SET;
494 module_param(lcd_cl_pin, int, 0000);
495 MODULE_PARM_DESC(lcd_cl_pin,
496                  "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
497
498 static unsigned char *lcd_char_conv;
499
500 /* for some LCD drivers (ks0074) we need a charset conversion table. */
501 static unsigned char lcd_char_conv_ks0074[256] = {
502         /*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
503         /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
504         /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
505         /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
506         /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
507         /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
508         /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
509         /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
510         /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
511         /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
512         /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
513         /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
514         /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
515         /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
516         /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
517         /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
518         /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
519         /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
520         /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
521         /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
522         /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
523         /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
524         /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
525         /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
526         /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
527         /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
528         /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
529         /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
530         /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
531         /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
532         /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
533         /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
534         /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
535 };
536
537 char old_keypad_profile[][4][9] = {
538         {"S0", "Left\n", "Left\n", ""},
539         {"S1", "Down\n", "Down\n", ""},
540         {"S2", "Up\n", "Up\n", ""},
541         {"S3", "Right\n", "Right\n", ""},
542         {"S4", "Esc\n", "Esc\n", ""},
543         {"S5", "Ret\n", "Ret\n", ""},
544         {"", "", "", ""}
545 };
546
547 /* signals, press, repeat, release */
548 char new_keypad_profile[][4][9] = {
549         {"S0", "Left\n", "Left\n", ""},
550         {"S1", "Down\n", "Down\n", ""},
551         {"S2", "Up\n", "Up\n", ""},
552         {"S3", "Right\n", "Right\n", ""},
553         {"S4s5", "", "Esc\n", "Esc\n"},
554         {"s4S5", "", "Ret\n", "Ret\n"},
555         {"S4S5", "Help\n", "", ""},
556         /* add new signals above this line */
557         {"", "", "", ""}
558 };
559
560 /* signals, press, repeat, release */
561 char nexcom_keypad_profile[][4][9] = {
562         {"a-p-e-", "Down\n", "Down\n", ""},
563         {"a-p-E-", "Ret\n", "Ret\n", ""},
564         {"a-P-E-", "Esc\n", "Esc\n", ""},
565         {"a-P-e-", "Up\n", "Up\n", ""},
566         /* add new signals above this line */
567         {"", "", "", ""}
568 };
569
570 static char (*keypad_profile)[4][9] = old_keypad_profile;
571
572 /* FIXME: this should be converted to a bit array containing signals states */
573 static struct {
574         unsigned char e;        /* parallel LCD E   (data latch on falling edge) */
575         unsigned char rs;       /* parallel LCD RS  (0 = cmd, 1 = data) */
576         unsigned char rw;       /* parallel LCD R/W (0 = W, 1 = R) */
577         unsigned char bl;       /* parallel LCD backlight (0 = off, 1 = on) */
578         unsigned char cl;       /* serial LCD clock (latch on rising edge) */
579         unsigned char da;       /* serial LCD data */
580 } bits;
581
582 static void init_scan_timer(void);
583
584 /* sets data port bits according to current signals values */
585 static int set_data_bits(void)
586 {
587         int val, bit;
588
589         val = r_dtr(pprt);
590         for (bit = 0; bit < LCD_BITS; bit++)
591                 val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
592
593         val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
594             | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
595             | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
596             | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
597             | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
598             | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
599
600         w_dtr(pprt, val);
601         return val;
602 }
603
604 /* sets ctrl port bits according to current signals values */
605 static int set_ctrl_bits(void)
606 {
607         int val, bit;
608
609         val = r_ctr(pprt);
610         for (bit = 0; bit < LCD_BITS; bit++)
611                 val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
612
613         val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
614             | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
615             | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
616             | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
617             | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
618             | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
619
620         w_ctr(pprt, val);
621         return val;
622 }
623
624 /* sets ctrl & data port bits according to current signals values */
625 static void panel_set_bits(void)
626 {
627         set_data_bits();
628         set_ctrl_bits();
629 }
630
631 /*
632  * Converts a parallel port pin (from -25 to 25) to data and control ports
633  * masks, and data and control port bits. The signal will be considered
634  * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
635  *
636  * Result will be used this way :
637  *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
638  *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
639  */
640 void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
641 {
642         int d_bit, c_bit, inv;
643
644         d_val[0] = c_val[0] = d_val[1] = c_val[1] = 0;
645         d_val[2] = c_val[2] = 0xFF;
646
647         if (pin == 0)
648                 return;
649
650         inv = (pin < 0);
651         if (inv)
652                 pin = -pin;
653
654         d_bit = c_bit = 0;
655
656         switch (pin) {
657         case PIN_STROBE:        /* strobe, inverted */
658                 c_bit = PNL_PSTROBE;
659                 inv = !inv;
660                 break;
661         case PIN_D0...PIN_D7:   /* D0 - D7 = 2 - 9 */
662                 d_bit = 1 << (pin - 2);
663                 break;
664         case PIN_AUTOLF:        /* autofeed, inverted */
665                 c_bit = PNL_PAUTOLF;
666                 inv = !inv;
667                 break;
668         case PIN_INITP: /* init, direct */
669                 c_bit = PNL_PINITP;
670                 break;
671         case PIN_SELECP:        /* select_in, inverted */
672                 c_bit = PNL_PSELECP;
673                 inv = !inv;
674                 break;
675         default:                /* unknown pin, ignore */
676                 break;
677         }
678
679         if (c_bit) {
680                 c_val[2] &= ~c_bit;
681                 c_val[!inv] = c_bit;
682         } else if (d_bit) {
683                 d_val[2] &= ~d_bit;
684                 d_val[!inv] = d_bit;
685         }
686 }
687
688 /* sleeps that many milliseconds with a reschedule */
689 static void long_sleep(int ms)
690 {
691
692         if (in_interrupt())
693                 mdelay(ms);
694         else {
695                 current->state = TASK_INTERRUPTIBLE;
696                 schedule_timeout((ms * HZ + 999) / 1000);
697         }
698 }
699
700 /* send a serial byte to the LCD panel. The caller is responsible for locking if needed. */
701 static void lcd_send_serial(int byte)
702 {
703         int bit;
704
705         /* the data bit is set on D0, and the clock on STROBE.
706          * LCD reads D0 on STROBE's rising edge.
707          */
708         for (bit = 0; bit < 8; bit++) {
709                 bits.cl = BIT_CLR;      /* CLK low */
710                 panel_set_bits();
711                 bits.da = byte & 1;
712                 panel_set_bits();
713                 udelay(2);      /* maintain the data during 2 us before CLK up */
714                 bits.cl = BIT_SET;      /* CLK high */
715                 panel_set_bits();
716                 udelay(1);      /* maintain the strobe during 1 us */
717                 byte >>= 1;
718         }
719 }
720
721 /* turn the backlight on or off */
722 static void lcd_backlight(int on)
723 {
724         if (lcd_bl_pin == PIN_NONE)
725                 return;
726
727         /* The backlight is activated by seting the AUTOFEED line to +5V  */
728         spin_lock(&pprt_lock);
729         bits.bl = on;
730         panel_set_bits();
731         spin_unlock(&pprt_lock);
732 }
733
734 /* send a command to the LCD panel in serial mode */
735 static void lcd_write_cmd_s(int cmd)
736 {
737         spin_lock(&pprt_lock);
738         lcd_send_serial(0x1F);  /* R/W=W, RS=0 */
739         lcd_send_serial(cmd & 0x0F);
740         lcd_send_serial((cmd >> 4) & 0x0F);
741         udelay(40);             /* the shortest command takes at least 40 us */
742         spin_unlock(&pprt_lock);
743 }
744
745 /* send data to the LCD panel in serial mode */
746 static void lcd_write_data_s(int data)
747 {
748         spin_lock(&pprt_lock);
749         lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
750         lcd_send_serial(data & 0x0F);
751         lcd_send_serial((data >> 4) & 0x0F);
752         udelay(40);             /* the shortest data takes at least 40 us */
753         spin_unlock(&pprt_lock);
754 }
755
756 /* send a command to the LCD panel in 8 bits parallel mode */
757 static void lcd_write_cmd_p8(int cmd)
758 {
759         spin_lock(&pprt_lock);
760         /* present the data to the data port */
761         w_dtr(pprt, cmd);
762         udelay(20);             /* maintain the data during 20 us before the strobe */
763
764         bits.e = BIT_SET;
765         bits.rs = BIT_CLR;
766         bits.rw = BIT_CLR;
767         set_ctrl_bits();
768
769         udelay(40);             /* maintain the strobe during 40 us */
770
771         bits.e = BIT_CLR;
772         set_ctrl_bits();
773
774         udelay(120);            /* the shortest command takes at least 120 us */
775         spin_unlock(&pprt_lock);
776 }
777
778 /* send data to the LCD panel in 8 bits parallel mode */
779 static void lcd_write_data_p8(int data)
780 {
781         spin_lock(&pprt_lock);
782         /* present the data to the data port */
783         w_dtr(pprt, data);
784         udelay(20);             /* maintain the data during 20 us before the strobe */
785
786         bits.e = BIT_SET;
787         bits.rs = BIT_SET;
788         bits.rw = BIT_CLR;
789         set_ctrl_bits();
790
791         udelay(40);             /* maintain the strobe during 40 us */
792
793         bits.e = BIT_CLR;
794         set_ctrl_bits();
795
796         udelay(45);             /* the shortest data takes at least 45 us */
797         spin_unlock(&pprt_lock);
798 }
799
800 static void lcd_gotoxy(void)
801 {
802         lcd_write_cmd(0x80      /* set DDRAM address */
803                       | (lcd_addr_y ? lcd_hwidth : 0)
804                       /* we force the cursor to stay at the end of the line if it wants to go farther */
805                       | ((lcd_addr_x < lcd_bwidth) ? lcd_addr_x &
806                          (lcd_hwidth - 1) : lcd_bwidth - 1));
807 }
808
809 static void lcd_print(char c)
810 {
811         if (lcd_addr_x < lcd_bwidth) {
812                 if (lcd_char_conv != NULL)
813                         c = lcd_char_conv[(unsigned char)c];
814                 lcd_write_data(c);
815                 lcd_addr_x++;
816         }
817         /* prevents the cursor from wrapping onto the next line */
818         if (lcd_addr_x == lcd_bwidth)
819                 lcd_gotoxy();
820 }
821
822 /* fills the display with spaces and resets X/Y */
823 static void lcd_clear_fast_s(void)
824 {
825         int pos;
826         lcd_addr_x = lcd_addr_y = 0;
827         lcd_gotoxy();
828
829         spin_lock(&pprt_lock);
830         for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
831                 lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
832                 lcd_send_serial(' ' & 0x0F);
833                 lcd_send_serial((' ' >> 4) & 0x0F);
834                 udelay(40);     /* the shortest data takes at least 40 us */
835         }
836         spin_unlock(&pprt_lock);
837
838         lcd_addr_x = lcd_addr_y = 0;
839         lcd_gotoxy();
840 }
841
842 /* fills the display with spaces and resets X/Y */
843 static void lcd_clear_fast_p8(void)
844 {
845         int pos;
846         lcd_addr_x = lcd_addr_y = 0;
847         lcd_gotoxy();
848
849         spin_lock(&pprt_lock);
850         for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
851                 /* present the data to the data port */
852                 w_dtr(pprt, ' ');
853                 udelay(20);     /* maintain the data during 20 us before the strobe */
854
855                 bits.e = BIT_SET;
856                 bits.rs = BIT_SET;
857                 bits.rw = BIT_CLR;
858                 set_ctrl_bits();
859
860                 udelay(40);     /* maintain the strobe during 40 us */
861
862                 bits.e = BIT_CLR;
863                 set_ctrl_bits();
864
865                 udelay(45);     /* the shortest data takes at least 45 us */
866         }
867         spin_unlock(&pprt_lock);
868
869         lcd_addr_x = lcd_addr_y = 0;
870         lcd_gotoxy();
871 }
872
873 /* clears the display and resets X/Y */
874 static void lcd_clear_display(void)
875 {
876         lcd_write_cmd(0x01);    /* clear display */
877         lcd_addr_x = lcd_addr_y = 0;
878         /* we must wait a few milliseconds (15) */
879         long_sleep(15);
880 }
881
882 static void lcd_init_display(void)
883 {
884
885         lcd_flags = ((lcd_height > 1) ? LCD_FLAG_N : 0)
886             | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
887
888         long_sleep(20);         /* wait 20 ms after power-up for the paranoid */
889
890         lcd_write_cmd(0x30);    /* 8bits, 1 line, small fonts */
891         long_sleep(10);
892         lcd_write_cmd(0x30);    /* 8bits, 1 line, small fonts */
893         long_sleep(10);
894         lcd_write_cmd(0x30);    /* 8bits, 1 line, small fonts */
895         long_sleep(10);
896
897         lcd_write_cmd(0x30      /* set font height and lines number */
898                       | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
899                       | ((lcd_flags & LCD_FLAG_N) ? 8 : 0)
900             );
901         long_sleep(10);
902
903         lcd_write_cmd(0x08);    /* display off, cursor off, blink off */
904         long_sleep(10);
905
906         lcd_write_cmd(0x08      /* set display mode */
907                       | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
908                       | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
909                       | ((lcd_flags & LCD_FLAG_B) ? 1 : 0)
910             );
911
912         lcd_backlight((lcd_flags & LCD_FLAG_L) ? 1 : 0);
913
914         long_sleep(10);
915
916         lcd_write_cmd(0x06);    /* entry mode set : increment, cursor shifting */
917
918         lcd_clear_display();
919 }
920
921 /*
922  * These are the file operation function for user access to /dev/lcd
923  * This function can also be called from inside the kernel, by
924  * setting file and ppos to NULL.
925  *
926  */
927
928 static ssize_t lcd_write(struct file *file,
929                          const char *buf, size_t count, loff_t *ppos)
930 {
931
932         const char *tmp = buf;
933         char c;
934
935         for (; count-- > 0; (ppos ? (*ppos)++ : 0), ++tmp) {
936                 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
937                         schedule();     /* let's be a little nice with other processes that need some CPU */
938
939                 if (ppos == NULL && file == NULL)
940                         c = *tmp;       /* let's not use get_user() from the kernel ! */
941                 else if (get_user(c, tmp))
942                         return -EFAULT;
943
944                 /* first, we'll test if we're in escape mode */
945                 if ((c != '\n') && lcd_escape_len >= 0) {       /* yes, let's add this char to the buffer */
946                         lcd_escape[lcd_escape_len++] = c;
947                         lcd_escape[lcd_escape_len] = 0;
948                 } else {
949                         lcd_escape_len = -1;    /* aborts any previous escape sequence */
950
951                         switch (c) {
952                         case LCD_ESCAPE_CHAR:   /* start of an escape sequence */
953                                 lcd_escape_len = 0;
954                                 lcd_escape[lcd_escape_len] = 0;
955                                 break;
956                         case '\b':      /* go back one char and clear it */
957                                 if (lcd_addr_x > 0) {
958                                         if (lcd_addr_x < lcd_bwidth)    /* check if we're not at the end of the line */
959                                                 lcd_write_cmd(0x10);    /* back one char */
960                                         lcd_addr_x--;
961                                 }
962                                 lcd_write_data(' ');    /* replace with a space */
963                                 lcd_write_cmd(0x10);    /* back one char again */
964                                 break;
965                         case '\014':    /* quickly clear the display */
966                                 lcd_clear_fast();
967                                 break;
968                         case '\n':      /* flush the remainder of the current line and go to the
969                                            beginning of the next line */
970                                 for (; lcd_addr_x < lcd_bwidth; lcd_addr_x++)
971                                         lcd_write_data(' ');
972                                 lcd_addr_x = 0;
973                                 lcd_addr_y = (lcd_addr_y + 1) % lcd_height;
974                                 lcd_gotoxy();
975                                 break;
976                         case '\r':      /* go to the beginning of the same line */
977                                 lcd_addr_x = 0;
978                                 lcd_gotoxy();
979                                 break;
980                         case '\t':      /* print a space instead of the tab */
981                                 lcd_print(' ');
982                                 break;
983                         default:        /* simply print this char */
984                                 lcd_print(c);
985                                 break;
986                         }
987                 }
988
989                 /* now we'll see if we're in an escape mode and if the current
990                    escape sequence can be understood.
991                  */
992                 if (lcd_escape_len >= 2) {      /* minimal length for an escape command */
993                         int processed = 0;      /* 1 means the command has been processed */
994
995                         if (!strcmp(lcd_escape, "[2J")) {       /* Clear the display */
996                                 lcd_clear_fast();       /* clear display */
997                                 processed = 1;
998                         } else if (!strcmp(lcd_escape, "[H")) { /* Cursor to home */
999                                 lcd_addr_x = lcd_addr_y = 0;
1000                                 lcd_gotoxy();
1001                                 processed = 1;
1002                         }
1003                         /* codes starting with ^[[L */
1004                         else if ((lcd_escape_len >= 3) &&
1005                                  (lcd_escape[0] == '[') && (lcd_escape[1] == 'L')) {    /* LCD special codes */
1006
1007                                 char *esc = lcd_escape + 2;
1008                                 int oldflags = lcd_flags;
1009
1010                                 /* check for display mode flags */
1011                                 switch (*esc) {
1012                                 case 'D':       /* Display ON */
1013                                         lcd_flags |= LCD_FLAG_D;
1014                                         processed = 1;
1015                                         break;
1016                                 case 'd':       /* Display OFF */
1017                                         lcd_flags &= ~LCD_FLAG_D;
1018                                         processed = 1;
1019                                         break;
1020                                 case 'C':       /* Cursor ON */
1021                                         lcd_flags |= LCD_FLAG_C;
1022                                         processed = 1;
1023                                         break;
1024                                 case 'c':       /* Cursor OFF */
1025                                         lcd_flags &= ~LCD_FLAG_C;
1026                                         processed = 1;
1027                                         break;
1028                                 case 'B':       /* Blink ON */
1029                                         lcd_flags |= LCD_FLAG_B;
1030                                         processed = 1;
1031                                         break;
1032                                 case 'b':       /* Blink OFF */
1033                                         lcd_flags &= ~LCD_FLAG_B;
1034                                         processed = 1;
1035                                         break;
1036                                 case '+':       /* Back light ON */
1037                                         lcd_flags |= LCD_FLAG_L;
1038                                         processed = 1;
1039                                         break;
1040                                 case '-':       /* Back light OFF */
1041                                         lcd_flags &= ~LCD_FLAG_L;
1042                                         processed = 1;
1043                                         break;
1044                                 case '*':       /* flash back light using the keypad timer */
1045                                         if (scan_timer.function != NULL) {
1046                                                 if (light_tempo == 0
1047                                                     && ((lcd_flags & LCD_FLAG_L)
1048                                                         == 0))
1049                                                         lcd_backlight(1);
1050                                                 light_tempo = FLASH_LIGHT_TEMPO;
1051                                         }
1052                                         processed = 1;
1053                                         break;
1054                                 case 'f':       /* Small Font */
1055                                         lcd_flags &= ~LCD_FLAG_F;
1056                                         processed = 1;
1057                                         break;
1058                                 case 'F':       /* Large Font */
1059                                         lcd_flags |= LCD_FLAG_F;
1060                                         processed = 1;
1061                                         break;
1062                                 case 'n':       /* One Line */
1063                                         lcd_flags &= ~LCD_FLAG_N;
1064                                         processed = 1;
1065                                         break;
1066                                 case 'N':       /* Two Lines */
1067                                         lcd_flags |= LCD_FLAG_N;
1068                                         break;
1069
1070                                 case 'l':       /* Shift Cursor Left */
1071                                         if (lcd_addr_x > 0) {
1072                                                 if (lcd_addr_x < lcd_bwidth)
1073                                                         lcd_write_cmd(0x10);    /* back one char if not at end of line */
1074                                                 lcd_addr_x--;
1075                                         }
1076                                         processed = 1;
1077                                         break;
1078
1079                                 case 'r':       /* shift cursor right */
1080                                         if (lcd_addr_x < lcd_width) {
1081                                                 if (lcd_addr_x < (lcd_bwidth - 1))
1082                                                         lcd_write_cmd(0x14);    /* allow the cursor to pass the end of the line */
1083                                                 lcd_addr_x++;
1084                                         }
1085                                         processed = 1;
1086                                         break;
1087
1088                                 case 'L':       /* shift display left */
1089                                         lcd_left_shift++;
1090                                         lcd_write_cmd(0x18);
1091                                         processed = 1;
1092                                         break;
1093
1094                                 case 'R':       /* shift display right */
1095                                         lcd_left_shift--;
1096                                         lcd_write_cmd(0x1C);
1097                                         processed = 1;
1098                                         break;
1099
1100                                 case 'k':{      /* kill end of line */
1101                                                 int x;
1102                                                 for (x = lcd_addr_x; x < lcd_bwidth; x++)
1103                                                         lcd_write_data(' ');
1104                                                 lcd_gotoxy();   /* restore cursor position */
1105                                                 processed = 1;
1106                                                 break;
1107                                         }
1108                                 case 'I':       /* reinitialize display */
1109                                         lcd_init_display();
1110                                         lcd_left_shift = 0;
1111                                         processed = 1;
1112                                         break;
1113
1114                                 case 'G':       /* Generator : LGcxxxxx...xx; */  {
1115                                                 /* must have <c> between '0' and '7', representing the numerical
1116                                                  * ASCII code of the redefined character, and <xx...xx> a sequence
1117                                                  * of 16 hex digits representing 8 bytes for each character. Most
1118                                                  * LCDs will only use 5 lower bits of the 7 first bytes.
1119                                                  */
1120
1121                                                 unsigned char cgbytes[8];
1122                                                 unsigned char cgaddr;
1123                                                 int cgoffset;
1124                                                 int shift;
1125                                                 char value;
1126                                                 int addr;
1127
1128                                                 if (strchr(esc, ';') == NULL)
1129                                                         break;
1130
1131                                                 esc++;
1132
1133                                                 cgaddr = *(esc++) - '0';
1134                                                 if (cgaddr > 7) {
1135                                                         processed = 1;
1136                                                         break;
1137                                                 }
1138
1139                                                 cgoffset = 0;
1140                                                 shift = 0;
1141                                                 value = 0;
1142                                                 while (*esc && cgoffset < 8) {
1143                                                         shift ^= 4;
1144                                                         if (*esc >= '0' && *esc <= '9')
1145                                                                 value |= (*esc - '0') << shift;
1146                                                         else if (*esc >= 'A' && *esc <= 'Z')
1147                                                                 value |= (*esc - 'A' + 10) << shift;
1148                                                         else if (*esc >= 'a' && *esc <= 'z')
1149                                                                 value |= (*esc - 'a' + 10) << shift;
1150                                                         else {
1151                                                                 esc++;
1152                                                                 continue;
1153                                                         }
1154
1155                                                         if (shift == 0) {
1156                                                                 cgbytes[cgoffset++] = value;
1157                                                                 value = 0;
1158                                                         }
1159
1160                                                         esc++;
1161                                                 }
1162
1163                                                 lcd_write_cmd(0x40 | (cgaddr * 8));
1164                                                 for (addr = 0; addr < cgoffset; addr++)
1165                                                         lcd_write_data(cgbytes[addr]);
1166
1167                                                 lcd_gotoxy();   /* ensures that we stop writing to CGRAM */
1168                                                 processed = 1;
1169                                                 break;
1170                                         }
1171                                 case 'x':       /* gotoxy : LxXXX[yYYY]; */
1172                                 case 'y':       /* gotoxy : LyYYY[xXXX]; */
1173                                         if (strchr(esc, ';') == NULL)
1174                                                 break;
1175
1176                                         while (*esc) {
1177                                                 if (*esc == 'x') {
1178                                                         esc++;
1179                                                         lcd_addr_x = 0;
1180                                                         while (isdigit(*esc)) {
1181                                                                 lcd_addr_x =
1182                                                                     lcd_addr_x *
1183                                                                     10 + (*esc -
1184                                                                           '0');
1185                                                                 esc++;
1186                                                         }
1187                                                 } else if (*esc == 'y') {
1188                                                         esc++;
1189                                                         lcd_addr_y = 0;
1190                                                         while (isdigit(*esc)) {
1191                                                                 lcd_addr_y =
1192                                                                     lcd_addr_y *
1193                                                                     10 + (*esc -
1194                                                                           '0');
1195                                                                 esc++;
1196                                                         }
1197                                                 } else
1198                                                         break;
1199                                         }
1200
1201                                         lcd_gotoxy();
1202                                         processed = 1;
1203                                         break;
1204                                 }       /* end of switch */
1205
1206                                 /* Check wether one flag was changed */
1207                                 if (oldflags != lcd_flags) {
1208                                         /* check wether one of B,C,D flags was changed */
1209                                         if ((oldflags ^ lcd_flags) &
1210                                             (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1211                                                 /* set display mode */
1212                                                 lcd_write_cmd(0x08 |
1213                                                               ((lcd_flags & LCD_FLAG_D) ? 4 : 0) |
1214                                                               ((lcd_flags & LCD_FLAG_C) ? 2 : 0) |
1215                                                               ((lcd_flags & LCD_FLAG_B) ? 1 : 0));
1216                                         /* check wether one of F,N flags was changed */
1217                                         else if ((oldflags ^ lcd_flags) &
1218                                                  (LCD_FLAG_F | LCD_FLAG_N))
1219                                                 lcd_write_cmd(0x30 |
1220                                                               ((lcd_flags & LCD_FLAG_F) ? 4 : 0) |
1221                                                               ((lcd_flags & LCD_FLAG_N) ? 8 : 0));
1222                                         /* check wether L flag was changed */
1223                                         else if ((oldflags ^ lcd_flags) &
1224                                                  (LCD_FLAG_L)) {
1225                                                 if (lcd_flags & (LCD_FLAG_L))
1226                                                         lcd_backlight(1);
1227                                                 else if (light_tempo == 0)      /* switch off the light only when the tempo lighting is gone */
1228                                                         lcd_backlight(0);
1229                                         }
1230                                 }
1231                         }
1232
1233                         /* LCD special escape codes */
1234                         /* flush the escape sequence if it's been processed or if it is
1235                            getting too long. */
1236                         if (processed || (lcd_escape_len >= LCD_ESCAPE_LEN))
1237                                 lcd_escape_len = -1;
1238                 }               /* escape codes */
1239         }
1240
1241         return tmp - buf;
1242 }
1243
1244 static int lcd_open(struct inode *inode, struct file *file)
1245 {
1246         if (lcd_open_cnt)
1247                 return -EBUSY;  /* open only once at a time */
1248
1249         if (file->f_mode & FMODE_READ)  /* device is write-only */
1250                 return -EPERM;
1251
1252         if (lcd_must_clear) {
1253                 lcd_clear_display();
1254                 lcd_must_clear = 0;
1255         }
1256         lcd_open_cnt++;
1257         return 0;
1258 }
1259
1260 static int lcd_release(struct inode *inode, struct file *file)
1261 {
1262         lcd_open_cnt--;
1263         return 0;
1264 }
1265
1266 static struct file_operations lcd_fops = {
1267         .write   = lcd_write,
1268         .open    = lcd_open,
1269         .release = lcd_release,
1270 };
1271
1272 static struct miscdevice lcd_dev = {
1273         LCD_MINOR,
1274         "lcd",
1275         &lcd_fops
1276 };
1277
1278 /* public function usable from the kernel for any purpose */
1279 void panel_lcd_print(char *s)
1280 {
1281         if (lcd_enabled && lcd_initialized)
1282                 lcd_write(NULL, s, strlen(s), NULL);
1283 }
1284
1285 /* initialize the LCD driver */
1286 void lcd_init(void)
1287 {
1288         switch (lcd_type) {
1289         case LCD_TYPE_OLD:      /* parallel mode, 8 bits */
1290                 if (lcd_proto < 0)
1291                         lcd_proto = LCD_PROTO_PARALLEL;
1292                 if (lcd_charset < 0)
1293                         lcd_charset = LCD_CHARSET_NORMAL;
1294                 if (lcd_e_pin == PIN_NOT_SET)
1295                         lcd_e_pin = PIN_STROBE;
1296                 if (lcd_rs_pin == PIN_NOT_SET)
1297                         lcd_rs_pin = PIN_AUTOLF;
1298
1299                 if (lcd_width < 0)
1300                         lcd_width = 40;
1301                 if (lcd_bwidth < 0)
1302                         lcd_bwidth = 40;
1303                 if (lcd_hwidth < 0)
1304                         lcd_hwidth = 64;
1305                 if (lcd_height < 0)
1306                         lcd_height = 2;
1307                 break;
1308         case LCD_TYPE_KS0074:   /* serial mode, ks0074 */
1309                 if (lcd_proto < 0)
1310                         lcd_proto = LCD_PROTO_SERIAL;
1311                 if (lcd_charset < 0)
1312                         lcd_charset = LCD_CHARSET_KS0074;
1313                 if (lcd_bl_pin == PIN_NOT_SET)
1314                         lcd_bl_pin = PIN_AUTOLF;
1315                 if (lcd_cl_pin == PIN_NOT_SET)
1316                         lcd_cl_pin = PIN_STROBE;
1317                 if (lcd_da_pin == PIN_NOT_SET)
1318                         lcd_da_pin = PIN_D0;
1319
1320                 if (lcd_width < 0)
1321                         lcd_width = 16;
1322                 if (lcd_bwidth < 0)
1323                         lcd_bwidth = 40;
1324                 if (lcd_hwidth < 0)
1325                         lcd_hwidth = 16;
1326                 if (lcd_height < 0)
1327                         lcd_height = 2;
1328                 break;
1329         case LCD_TYPE_NEXCOM:   /* parallel mode, 8 bits, generic */
1330                 if (lcd_proto < 0)
1331                         lcd_proto = LCD_PROTO_PARALLEL;
1332                 if (lcd_charset < 0)
1333                         lcd_charset = LCD_CHARSET_NORMAL;
1334                 if (lcd_e_pin == PIN_NOT_SET)
1335                         lcd_e_pin = PIN_AUTOLF;
1336                 if (lcd_rs_pin == PIN_NOT_SET)
1337                         lcd_rs_pin = PIN_SELECP;
1338                 if (lcd_rw_pin == PIN_NOT_SET)
1339                         lcd_rw_pin = PIN_INITP;
1340
1341                 if (lcd_width < 0)
1342                         lcd_width = 16;
1343                 if (lcd_bwidth < 0)
1344                         lcd_bwidth = 40;
1345                 if (lcd_hwidth < 0)
1346                         lcd_hwidth = 64;
1347                 if (lcd_height < 0)
1348                         lcd_height = 2;
1349                 break;
1350         case LCD_TYPE_CUSTOM:   /* customer-defined */
1351                 if (lcd_proto < 0)
1352                         lcd_proto = DEFAULT_LCD_PROTO;
1353                 if (lcd_charset < 0)
1354                         lcd_charset = DEFAULT_LCD_CHARSET;
1355                 /* default geometry will be set later */
1356                 break;
1357         case LCD_TYPE_HANTRONIX:        /* parallel mode, 8 bits, hantronix-like */
1358         default:
1359                 if (lcd_proto < 0)
1360                         lcd_proto = LCD_PROTO_PARALLEL;
1361                 if (lcd_charset < 0)
1362                         lcd_charset = LCD_CHARSET_NORMAL;
1363                 if (lcd_e_pin == PIN_NOT_SET)
1364                         lcd_e_pin = PIN_STROBE;
1365                 if (lcd_rs_pin == PIN_NOT_SET)
1366                         lcd_rs_pin = PIN_SELECP;
1367
1368                 if (lcd_width < 0)
1369                         lcd_width = 16;
1370                 if (lcd_bwidth < 0)
1371                         lcd_bwidth = 40;
1372                 if (lcd_hwidth < 0)
1373                         lcd_hwidth = 64;
1374                 if (lcd_height < 0)
1375                         lcd_height = 2;
1376                 break;
1377         }
1378
1379         /* this is used to catch wrong and default values */
1380         if (lcd_width <= 0)
1381                 lcd_width = DEFAULT_LCD_WIDTH;
1382         if (lcd_bwidth <= 0)
1383                 lcd_bwidth = DEFAULT_LCD_BWIDTH;
1384         if (lcd_hwidth <= 0)
1385                 lcd_hwidth = DEFAULT_LCD_HWIDTH;
1386         if (lcd_height <= 0)
1387                 lcd_height = DEFAULT_LCD_HEIGHT;
1388
1389         if (lcd_proto == LCD_PROTO_SERIAL) {    /* SERIAL */
1390                 lcd_write_cmd = lcd_write_cmd_s;
1391                 lcd_write_data = lcd_write_data_s;
1392                 lcd_clear_fast = lcd_clear_fast_s;
1393
1394                 if (lcd_cl_pin == PIN_NOT_SET)
1395                         lcd_cl_pin = DEFAULT_LCD_PIN_SCL;
1396                 if (lcd_da_pin == PIN_NOT_SET)
1397                         lcd_da_pin = DEFAULT_LCD_PIN_SDA;
1398
1399         } else {                /* PARALLEL */
1400                 lcd_write_cmd = lcd_write_cmd_p8;
1401                 lcd_write_data = lcd_write_data_p8;
1402                 lcd_clear_fast = lcd_clear_fast_p8;
1403
1404                 if (lcd_e_pin == PIN_NOT_SET)
1405                         lcd_e_pin = DEFAULT_LCD_PIN_E;
1406                 if (lcd_rs_pin == PIN_NOT_SET)
1407                         lcd_rs_pin = DEFAULT_LCD_PIN_RS;
1408                 if (lcd_rw_pin == PIN_NOT_SET)
1409                         lcd_rw_pin = DEFAULT_LCD_PIN_RW;
1410         }
1411
1412         if (lcd_bl_pin == PIN_NOT_SET)
1413                 lcd_bl_pin = DEFAULT_LCD_PIN_BL;
1414
1415         if (lcd_e_pin == PIN_NOT_SET)
1416                 lcd_e_pin = PIN_NONE;
1417         if (lcd_rs_pin == PIN_NOT_SET)
1418                 lcd_rs_pin = PIN_NONE;
1419         if (lcd_rw_pin == PIN_NOT_SET)
1420                 lcd_rw_pin = PIN_NONE;
1421         if (lcd_bl_pin == PIN_NOT_SET)
1422                 lcd_bl_pin = PIN_NONE;
1423         if (lcd_cl_pin == PIN_NOT_SET)
1424                 lcd_cl_pin = PIN_NONE;
1425         if (lcd_da_pin == PIN_NOT_SET)
1426                 lcd_da_pin = PIN_NONE;
1427
1428         if (lcd_charset < 0)
1429                 lcd_charset = DEFAULT_LCD_CHARSET;
1430
1431         if (lcd_charset == LCD_CHARSET_KS0074)
1432                 lcd_char_conv = lcd_char_conv_ks0074;
1433         else
1434                 lcd_char_conv = NULL;
1435
1436         if (lcd_bl_pin != PIN_NONE)
1437                 init_scan_timer();
1438
1439         pin_to_bits(lcd_e_pin, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1440                     lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1441         pin_to_bits(lcd_rs_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1442                     lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1443         pin_to_bits(lcd_rw_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1444                     lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1445         pin_to_bits(lcd_bl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1446                     lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1447         pin_to_bits(lcd_cl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1448                     lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1449         pin_to_bits(lcd_da_pin, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1450                     lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1451
1452         /* before this line, we must NOT send anything to the display.
1453          * Since lcd_init_display() needs to write data, we have to
1454          * enable mark the LCD initialized just before.
1455          */
1456         lcd_initialized = 1;
1457         lcd_init_display();
1458
1459         /* display a short message */
1460 #ifdef CONFIG_PANEL_CHANGE_MESSAGE
1461 #ifdef CONFIG_PANEL_BOOT_MESSAGE
1462         panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1463 #endif
1464 #else
1465         panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1466                         PANEL_VERSION);
1467 #endif
1468         lcd_addr_x = lcd_addr_y = 0;
1469         lcd_must_clear = 1;     /* clear the display on the next device opening */
1470         lcd_gotoxy();
1471 }
1472
1473 /*
1474  * These are the file operation function for user access to /dev/keypad
1475  */
1476
1477 static ssize_t keypad_read(struct file *file,
1478                            char *buf, size_t count, loff_t *ppos)
1479 {
1480
1481         unsigned i = *ppos;
1482         char *tmp = buf;
1483
1484         if (keypad_buflen == 0) {
1485                 if (file->f_flags & O_NONBLOCK)
1486                         return -EAGAIN;
1487
1488                 interruptible_sleep_on(&keypad_read_wait);
1489                 if (signal_pending(current))
1490                         return -EINTR;
1491         }
1492
1493         for (; count-- > 0 && (keypad_buflen > 0); ++i, ++tmp, --keypad_buflen) {
1494                 put_user(keypad_buffer[keypad_start], tmp);
1495                 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1496         }
1497         *ppos = i;
1498
1499         return tmp - buf;
1500 }
1501
1502 static int keypad_open(struct inode *inode, struct file *file)
1503 {
1504
1505         if (keypad_open_cnt)
1506                 return -EBUSY;  /* open only once at a time */
1507
1508         if (file->f_mode & FMODE_WRITE) /* device is read-only */
1509                 return -EPERM;
1510
1511         keypad_buflen = 0;      /* flush the buffer on opening */
1512         keypad_open_cnt++;
1513         return 0;
1514 }
1515
1516 static int keypad_release(struct inode *inode, struct file *file)
1517 {
1518         keypad_open_cnt--;
1519         return 0;
1520 }
1521
1522 static struct file_operations keypad_fops = {
1523         .read    = keypad_read,         /* read */
1524         .open    = keypad_open,         /* open */
1525         .release = keypad_release,      /* close */
1526 };
1527
1528 static struct miscdevice keypad_dev = {
1529         KEYPAD_MINOR,
1530         "keypad",
1531         &keypad_fops
1532 };
1533
1534 static void keypad_send_key(char *string, int max_len)
1535 {
1536         if (init_in_progress)
1537                 return;
1538
1539         /* send the key to the device only if a process is attached to it. */
1540         if (keypad_open_cnt > 0) {
1541                 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1542                         keypad_buffer[(keypad_start + keypad_buflen++) %
1543                                       KEYPAD_BUFFER] = *string++;
1544                 }
1545                 wake_up_interruptible(&keypad_read_wait);
1546         }
1547 }
1548
1549 /* this function scans all the bits involving at least one logical signal, and puts the
1550  * results in the bitfield "phys_read" (one bit per established contact), and sets
1551  * "phys_read_prev" to "phys_read".
1552  *
1553  * Note: to debounce input signals, we will only consider as switched a signal which is
1554  * stable across 2 measures. Signals which are different between two reads will be kept
1555  * as they previously were in their logical form (phys_prev). A signal which has just
1556  * switched will have a 1 in (phys_read ^ phys_read_prev).
1557  */
1558 static void phys_scan_contacts(void)
1559 {
1560         int bit, bitval;
1561         char oldval;
1562         char bitmask;
1563         char gndmask;
1564
1565         phys_prev = phys_curr;
1566         phys_read_prev = phys_read;
1567         phys_read = 0;          /* flush all signals */
1568
1569         oldval = r_dtr(pprt) | scan_mask_o;     /* keep track of old value, with all outputs disabled */
1570         w_dtr(pprt, oldval & ~scan_mask_o);     /* activate all keyboard outputs (active low) */
1571         bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;        /* will have a 1 for each bit set to gnd */
1572         w_dtr(pprt, oldval);    /* disable all matrix signals */
1573
1574         /* now that all outputs are cleared, the only active input bits are
1575          * directly connected to the ground
1576          */
1577         gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;        /* 1 for each grounded input */
1578
1579         phys_read |= (pmask_t) gndmask << 40;   /* grounded inputs are signals 40-44 */
1580
1581         if (bitmask != gndmask) {
1582                 /* since clearing the outputs changed some inputs, we know that some
1583                  * input signals are currently tied to some outputs. So we'll scan them.
1584                  */
1585                 for (bit = 0; bit < 8; bit++) {
1586                         bitval = 1 << bit;
1587
1588                         if (!(scan_mask_o & bitval))    /* skip unused bits */
1589                                 continue;
1590
1591                         w_dtr(pprt, oldval & ~bitval);  /* enable this output */
1592                         bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1593                         phys_read |= (pmask_t) bitmask << (5 * bit);
1594                 }
1595                 w_dtr(pprt, oldval);    /* disable all outputs */
1596         }
1597         /* this is easy: use old bits when they are flapping, use new ones when stable */
1598         phys_curr =
1599             (phys_prev & (phys_read ^ phys_read_prev)) | (phys_read &
1600                                                           ~(phys_read ^
1601                                                             phys_read_prev));
1602 }
1603
1604 static void panel_process_inputs(void)
1605 {
1606         struct list_head *item;
1607         struct logical_input *input;
1608
1609 #if 0
1610         printk(KERN_DEBUG
1611                "entering panel_process_inputs with pp=%016Lx & pc=%016Lx\n",
1612                phys_prev, phys_curr);
1613 #endif
1614
1615         keypressed = 0;
1616         inputs_stable = 1;
1617         list_for_each(item, &logical_inputs) {
1618                 input = list_entry(item, struct logical_input, list);
1619
1620                 switch (input->state) {
1621                 case INPUT_ST_LOW:
1622                         if ((phys_curr & input->mask) != input->value)
1623                                 break;
1624                         /* if all needed ones were already set previously, this means that
1625                          * this logical signal has been activated by the releasing of
1626                          * another combined signal, so we don't want to match.
1627                          * eg: AB -(release B)-> A -(release A)-> 0 : don't match A.
1628                          */
1629                         if ((phys_prev & input->mask) == input->value)
1630                                 break;
1631                         input->rise_timer = 0;
1632                         input->state = INPUT_ST_RISING;
1633                         /* no break here, fall through */
1634                 case INPUT_ST_RISING:
1635                         if ((phys_curr & input->mask) != input->value) {
1636                                 input->state = INPUT_ST_LOW;
1637                                 break;
1638                         }
1639                         if (input->rise_timer < input->rise_time) {
1640                                 inputs_stable = 0;
1641                                 input->rise_timer++;
1642                                 break;
1643                         }
1644                         input->high_timer = 0;
1645                         input->state = INPUT_ST_HIGH;
1646                         /* no break here, fall through */
1647                 case INPUT_ST_HIGH:
1648 #if 0
1649                         /* FIXME:
1650                          * this is an invalid test. It tries to catch transitions from single-key
1651                          * to multiple-key, but doesn't take into account the contacts polarity.
1652                          * The only solution to the problem is to parse keys from the most complex
1653                          * to the simplest combinations, and mark them as 'caught' once a combination
1654                          * matches, then unmatch it for all other ones.
1655                          */
1656
1657                         /* try to catch dangerous transitions cases :
1658                          * someone adds a bit, so this signal was a false
1659                          * positive resulting from a transition. We should invalidate
1660                          * the signal immediately and not call the release function.
1661                          * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1662                          */
1663                         if (((phys_prev & input->mask) == input->value)
1664                             && ((phys_curr & input->mask) > input->value)) {
1665                                 input->state = INPUT_ST_LOW;    /* invalidate */
1666                                 break;
1667                         }
1668 #endif
1669
1670                         if ((phys_curr & input->mask) == input->value) {
1671                                 if ((input->type == INPUT_TYPE_STD)
1672                                     && (input->high_timer == 0)) {
1673                                         input->high_timer++;
1674                                         if (input->u.std.press_fct != NULL)
1675                                                 input->u.std.press_fct(input->u.
1676                                                                        std.
1677                                                                        press_data);
1678                                 } else if (input->type == INPUT_TYPE_KBD) {
1679                                         keypressed = 1; /* will turn on the light */
1680
1681                                         if (input->high_timer == 0) {
1682                                                 if (input->u.kbd.press_str[0])
1683                                                         keypad_send_key(input->
1684                                                                         u.kbd.
1685                                                                         press_str,
1686                                                                         sizeof
1687                                                                         (input->
1688                                                                          u.kbd.
1689                                                                          press_str));
1690                                         }
1691
1692                                         if (input->u.kbd.repeat_str[0]) {
1693                                                 if (input->high_timer >=
1694                                                     KEYPAD_REP_START) {
1695                                                         input->high_timer -=
1696                                                             KEYPAD_REP_DELAY;
1697                                                         keypad_send_key(input->
1698                                                                         u.kbd.
1699                                                                         repeat_str,
1700                                                                         sizeof
1701                                                                         (input->
1702                                                                          u.kbd.
1703                                                                          repeat_str));
1704                                                 }
1705                                                 inputs_stable = 0;      /* we will need to come back here soon */
1706                                         }
1707
1708                                         if (input->high_timer < 255)
1709                                                 input->high_timer++;
1710                                 }
1711                                 break;
1712                         } else {
1713                                 /* else signal falling down. Let's fall through. */
1714                                 input->state = INPUT_ST_FALLING;
1715                                 input->fall_timer = 0;
1716                         }
1717                         /* no break here, fall through */
1718                 case INPUT_ST_FALLING:
1719 #if 0
1720                         /* FIXME !!! same comment as above */
1721                         if (((phys_prev & input->mask) == input->value)
1722                             && ((phys_curr & input->mask) > input->value)) {
1723                                 input->state = INPUT_ST_LOW;    /* invalidate */
1724                                 break;
1725                         }
1726 #endif
1727
1728                         if ((phys_curr & input->mask) == input->value) {
1729                                 if (input->type == INPUT_TYPE_KBD) {
1730                                         keypressed = 1; /* will turn on the light */
1731
1732                                         if (input->u.kbd.repeat_str[0]) {
1733                                                 if (input->high_timer >= KEYPAD_REP_START)
1734                                                         input->high_timer -= KEYPAD_REP_DELAY;
1735                                                 keypad_send_key(input->u.kbd.repeat_str,
1736                                                                 sizeof(input->u.kbd.repeat_str));
1737                                                 inputs_stable = 0;      /* we will need to come back here soon */
1738                                         }
1739
1740                                         if (input->high_timer < 255)
1741                                                 input->high_timer++;
1742                                 }
1743                                 input->state = INPUT_ST_HIGH;
1744                                 break;
1745                         } else if (input->fall_timer >= input->fall_time) {
1746                                 /* call release event */
1747                                 if (input->type == INPUT_TYPE_STD) {
1748                                         if (input->u.std.release_fct != NULL)
1749                                                 input->u.std.release_fct(input->u.std.release_data);
1750
1751                                 } else if (input->type == INPUT_TYPE_KBD) {
1752                                         if (input->u.kbd.release_str[0])
1753                                                 keypad_send_key(input->u.kbd.release_str,
1754                                                                 sizeof(input->u.kbd.release_str));
1755                                 }
1756
1757                                 input->state = INPUT_ST_LOW;
1758                                 break;
1759                         } else {
1760                                 input->fall_timer++;
1761                                 inputs_stable = 0;
1762                                 break;
1763                         }
1764                 }
1765         }
1766 }
1767
1768 static void panel_scan_timer(void)
1769 {
1770         if (keypad_enabled && keypad_initialized) {
1771                 if (spin_trylock(&pprt_lock)) {
1772                         phys_scan_contacts();
1773                         spin_unlock(&pprt_lock);        /* no need for the parport anymore */
1774                 }
1775
1776                 if (!inputs_stable || phys_curr != phys_prev)
1777                         panel_process_inputs();
1778         }
1779
1780         if (lcd_enabled && lcd_initialized) {
1781                 if (keypressed) {
1782                         if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1783                                 lcd_backlight(1);
1784                         light_tempo = FLASH_LIGHT_TEMPO;
1785                 } else if (light_tempo > 0) {
1786                         light_tempo--;
1787                         if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1788                                 lcd_backlight(0);
1789                 }
1790         }
1791
1792         mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1793 }
1794
1795 static void init_scan_timer(void)
1796 {
1797         if (scan_timer.function != NULL)
1798                 return;         /* already started */
1799
1800         init_timer(&scan_timer);
1801         scan_timer.expires = jiffies + INPUT_POLL_TIME;
1802         scan_timer.data = 0;
1803         scan_timer.function = (void *)&panel_scan_timer;
1804         add_timer(&scan_timer);
1805 }
1806
1807 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1808  * if <omask> or <imask> are non-null, they will be or'ed with the bits corresponding
1809  * to out and in bits respectively.
1810  * returns 1 if ok, 0 if error (in which case, nothing is written).
1811  */
1812 static int input_name2mask(char *name, pmask_t *mask, pmask_t *value,
1813                            char *imask, char *omask)
1814 {
1815         static char sigtab[10] = "EeSsPpAaBb";
1816         char im, om;
1817         pmask_t m, v;
1818
1819         om = im = m = v = 0ULL;
1820         while (*name) {
1821                 int in, out, bit, neg;
1822                 for (in = 0; (in < sizeof(sigtab)) && (sigtab[in] != *name); in++)
1823                         ;
1824                 if (in >= sizeof(sigtab))
1825                         return 0;       /* input name not found */
1826                 neg = (in & 1); /* odd (lower) names are negated */
1827                 in >>= 1;
1828                 im |= (1 << in);
1829
1830                 name++;
1831                 if (isdigit(*name)) {
1832                         out = *name - '0';
1833                         om |= (1 << out);
1834                 } else if (*name == '-')
1835                         out = 8;
1836                 else
1837                         return 0;       /* unknown bit name */
1838
1839                 bit = (out * 5) + in;
1840
1841                 m |= 1ULL << bit;
1842                 if (!neg)
1843                         v |= 1ULL << bit;
1844                 name++;
1845         }
1846         *mask = m;
1847         *value = v;
1848         if (imask)
1849                 *imask |= im;
1850         if (omask)
1851                 *omask |= om;
1852         return 1;
1853 }
1854
1855 /* tries to bind a key to the signal name <name>. The key will send the
1856  * strings <press>, <repeat>, <release> for these respective events.
1857  * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1858  */
1859 static struct logical_input *panel_bind_key(char *name, char *press,
1860                                             char *repeat, char *release)
1861 {
1862         struct logical_input *key;
1863
1864         key = kmalloc(sizeof(struct logical_input), GFP_KERNEL);
1865         if (!key) {
1866                 printk(KERN_ERR "panel: not enough memory\n");
1867                 return NULL;
1868         }
1869         memset(key, 0, sizeof(struct logical_input));
1870         if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1871                              &scan_mask_o))
1872                 return NULL;
1873
1874         key->type = INPUT_TYPE_KBD;
1875         key->state = INPUT_ST_LOW;
1876         key->rise_time = 1;
1877         key->fall_time = 1;
1878
1879 #if 0
1880         printk(KERN_DEBUG "bind: <%s> : m=%016Lx v=%016Lx\n", name, key->mask,
1881                key->value);
1882 #endif
1883         strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
1884         strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
1885         strncpy(key->u.kbd.release_str, release,
1886                 sizeof(key->u.kbd.release_str));
1887         list_add(&key->list, &logical_inputs);
1888         return key;
1889 }
1890
1891 #if 0
1892 /* tries to bind a callback function to the signal name <name>. The function
1893  * <press_fct> will be called with the <press_data> arg when the signal is
1894  * activated, and so on for <release_fct>/<release_data>
1895  * Returns the pointer to the new signal if ok, NULL if the signal could not be bound.
1896  */
1897 static struct logical_input *panel_bind_callback(char *name,
1898                                                  void (*press_fct) (int),
1899                                                  int press_data,
1900                                                  void (*release_fct) (int),
1901                                                  int release_data)
1902 {
1903         struct logical_input *callback;
1904
1905         callback = kmalloc(sizeof(struct logical_input), GFP_KERNEL);
1906         if (!callback) {
1907                 printk(KERN_ERR "panel: not enough memory\n");
1908                 return NULL;
1909         }
1910         memset(callback, 0, sizeof(struct logical_input));
1911         if (!input_name2mask(name, &callback->mask, &callback->value,
1912                              &scan_mask_i, &scan_mask_o))
1913                 return NULL;
1914
1915         callback->type = INPUT_TYPE_STD;
1916         callback->state = INPUT_ST_LOW;
1917         callback->rise_time = 1;
1918         callback->fall_time = 1;
1919         callback->u.std.press_fct = press_fct;
1920         callback->u.std.press_data = press_data;
1921         callback->u.std.release_fct = release_fct;
1922         callback->u.std.release_data = release_data;
1923         list_add(&callback->list, &logical_inputs);
1924         return callback;
1925 }
1926 #endif
1927
1928 static void keypad_init(void)
1929 {
1930         int keynum;
1931         init_waitqueue_head(&keypad_read_wait);
1932         keypad_buflen = 0;      /* flushes any eventual noisy keystroke */
1933
1934         /* Let's create all known keys */
1935
1936         for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
1937                 panel_bind_key(keypad_profile[keynum][0],
1938                                keypad_profile[keynum][1],
1939                                keypad_profile[keynum][2],
1940                                keypad_profile[keynum][3]);
1941         }
1942
1943         init_scan_timer();
1944         keypad_initialized = 1;
1945 }
1946
1947 /**************************************************/
1948 /* device initialization                          */
1949 /**************************************************/
1950
1951 static int panel_notify_sys(struct notifier_block *this, unsigned long code,
1952                             void *unused)
1953 {
1954         if (lcd_enabled && lcd_initialized) {
1955                 switch (code) {
1956                 case SYS_DOWN:
1957                         panel_lcd_print
1958                             ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
1959                         break;
1960                 case SYS_HALT:
1961                         panel_lcd_print
1962                             ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
1963                         break;
1964                 case SYS_POWER_OFF:
1965                         panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
1966                         break;
1967                 default:
1968                         break;
1969                 }
1970         }
1971         return NOTIFY_DONE;
1972 }
1973
1974 static struct notifier_block panel_notifier = {
1975         panel_notify_sys,
1976         NULL,
1977         0
1978 };
1979
1980 static void panel_attach(struct parport *port)
1981 {
1982         if (port->number != parport)
1983                 return;
1984
1985         if (pprt) {
1986                 printk(KERN_ERR
1987                        "panel_attach(): port->number=%d parport=%d, already registered !\n",
1988                        port->number, parport);
1989                 return;
1990         }
1991
1992         pprt = parport_register_device(port, "panel", NULL, NULL,       /* pf, kf */
1993                                        NULL,
1994                                        /*PARPORT_DEV_EXCL */
1995                                        0, (void *)&pprt);
1996
1997         if (parport_claim(pprt)) {
1998                 printk(KERN_ERR
1999                        "Panel: could not claim access to parport%d. Aborting.\n",
2000                        parport);
2001                 return;
2002         }
2003
2004         /* must init LCD first, just in case an IRQ from the keypad is generated at keypad init */
2005         if (lcd_enabled) {
2006                 lcd_init();
2007                 misc_register(&lcd_dev);
2008         }
2009
2010         if (keypad_enabled) {
2011                 keypad_init();
2012                 misc_register(&keypad_dev);
2013         }
2014 }
2015
2016 static void panel_detach(struct parport *port)
2017 {
2018         if (port->number != parport)
2019                 return;
2020
2021         if (!pprt) {
2022                 printk(KERN_ERR
2023                        "panel_detach(): port->number=%d parport=%d, nothing to unregister.\n",
2024                        port->number, parport);
2025                 return;
2026         }
2027
2028         if (keypad_enabled && keypad_initialized)
2029                 misc_deregister(&keypad_dev);
2030
2031         if (lcd_enabled && lcd_initialized)
2032                 misc_deregister(&lcd_dev);
2033
2034         parport_release(pprt);
2035         parport_unregister_device(pprt);
2036         pprt = NULL;
2037 }
2038
2039 static struct parport_driver panel_driver = {
2040         .name = "panel",
2041         .attach = panel_attach,
2042         .detach = panel_detach,
2043 };
2044
2045 /* init function */
2046 int panel_init(void)
2047 {
2048         /* for backwards compatibility */
2049         if (keypad_type < 0)
2050                 keypad_type = keypad_enabled;
2051
2052         if (lcd_type < 0)
2053                 lcd_type = lcd_enabled;
2054
2055         if (parport < 0)
2056                 parport = DEFAULT_PARPORT;
2057
2058         /* take care of an eventual profile */
2059         switch (profile) {
2060         case PANEL_PROFILE_CUSTOM:      /* custom profile */
2061                 if (keypad_type < 0)
2062                         keypad_type = DEFAULT_KEYPAD;
2063                 if (lcd_type < 0)
2064                         lcd_type = DEFAULT_LCD;
2065                 break;
2066         case PANEL_PROFILE_OLD: /* 8 bits, 2*16, old keypad */
2067                 if (keypad_type < 0)
2068                         keypad_type = KEYPAD_TYPE_OLD;
2069                 if (lcd_type < 0)
2070                         lcd_type = LCD_TYPE_OLD;
2071                 if (lcd_width < 0)
2072                         lcd_width = 16;
2073                 if (lcd_hwidth < 0)
2074                         lcd_hwidth = 16;
2075                 break;
2076         case PANEL_PROFILE_NEW: /* serial, 2*16, new keypad */
2077                 if (keypad_type < 0)
2078                         keypad_type = KEYPAD_TYPE_NEW;
2079                 if (lcd_type < 0)
2080                         lcd_type = LCD_TYPE_KS0074;
2081                 break;
2082         case PANEL_PROFILE_HANTRONIX:   /* 8 bits, 2*16 hantronix-like, no keypad */
2083                 if (keypad_type < 0)
2084                         keypad_type = KEYPAD_TYPE_NONE;
2085                 if (lcd_type < 0)
2086                         lcd_type = LCD_TYPE_HANTRONIX;
2087                 break;
2088         case PANEL_PROFILE_NEXCOM:      /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2089                 if (keypad_type < 0)
2090                         keypad_type = KEYPAD_TYPE_NEXCOM;
2091                 if (lcd_type < 0)
2092                         lcd_type = LCD_TYPE_NEXCOM;
2093                 break;
2094         case PANEL_PROFILE_LARGE:       /* 8 bits, 2*40, old keypad */
2095                 if (keypad_type < 0)
2096                         keypad_type = KEYPAD_TYPE_OLD;
2097                 if (lcd_type < 0)
2098                         lcd_type = LCD_TYPE_OLD;
2099                 break;
2100         }
2101
2102         lcd_enabled = (lcd_type > 0);
2103         keypad_enabled = (keypad_type > 0);
2104
2105         switch (keypad_type) {
2106         case KEYPAD_TYPE_OLD:
2107                 keypad_profile = old_keypad_profile;
2108                 break;
2109         case KEYPAD_TYPE_NEW:
2110                 keypad_profile = new_keypad_profile;
2111                 break;
2112         case KEYPAD_TYPE_NEXCOM:
2113                 keypad_profile = nexcom_keypad_profile;
2114                 break;
2115         default:
2116                 keypad_profile = NULL;
2117                 break;
2118         }
2119
2120         /* tells various subsystems about the fact that we are initializing */
2121         init_in_progress = 1;
2122
2123         if (parport_register_driver(&panel_driver)) {
2124                 printk(KERN_ERR
2125                        "Panel: could not register with parport. Aborting.\n");
2126                 return -EIO;
2127         }
2128
2129         if (!lcd_enabled && !keypad_enabled) {
2130                 /* no device enabled, let's release the parport */
2131                 if (pprt) {
2132                         parport_release(pprt);
2133                         parport_unregister_device(pprt);
2134                 }
2135                 parport_unregister_driver(&panel_driver);
2136                 printk(KERN_ERR "Panel driver version " PANEL_VERSION
2137                        " disabled.\n");
2138                 return -ENODEV;
2139         }
2140
2141         register_reboot_notifier(&panel_notifier);
2142
2143         if (pprt)
2144                 printk(KERN_INFO "Panel driver version " PANEL_VERSION
2145                        " registered on parport%d (io=0x%lx).\n", parport,
2146                        pprt->port->base);
2147         else
2148                 printk(KERN_INFO "Panel driver version " PANEL_VERSION
2149                        " not yet registered\n");
2150         /* tells various subsystems about the fact that initialization is finished */
2151         init_in_progress = 0;
2152         return 0;
2153 }
2154
2155 static int __init panel_init_module(void)
2156 {
2157         return panel_init();
2158 }
2159
2160 static void __exit panel_cleanup_module(void)
2161 {
2162         unregister_reboot_notifier(&panel_notifier);
2163
2164         if (scan_timer.function != NULL)
2165                 del_timer(&scan_timer);
2166
2167         if (pprt != NULL) {
2168                 if (keypad_enabled)
2169                         misc_deregister(&keypad_dev);
2170
2171                 if (lcd_enabled) {
2172                         panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2173                                         "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2174                         misc_deregister(&lcd_dev);
2175                 }
2176
2177                 /* TODO: free all input signals */
2178                 parport_release(pprt);
2179                 parport_unregister_device(pprt);
2180         }
2181         parport_unregister_driver(&panel_driver);
2182 }
2183
2184 module_init(panel_init_module);
2185 module_exit(panel_cleanup_module);
2186 MODULE_AUTHOR("Willy Tarreau");
2187 MODULE_LICENSE("GPL");
2188
2189 /*
2190  * Local variables:
2191  *  c-indent-level: 4
2192  *  tab-width: 8
2193  * End:
2194  */