rt2x00: Fix basic rate initialization
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
32
33 /*
34  * Link tuning handlers
35  */
36 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
37 {
38         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
39                 return;
40
41         /*
42          * Reset link information.
43          * Both the currently active vgc level as well as
44          * the link tuner counter should be reset. Resetting
45          * the counter is important for devices where the
46          * device should only perform link tuning during the
47          * first minute after being enabled.
48          */
49         rt2x00dev->link.count = 0;
50         rt2x00dev->link.vgc_level = 0;
51
52         /*
53          * Reset the link tuner.
54          */
55         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
56 }
57
58 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
59 {
60         /*
61          * Clear all (possibly) pre-existing quality statistics.
62          */
63         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
64
65         /*
66          * The RX and TX percentage should start at 50%
67          * this will assure we will get at least get some
68          * decent value when the link tuner starts.
69          * The value will be dropped and overwritten with
70          * the correct (measured )value anyway during the
71          * first run of the link tuner.
72          */
73         rt2x00dev->link.qual.rx_percentage = 50;
74         rt2x00dev->link.qual.tx_percentage = 50;
75
76         rt2x00lib_reset_link_tuner(rt2x00dev);
77
78         queue_delayed_work(rt2x00dev->hw->workqueue,
79                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
80 }
81
82 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
83 {
84         cancel_delayed_work_sync(&rt2x00dev->link.work);
85 }
86
87 /*
88  * Radio control handlers.
89  */
90 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
91 {
92         int status;
93
94         /*
95          * Don't enable the radio twice.
96          * And check if the hardware button has been disabled.
97          */
98         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
99             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
100                 return 0;
101
102         /*
103          * Initialize all data queues.
104          */
105         rt2x00queue_init_rx(rt2x00dev);
106         rt2x00queue_init_tx(rt2x00dev);
107
108         /*
109          * Enable radio.
110          */
111         status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
112                                                        STATE_RADIO_ON);
113         if (status)
114                 return status;
115
116         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
117
118         /*
119          * Enable RX.
120          */
121         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
122
123         /*
124          * Start the TX queues.
125          */
126         ieee80211_start_queues(rt2x00dev->hw);
127
128         return 0;
129 }
130
131 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
132 {
133         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
134                 return;
135
136         /*
137          * Stop all scheduled work.
138          */
139         if (work_pending(&rt2x00dev->intf_work))
140                 cancel_work_sync(&rt2x00dev->intf_work);
141         if (work_pending(&rt2x00dev->filter_work))
142                 cancel_work_sync(&rt2x00dev->filter_work);
143
144         /*
145          * Stop the TX queues.
146          */
147         ieee80211_stop_queues(rt2x00dev->hw);
148
149         /*
150          * Disable RX.
151          */
152         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
153
154         /*
155          * Disable radio.
156          */
157         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
158 }
159
160 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
161 {
162         /*
163          * When we are disabling the RX, we should also stop the link tuner.
164          */
165         if (state == STATE_RADIO_RX_OFF)
166                 rt2x00lib_stop_link_tuner(rt2x00dev);
167
168         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
169
170         /*
171          * When we are enabling the RX, we should also start the link tuner.
172          */
173         if (state == STATE_RADIO_RX_ON &&
174             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
175                 rt2x00lib_start_link_tuner(rt2x00dev);
176 }
177
178 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
179 {
180         enum antenna rx = rt2x00dev->link.ant.active.rx;
181         enum antenna tx = rt2x00dev->link.ant.active.tx;
182         int sample_a =
183             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
184         int sample_b =
185             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
186
187         /*
188          * We are done sampling. Now we should evaluate the results.
189          */
190         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
191
192         /*
193          * During the last period we have sampled the RSSI
194          * from both antenna's. It now is time to determine
195          * which antenna demonstrated the best performance.
196          * When we are already on the antenna with the best
197          * performance, then there really is nothing for us
198          * left to do.
199          */
200         if (sample_a == sample_b)
201                 return;
202
203         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
204                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
205
206         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
207                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
208
209         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
210 }
211
212 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
213 {
214         enum antenna rx = rt2x00dev->link.ant.active.rx;
215         enum antenna tx = rt2x00dev->link.ant.active.tx;
216         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
217         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
218
219         /*
220          * Legacy driver indicates that we should swap antenna's
221          * when the difference in RSSI is greater that 5. This
222          * also should be done when the RSSI was actually better
223          * then the previous sample.
224          * When the difference exceeds the threshold we should
225          * sample the rssi from the other antenna to make a valid
226          * comparison between the 2 antennas.
227          */
228         if (abs(rssi_curr - rssi_old) < 5)
229                 return;
230
231         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
232
233         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
234                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
235
236         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
237                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
238
239         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
240 }
241
242 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
243 {
244         /*
245          * Determine if software diversity is enabled for
246          * either the TX or RX antenna (or both).
247          * Always perform this check since within the link
248          * tuner interval the configuration might have changed.
249          */
250         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
251         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
252
253         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
254             rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
255                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
256         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
257             rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
258                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
259
260         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
261             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
262                 rt2x00dev->link.ant.flags = 0;
263                 return;
264         }
265
266         /*
267          * If we have only sampled the data over the last period
268          * we should now harvest the data. Otherwise just evaluate
269          * the data. The latter should only be performed once
270          * every 2 seconds.
271          */
272         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
273                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
274         else if (rt2x00dev->link.count & 1)
275                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
276 }
277
278 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
279 {
280         int avg_rssi = rssi;
281
282         /*
283          * Update global RSSI
284          */
285         if (link->qual.avg_rssi)
286                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
287         link->qual.avg_rssi = avg_rssi;
288
289         /*
290          * Update antenna RSSI
291          */
292         if (link->ant.rssi_ant)
293                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
294         link->ant.rssi_ant = rssi;
295 }
296
297 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
298 {
299         if (qual->rx_failed || qual->rx_success)
300                 qual->rx_percentage =
301                     (qual->rx_success * 100) /
302                     (qual->rx_failed + qual->rx_success);
303         else
304                 qual->rx_percentage = 50;
305
306         if (qual->tx_failed || qual->tx_success)
307                 qual->tx_percentage =
308                     (qual->tx_success * 100) /
309                     (qual->tx_failed + qual->tx_success);
310         else
311                 qual->tx_percentage = 50;
312
313         qual->rx_success = 0;
314         qual->rx_failed = 0;
315         qual->tx_success = 0;
316         qual->tx_failed = 0;
317 }
318
319 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
320                                            int rssi)
321 {
322         int rssi_percentage = 0;
323         int signal;
324
325         /*
326          * We need a positive value for the RSSI.
327          */
328         if (rssi < 0)
329                 rssi += rt2x00dev->rssi_offset;
330
331         /*
332          * Calculate the different percentages,
333          * which will be used for the signal.
334          */
335         if (rt2x00dev->rssi_offset)
336                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
337
338         /*
339          * Add the individual percentages and use the WEIGHT
340          * defines to calculate the current link signal.
341          */
342         signal = ((WEIGHT_RSSI * rssi_percentage) +
343                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
344                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
345
346         return (signal > 100) ? 100 : signal;
347 }
348
349 static void rt2x00lib_link_tuner(struct work_struct *work)
350 {
351         struct rt2x00_dev *rt2x00dev =
352             container_of(work, struct rt2x00_dev, link.work.work);
353
354         /*
355          * When the radio is shutting down we should
356          * immediately cease all link tuning.
357          */
358         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
359                 return;
360
361         /*
362          * Update statistics.
363          */
364         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
365         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
366             rt2x00dev->link.qual.rx_failed;
367
368         /*
369          * Only perform the link tuning when Link tuning
370          * has been enabled (This could have been disabled from the EEPROM).
371          */
372         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
373                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
374
375         /*
376          * Precalculate a portion of the link signal which is
377          * in based on the tx/rx success/failure counters.
378          */
379         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
380
381         /*
382          * Send a signal to the led to update the led signal strength.
383          */
384         rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
385
386         /*
387          * Evaluate antenna setup, make this the last step since this could
388          * possibly reset some statistics.
389          */
390         rt2x00lib_evaluate_antenna(rt2x00dev);
391
392         /*
393          * Increase tuner counter, and reschedule the next link tuner run.
394          */
395         rt2x00dev->link.count++;
396         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
397                            LINK_TUNE_INTERVAL);
398 }
399
400 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
401 {
402         struct rt2x00_dev *rt2x00dev =
403             container_of(work, struct rt2x00_dev, filter_work);
404         unsigned int filter = rt2x00dev->packet_filter;
405
406         /*
407          * Since we had stored the filter inside rt2x00dev->packet_filter,
408          * we should now clear that field. Otherwise the driver will
409          * assume nothing has changed (*total_flags will be compared
410          * to rt2x00dev->packet_filter to determine if any action is required).
411          */
412         rt2x00dev->packet_filter = 0;
413
414         rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
415                                              filter, &filter, 0, NULL);
416 }
417
418 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
419                                           struct ieee80211_vif *vif)
420 {
421         struct rt2x00_dev *rt2x00dev = data;
422         struct rt2x00_intf *intf = vif_to_intf(vif);
423         struct sk_buff *skb;
424         struct ieee80211_tx_control control;
425         struct ieee80211_bss_conf conf;
426         int delayed_flags;
427
428         /*
429          * Copy all data we need during this action under the protection
430          * of a spinlock. Otherwise race conditions might occur which results
431          * into an invalid configuration.
432          */
433         spin_lock(&intf->lock);
434
435         memcpy(&conf, &intf->conf, sizeof(conf));
436         delayed_flags = intf->delayed_flags;
437         intf->delayed_flags = 0;
438
439         spin_unlock(&intf->lock);
440
441         if (delayed_flags & DELAYED_UPDATE_BEACON) {
442                 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
443                 if (skb) {
444                         rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
445                                                           &control);
446                         dev_kfree_skb(skb);
447                 }
448         }
449
450         if (delayed_flags & DELAYED_CONFIG_ERP)
451                 rt2x00lib_config_erp(rt2x00dev, intf, &intf->conf);
452 }
453
454 static void rt2x00lib_intf_scheduled(struct work_struct *work)
455 {
456         struct rt2x00_dev *rt2x00dev =
457             container_of(work, struct rt2x00_dev, intf_work);
458
459         /*
460          * Iterate over each interface and perform the
461          * requested configurations.
462          */
463         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
464                                             rt2x00lib_intf_scheduled_iter,
465                                             rt2x00dev);
466 }
467
468 /*
469  * Interrupt context handlers.
470  */
471 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
472                                       struct ieee80211_vif *vif)
473 {
474         struct rt2x00_intf *intf = vif_to_intf(vif);
475
476         if (vif->type != IEEE80211_IF_TYPE_AP &&
477             vif->type != IEEE80211_IF_TYPE_IBSS)
478                 return;
479
480         spin_lock(&intf->lock);
481         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
482         spin_unlock(&intf->lock);
483 }
484
485 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
486 {
487         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
488                 return;
489
490         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
491                                             rt2x00lib_beacondone_iter,
492                                             rt2x00dev);
493
494         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
495 }
496 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
497
498 void rt2x00lib_txdone(struct queue_entry *entry,
499                       struct txdone_entry_desc *txdesc)
500 {
501         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
502         struct skb_frame_desc *skbdesc;
503         struct ieee80211_tx_status tx_status;
504         int success = !!(txdesc->status == TX_SUCCESS ||
505                          txdesc->status == TX_SUCCESS_RETRY);
506         int fail = !!(txdesc->status == TX_FAIL_RETRY ||
507                       txdesc->status == TX_FAIL_INVALID ||
508                       txdesc->status == TX_FAIL_OTHER);
509
510         /*
511          * Update TX statistics.
512          */
513         rt2x00dev->link.qual.tx_success += success;
514         rt2x00dev->link.qual.tx_failed += txdesc->retry + fail;
515
516         /*
517          * Initialize TX status
518          */
519         tx_status.flags = 0;
520         tx_status.ack_signal = 0;
521         tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
522         tx_status.retry_count = txdesc->retry;
523         memcpy(&tx_status.control, txdesc->control, sizeof(*txdesc->control));
524
525         if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
526                 if (success)
527                         tx_status.flags |= IEEE80211_TX_STATUS_ACK;
528                 else
529                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
530         }
531
532         tx_status.queue_length = entry->queue->limit;
533         tx_status.queue_number = tx_status.control.queue;
534
535         if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
536                 if (success)
537                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
538                 else
539                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
540         }
541
542         /*
543          * Send the tx_status to debugfs. Only send the status report
544          * to mac80211 when the frame originated from there. If this was
545          * a extra frame coming through a mac80211 library call (RTS/CTS)
546          * then we should not send the status report back.
547          * If send to mac80211, mac80211 will clean up the skb structure,
548          * otherwise we have to do it ourself.
549          */
550         skbdesc = get_skb_frame_desc(entry->skb);
551         skbdesc->frame_type = DUMP_FRAME_TXDONE;
552
553         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
554
555         if (!(skbdesc->flags & FRAME_DESC_DRIVER_GENERATED))
556                 ieee80211_tx_status_irqsafe(rt2x00dev->hw,
557                                             entry->skb, &tx_status);
558         else
559                 dev_kfree_skb(entry->skb);
560         entry->skb = NULL;
561 }
562 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
563
564 void rt2x00lib_rxdone(struct queue_entry *entry,
565                       struct rxdone_entry_desc *rxdesc)
566 {
567         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
568         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
569         struct ieee80211_supported_band *sband;
570         struct ieee80211_hdr *hdr;
571         const struct rt2x00_rate *rate;
572         unsigned int i;
573         int idx = -1;
574         u16 fc;
575
576         /*
577          * Update RX statistics.
578          */
579         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
580         for (i = 0; i < sband->n_bitrates; i++) {
581                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
582
583                 /*
584                  * When frame was received with an OFDM bitrate,
585                  * the signal is the PLCP value. If it was received with
586                  * a CCK bitrate the signal is the rate in 100kbit/s.
587                  */
588                 if ((rxdesc->ofdm && rate->plcp == rxdesc->signal) ||
589                     (!rxdesc->ofdm && rate->bitrate == rxdesc->signal)) {
590                         idx = i;
591                         break;
592                 }
593         }
594
595         /*
596          * Only update link status if this is a beacon frame carrying our bssid.
597          */
598         hdr = (struct ieee80211_hdr *)entry->skb->data;
599         fc = le16_to_cpu(hdr->frame_control);
600         if (is_beacon(fc) && rxdesc->my_bss)
601                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
602
603         rt2x00dev->link.qual.rx_success++;
604
605         rx_status->rate_idx = idx;
606         rx_status->signal =
607             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
608         rx_status->ssi = rxdesc->rssi;
609         rx_status->flag = rxdesc->flags;
610         rx_status->antenna = rt2x00dev->link.ant.active.rx;
611
612         /*
613          * Send frame to mac80211 & debugfs.
614          * mac80211 will clean up the skb structure.
615          */
616         get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
617         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
618         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
619         entry->skb = NULL;
620 }
621 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
622
623 /*
624  * TX descriptor initializer
625  */
626 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
627                              struct sk_buff *skb,
628                              struct ieee80211_tx_control *control)
629 {
630         struct txentry_desc txdesc;
631         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
632         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skbdesc->data;
633         const struct rt2x00_rate *rate;
634         int tx_rate;
635         int length;
636         int duration;
637         int residual;
638         u16 frame_control;
639         u16 seq_ctrl;
640
641         memset(&txdesc, 0, sizeof(txdesc));
642
643         txdesc.queue = skbdesc->entry->queue->qid;
644         txdesc.cw_min = skbdesc->entry->queue->cw_min;
645         txdesc.cw_max = skbdesc->entry->queue->cw_max;
646         txdesc.aifs = skbdesc->entry->queue->aifs;
647
648         /*
649          * Read required fields from ieee80211 header.
650          */
651         frame_control = le16_to_cpu(hdr->frame_control);
652         seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
653
654         tx_rate = control->tx_rate->hw_value;
655
656         /*
657          * Check whether this frame is to be acked
658          */
659         if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
660                 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
661
662         /*
663          * Check if this is a RTS/CTS frame
664          */
665         if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
666                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
667                 if (is_rts_frame(frame_control)) {
668                         __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
669                         __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
670                 } else
671                         __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
672                 if (control->rts_cts_rate)
673                         tx_rate = control->rts_cts_rate->hw_value;
674         }
675
676         rate = rt2x00_get_rate(tx_rate);
677
678         /*
679          * Check if more fragments are pending
680          */
681         if (ieee80211_get_morefrag(hdr)) {
682                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
683                 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
684         }
685
686         /*
687          * Beacons and probe responses require the tsf timestamp
688          * to be inserted into the frame.
689          */
690         if (control->queue == RT2X00_BCN_QUEUE_BEACON ||
691             is_probe_resp(frame_control))
692                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
693
694         /*
695          * Determine with what IFS priority this frame should be send.
696          * Set ifs to IFS_SIFS when the this is not the first fragment,
697          * or this fragment came after RTS/CTS.
698          */
699         if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
700             test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
701                 txdesc.ifs = IFS_SIFS;
702         else
703                 txdesc.ifs = IFS_BACKOFF;
704
705         /*
706          * PLCP setup
707          * Length calculation depends on OFDM/CCK rate.
708          */
709         txdesc.signal = rate->plcp;
710         txdesc.service = 0x04;
711
712         length = skbdesc->data_len + FCS_LEN;
713         if (rate->flags & DEV_RATE_OFDM) {
714                 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
715
716                 txdesc.length_high = (length >> 6) & 0x3f;
717                 txdesc.length_low = length & 0x3f;
718         } else {
719                 /*
720                  * Convert length to microseconds.
721                  */
722                 residual = get_duration_res(length, rate->bitrate);
723                 duration = get_duration(length, rate->bitrate);
724
725                 if (residual != 0) {
726                         duration++;
727
728                         /*
729                          * Check if we need to set the Length Extension
730                          */
731                         if (rate->bitrate == 110 && residual <= 30)
732                                 txdesc.service |= 0x80;
733                 }
734
735                 txdesc.length_high = (duration >> 8) & 0xff;
736                 txdesc.length_low = duration & 0xff;
737
738                 /*
739                  * When preamble is enabled we should set the
740                  * preamble bit for the signal.
741                  */
742                 if (rt2x00_get_rate_preamble(tx_rate))
743                         txdesc.signal |= 0x08;
744         }
745
746         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
747
748         /*
749          * Update queue entry.
750          */
751         skbdesc->entry->skb = skb;
752
753         /*
754          * The frame has been completely initialized and ready
755          * for sending to the device. The caller will push the
756          * frame to the device, but we are going to push the
757          * frame to debugfs here.
758          */
759         skbdesc->frame_type = DUMP_FRAME_TX;
760         rt2x00debug_dump_frame(rt2x00dev, skb);
761 }
762 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
763
764 /*
765  * Driver initialization handlers.
766  */
767 const struct rt2x00_rate rt2x00_supported_rates[12] = {
768         {
769                 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
770                 .bitrate = 10,
771                 .ratemask = BIT(0),
772                 .plcp = 0x00,
773         },
774         {
775                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
776                 .bitrate = 20,
777                 .ratemask = BIT(1),
778                 .plcp = 0x01,
779         },
780         {
781                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
782                 .bitrate = 55,
783                 .ratemask = BIT(2),
784                 .plcp = 0x02,
785         },
786         {
787                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
788                 .bitrate = 110,
789                 .ratemask = BIT(3),
790                 .plcp = 0x03,
791         },
792         {
793                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
794                 .bitrate = 60,
795                 .ratemask = BIT(4),
796                 .plcp = 0x0b,
797         },
798         {
799                 .flags = DEV_RATE_OFDM,
800                 .bitrate = 90,
801                 .ratemask = BIT(5),
802                 .plcp = 0x0f,
803         },
804         {
805                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
806                 .bitrate = 120,
807                 .ratemask = BIT(6),
808                 .plcp = 0x0a,
809         },
810         {
811                 .flags = DEV_RATE_OFDM,
812                 .bitrate = 180,
813                 .ratemask = BIT(7),
814                 .plcp = 0x0e,
815         },
816         {
817                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
818                 .bitrate = 240,
819                 .ratemask = BIT(8),
820                 .plcp = 0x09,
821         },
822         {
823                 .flags = DEV_RATE_OFDM,
824                 .bitrate = 360,
825                 .ratemask = BIT(9),
826                 .plcp = 0x0d,
827         },
828         {
829                 .flags = DEV_RATE_OFDM,
830                 .bitrate = 480,
831                 .ratemask = BIT(10),
832                 .plcp = 0x08,
833         },
834         {
835                 .flags = DEV_RATE_OFDM,
836                 .bitrate = 540,
837                 .ratemask = BIT(11),
838                 .plcp = 0x0c,
839         },
840 };
841
842 static void rt2x00lib_channel(struct ieee80211_channel *entry,
843                               const int channel, const int tx_power,
844                               const int value)
845 {
846         entry->center_freq = ieee80211_channel_to_frequency(channel);
847         entry->hw_value = value;
848         entry->max_power = tx_power;
849         entry->max_antenna_gain = 0xff;
850 }
851
852 static void rt2x00lib_rate(struct ieee80211_rate *entry,
853                            const u16 index, const struct rt2x00_rate *rate)
854 {
855         entry->flags = 0;
856         entry->bitrate = rate->bitrate;
857         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
858         entry->hw_value_short = entry->hw_value;
859
860         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
861                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
862                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
863         }
864 }
865
866 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
867                                     struct hw_mode_spec *spec)
868 {
869         struct ieee80211_hw *hw = rt2x00dev->hw;
870         struct ieee80211_channel *channels;
871         struct ieee80211_rate *rates;
872         unsigned int num_rates;
873         unsigned int i;
874         unsigned char tx_power;
875
876         num_rates = 0;
877         if (spec->supported_rates & SUPPORT_RATE_CCK)
878                 num_rates += 4;
879         if (spec->supported_rates & SUPPORT_RATE_OFDM)
880                 num_rates += 8;
881
882         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
883         if (!channels)
884                 return -ENOMEM;
885
886         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
887         if (!rates)
888                 goto exit_free_channels;
889
890         /*
891          * Initialize Rate list.
892          */
893         for (i = 0; i < num_rates; i++)
894                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
895
896         /*
897          * Initialize Channel list.
898          */
899         for (i = 0; i < spec->num_channels; i++) {
900                 if (spec->channels[i].channel <= 14) {
901                         if (spec->tx_power_bg)
902                                 tx_power = spec->tx_power_bg[i];
903                         else
904                                 tx_power = spec->tx_power_default;
905                 } else {
906                         if (spec->tx_power_a)
907                                 tx_power = spec->tx_power_a[i];
908                         else
909                                 tx_power = spec->tx_power_default;
910                 }
911
912                 rt2x00lib_channel(&channels[i],
913                                   spec->channels[i].channel, tx_power, i);
914         }
915
916         /*
917          * Intitialize 802.11b, 802.11g
918          * Rates: CCK, OFDM.
919          * Channels: 2.4 GHz
920          */
921         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
922                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
923                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
924                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
925                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
926                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
927                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
928         }
929
930         /*
931          * Intitialize 802.11a
932          * Rates: OFDM.
933          * Channels: OFDM, UNII, HiperLAN2.
934          */
935         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
936                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
937                     spec->num_channels - 14;
938                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
939                     num_rates - 4;
940                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
941                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
942                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
943                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
944         }
945
946         return 0;
947
948  exit_free_channels:
949         kfree(channels);
950         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
951         return -ENOMEM;
952 }
953
954 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
955 {
956         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
957                 ieee80211_unregister_hw(rt2x00dev->hw);
958
959         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
960                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
961                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
962                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
963                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
964         }
965 }
966
967 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
968 {
969         struct hw_mode_spec *spec = &rt2x00dev->spec;
970         int status;
971
972         /*
973          * Initialize HW modes.
974          */
975         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
976         if (status)
977                 return status;
978
979         /*
980          * Register HW.
981          */
982         status = ieee80211_register_hw(rt2x00dev->hw);
983         if (status) {
984                 rt2x00lib_remove_hw(rt2x00dev);
985                 return status;
986         }
987
988         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
989
990         return 0;
991 }
992
993 /*
994  * Initialization/uninitialization handlers.
995  */
996 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
997 {
998         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
999                 return;
1000
1001         /*
1002          * Unregister rfkill.
1003          */
1004         rt2x00rfkill_unregister(rt2x00dev);
1005
1006         /*
1007          * Allow the HW to uninitialize.
1008          */
1009         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1010
1011         /*
1012          * Free allocated queue entries.
1013          */
1014         rt2x00queue_uninitialize(rt2x00dev);
1015 }
1016
1017 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1018 {
1019         int status;
1020
1021         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1022                 return 0;
1023
1024         /*
1025          * Allocate all queue entries.
1026          */
1027         status = rt2x00queue_initialize(rt2x00dev);
1028         if (status)
1029                 return status;
1030
1031         /*
1032          * Initialize the device.
1033          */
1034         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1035         if (status)
1036                 goto exit;
1037
1038         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1039
1040         /*
1041          * Register the rfkill handler.
1042          */
1043         status = rt2x00rfkill_register(rt2x00dev);
1044         if (status)
1045                 goto exit;
1046
1047         return 0;
1048
1049 exit:
1050         rt2x00lib_uninitialize(rt2x00dev);
1051
1052         return status;
1053 }
1054
1055 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1056 {
1057         int retval;
1058
1059         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1060                 return 0;
1061
1062         /*
1063          * If this is the first interface which is added,
1064          * we should load the firmware now.
1065          */
1066         retval = rt2x00lib_load_firmware(rt2x00dev);
1067         if (retval)
1068                 return retval;
1069
1070         /*
1071          * Initialize the device.
1072          */
1073         retval = rt2x00lib_initialize(rt2x00dev);
1074         if (retval)
1075                 return retval;
1076
1077         /*
1078          * Enable radio.
1079          */
1080         retval = rt2x00lib_enable_radio(rt2x00dev);
1081         if (retval) {
1082                 rt2x00lib_uninitialize(rt2x00dev);
1083                 return retval;
1084         }
1085
1086         rt2x00dev->intf_ap_count = 0;
1087         rt2x00dev->intf_sta_count = 0;
1088         rt2x00dev->intf_associated = 0;
1089
1090         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1091
1092         return 0;
1093 }
1094
1095 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1096 {
1097         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1098                 return;
1099
1100         /*
1101          * Perhaps we can add something smarter here,
1102          * but for now just disabling the radio should do.
1103          */
1104         rt2x00lib_disable_radio(rt2x00dev);
1105
1106         rt2x00dev->intf_ap_count = 0;
1107         rt2x00dev->intf_sta_count = 0;
1108         rt2x00dev->intf_associated = 0;
1109
1110         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1111 }
1112
1113 /*
1114  * driver allocation handlers.
1115  */
1116 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1117 {
1118         int retval = -ENOMEM;
1119
1120         /*
1121          * Make room for rt2x00_intf inside the per-interface
1122          * structure ieee80211_vif.
1123          */
1124         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1125
1126         /*
1127          * Let the driver probe the device to detect the capabilities.
1128          */
1129         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1130         if (retval) {
1131                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1132                 goto exit;
1133         }
1134
1135         /*
1136          * Initialize configuration work.
1137          */
1138         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1139         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1140         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1141
1142         /*
1143          * Allocate queue array.
1144          */
1145         retval = rt2x00queue_allocate(rt2x00dev);
1146         if (retval)
1147                 goto exit;
1148
1149         /*
1150          * Initialize ieee80211 structure.
1151          */
1152         retval = rt2x00lib_probe_hw(rt2x00dev);
1153         if (retval) {
1154                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1155                 goto exit;
1156         }
1157
1158         /*
1159          * Register LED.
1160          */
1161         rt2x00leds_register(rt2x00dev);
1162
1163         /*
1164          * Allocatie rfkill.
1165          */
1166         retval = rt2x00rfkill_allocate(rt2x00dev);
1167         if (retval)
1168                 goto exit;
1169
1170         /*
1171          * Open the debugfs entry.
1172          */
1173         rt2x00debug_register(rt2x00dev);
1174
1175         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1176
1177         return 0;
1178
1179 exit:
1180         rt2x00lib_remove_dev(rt2x00dev);
1181
1182         return retval;
1183 }
1184 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1185
1186 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1187 {
1188         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1189
1190         /*
1191          * Disable radio.
1192          */
1193         rt2x00lib_disable_radio(rt2x00dev);
1194
1195         /*
1196          * Uninitialize device.
1197          */
1198         rt2x00lib_uninitialize(rt2x00dev);
1199
1200         /*
1201          * Close debugfs entry.
1202          */
1203         rt2x00debug_deregister(rt2x00dev);
1204
1205         /*
1206          * Free rfkill
1207          */
1208         rt2x00rfkill_free(rt2x00dev);
1209
1210         /*
1211          * Free LED.
1212          */
1213         rt2x00leds_unregister(rt2x00dev);
1214
1215         /*
1216          * Free ieee80211_hw memory.
1217          */
1218         rt2x00lib_remove_hw(rt2x00dev);
1219
1220         /*
1221          * Free firmware image.
1222          */
1223         rt2x00lib_free_firmware(rt2x00dev);
1224
1225         /*
1226          * Free queue structures.
1227          */
1228         rt2x00queue_free(rt2x00dev);
1229 }
1230 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1231
1232 /*
1233  * Device state handlers
1234  */
1235 #ifdef CONFIG_PM
1236 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1237 {
1238         int retval;
1239
1240         NOTICE(rt2x00dev, "Going to sleep.\n");
1241         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1242
1243         /*
1244          * Only continue if mac80211 has open interfaces.
1245          */
1246         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1247                 goto exit;
1248         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1249
1250         /*
1251          * Disable radio and unitialize all items
1252          * that must be recreated on resume.
1253          */
1254         rt2x00lib_stop(rt2x00dev);
1255         rt2x00lib_uninitialize(rt2x00dev);
1256         rt2x00leds_suspend(rt2x00dev);
1257         rt2x00debug_deregister(rt2x00dev);
1258
1259 exit:
1260         /*
1261          * Set device mode to sleep for power management.
1262          */
1263         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1264         if (retval)
1265                 return retval;
1266
1267         return 0;
1268 }
1269 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1270
1271 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1272                                   struct ieee80211_vif *vif)
1273 {
1274         struct rt2x00_dev *rt2x00dev = data;
1275         struct rt2x00_intf *intf = vif_to_intf(vif);
1276
1277         spin_lock(&intf->lock);
1278
1279         rt2x00lib_config_intf(rt2x00dev, intf,
1280                               vif->type, intf->mac, intf->bssid);
1281
1282
1283         /*
1284          * Master or Ad-hoc mode require a new beacon update.
1285          */
1286         if (vif->type == IEEE80211_IF_TYPE_AP ||
1287             vif->type == IEEE80211_IF_TYPE_IBSS)
1288                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1289
1290         spin_unlock(&intf->lock);
1291 }
1292
1293 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1294 {
1295         int retval;
1296
1297         NOTICE(rt2x00dev, "Waking up.\n");
1298
1299         /*
1300          * Open the debugfs entry and restore led handling.
1301          */
1302         rt2x00debug_register(rt2x00dev);
1303         rt2x00leds_resume(rt2x00dev);
1304
1305         /*
1306          * Only continue if mac80211 had open interfaces.
1307          */
1308         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1309                 return 0;
1310
1311         /*
1312          * Reinitialize device and all active interfaces.
1313          */
1314         retval = rt2x00lib_start(rt2x00dev);
1315         if (retval)
1316                 goto exit;
1317
1318         /*
1319          * Reconfigure device.
1320          */
1321         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1322         if (!rt2x00dev->hw->conf.radio_enabled)
1323                 rt2x00lib_disable_radio(rt2x00dev);
1324
1325         /*
1326          * Iterator over each active interface to
1327          * reconfigure the hardware.
1328          */
1329         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1330                                             rt2x00lib_resume_intf, rt2x00dev);
1331
1332         /*
1333          * We are ready again to receive requests from mac80211.
1334          */
1335         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1336
1337         /*
1338          * It is possible that during that mac80211 has attempted
1339          * to send frames while we were suspending or resuming.
1340          * In that case we have disabled the TX queue and should
1341          * now enable it again
1342          */
1343         ieee80211_start_queues(rt2x00dev->hw);
1344
1345         /*
1346          * During interface iteration we might have changed the
1347          * delayed_flags, time to handles the event by calling
1348          * the work handler directly.
1349          */
1350         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1351
1352         return 0;
1353
1354 exit:
1355         rt2x00lib_disable_radio(rt2x00dev);
1356         rt2x00lib_uninitialize(rt2x00dev);
1357         rt2x00debug_deregister(rt2x00dev);
1358
1359         return retval;
1360 }
1361 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1362 #endif /* CONFIG_PM */
1363
1364 /*
1365  * rt2x00lib module information.
1366  */
1367 MODULE_AUTHOR(DRV_PROJECT);
1368 MODULE_VERSION(DRV_VERSION);
1369 MODULE_DESCRIPTION("rt2x00 library");
1370 MODULE_LICENSE("GPL");