2 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3 * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
5 * Module name: iSeries_setup.c
8 * Architecture- / platform-specific boot-time initialization code for
9 * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
10 * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
21 #include <linux/config.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/smp.h>
25 #include <linux/param.h>
26 #include <linux/string.h>
27 #include <linux/initrd.h>
28 #include <linux/seq_file.h>
29 #include <linux/kdev_t.h>
30 #include <linux/major.h>
31 #include <linux/root_dev.h>
33 #include <asm/processor.h>
34 #include <asm/machdep.h>
37 #include <asm/pgtable.h>
38 #include <asm/mmu_context.h>
39 #include <asm/cputable.h>
40 #include <asm/sections.h>
41 #include <asm/iommu.h>
42 #include <asm/firmware.h>
45 #include "iSeries_setup.h"
48 #include <asm/cache.h>
49 #include <asm/sections.h>
50 #include <asm/abs_addr.h>
51 #include <asm/iSeries/HvCallHpt.h>
52 #include <asm/iSeries/HvLpConfig.h>
53 #include <asm/iSeries/HvCallEvent.h>
54 #include <asm/iSeries/HvCallSm.h>
55 #include <asm/iSeries/HvCallXm.h>
56 #include <asm/iSeries/ItLpQueue.h>
57 #include <asm/iSeries/IoHriMainStore.h>
58 #include <asm/iSeries/mf.h>
59 #include <asm/iSeries/HvLpEvent.h>
60 #include <asm/iSeries/iSeries_irq.h>
61 #include <asm/iSeries/IoHriProcessorVpd.h>
62 #include <asm/iSeries/ItVpdAreas.h>
63 #include <asm/iSeries/LparMap.h>
65 extern void hvlog(char *fmt, ...);
68 #define DBG(fmt...) hvlog(fmt)
73 /* Function Prototypes */
74 extern void ppcdbg_initialize(void);
76 static void build_iSeries_Memory_Map(void);
77 static void setup_iSeries_cache_sizes(void);
78 static void iSeries_bolt_kernel(unsigned long saddr, unsigned long eaddr);
80 extern void iSeries_pci_final_fixup(void);
82 static void iSeries_pci_final_fixup(void) { }
85 /* Global Variables */
86 static unsigned long procFreqHz;
87 static unsigned long procFreqMhz;
88 static unsigned long procFreqMhzHundreths;
90 static unsigned long tbFreqHz;
91 static unsigned long tbFreqMhz;
92 static unsigned long tbFreqMhzHundreths;
94 int piranha_simulator;
96 extern int rd_size; /* Defined in drivers/block/rd.c */
97 extern unsigned long klimit;
98 extern unsigned long embedded_sysmap_start;
99 extern unsigned long embedded_sysmap_end;
101 extern unsigned long iSeries_recal_tb;
102 extern unsigned long iSeries_recal_titan;
104 static int mf_initialized;
107 unsigned long absStart;
108 unsigned long absEnd;
109 unsigned long logicalStart;
110 unsigned long logicalEnd;
114 * Process the main store vpd to determine where the holes in memory are
115 * and return the number of physical blocks and fill in the array of
118 static unsigned long iSeries_process_Condor_mainstore_vpd(
119 struct MemoryBlock *mb_array, unsigned long max_entries)
121 unsigned long holeFirstChunk, holeSizeChunks;
122 unsigned long numMemoryBlocks = 1;
123 struct IoHriMainStoreSegment4 *msVpd =
124 (struct IoHriMainStoreSegment4 *)xMsVpd;
125 unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
126 unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
127 unsigned long holeSize = holeEnd - holeStart;
129 printk("Mainstore_VPD: Condor\n");
131 * Determine if absolute memory has any
132 * holes so that we can interpret the
133 * access map we get back from the hypervisor
136 mb_array[0].logicalStart = 0;
137 mb_array[0].logicalEnd = 0x100000000;
138 mb_array[0].absStart = 0;
139 mb_array[0].absEnd = 0x100000000;
143 holeStart = holeStart & 0x000fffffffffffff;
144 holeStart = addr_to_chunk(holeStart);
145 holeFirstChunk = holeStart;
146 holeSize = addr_to_chunk(holeSize);
147 holeSizeChunks = holeSize;
148 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
149 holeFirstChunk, holeSizeChunks );
150 mb_array[0].logicalEnd = holeFirstChunk;
151 mb_array[0].absEnd = holeFirstChunk;
152 mb_array[1].logicalStart = holeFirstChunk;
153 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
154 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
155 mb_array[1].absEnd = 0x100000000;
157 return numMemoryBlocks;
160 #define MaxSegmentAreas 32
161 #define MaxSegmentAdrRangeBlocks 128
162 #define MaxAreaRangeBlocks 4
164 static unsigned long iSeries_process_Regatta_mainstore_vpd(
165 struct MemoryBlock *mb_array, unsigned long max_entries)
167 struct IoHriMainStoreSegment5 *msVpdP =
168 (struct IoHriMainStoreSegment5 *)xMsVpd;
169 unsigned long numSegmentBlocks = 0;
170 u32 existsBits = msVpdP->msAreaExists;
171 unsigned long area_num;
173 printk("Mainstore_VPD: Regatta\n");
175 for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
176 unsigned long numAreaBlocks;
177 struct IoHriMainStoreArea4 *currentArea;
179 if (existsBits & 0x80000000) {
180 unsigned long block_num;
182 currentArea = &msVpdP->msAreaArray[area_num];
183 numAreaBlocks = currentArea->numAdrRangeBlocks;
184 printk("ms_vpd: processing area %2ld blocks=%ld",
185 area_num, numAreaBlocks);
186 for (block_num = 0; block_num < numAreaBlocks;
188 /* Process an address range block */
189 struct MemoryBlock tempBlock;
193 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
195 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
196 tempBlock.logicalStart = 0;
197 tempBlock.logicalEnd = 0;
198 printk("\n block %ld absStart=%016lx absEnd=%016lx",
199 block_num, tempBlock.absStart,
202 for (i = 0; i < numSegmentBlocks; ++i) {
203 if (mb_array[i].absStart ==
207 if (i == numSegmentBlocks) {
208 if (numSegmentBlocks == max_entries)
209 panic("iSeries_process_mainstore_vpd: too many memory blocks");
210 mb_array[numSegmentBlocks] = tempBlock;
213 printk(" (duplicate)");
219 /* Now sort the blocks found into ascending sequence */
220 if (numSegmentBlocks > 1) {
223 for (m = 0; m < numSegmentBlocks - 1; ++m) {
224 for (n = numSegmentBlocks - 1; m < n; --n) {
225 if (mb_array[n].absStart <
226 mb_array[n-1].absStart) {
227 struct MemoryBlock tempBlock;
229 tempBlock = mb_array[n];
230 mb_array[n] = mb_array[n-1];
231 mb_array[n-1] = tempBlock;
237 * Assign "logical" addresses to each block. These
238 * addresses correspond to the hypervisor "bitmap" space.
239 * Convert all addresses into units of 256K chunks.
242 unsigned long i, nextBitmapAddress;
244 printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
245 nextBitmapAddress = 0;
246 for (i = 0; i < numSegmentBlocks; ++i) {
247 unsigned long length = mb_array[i].absEnd -
248 mb_array[i].absStart;
250 mb_array[i].logicalStart = nextBitmapAddress;
251 mb_array[i].logicalEnd = nextBitmapAddress + length;
252 nextBitmapAddress += length;
253 printk(" Bitmap range: %016lx - %016lx\n"
254 " Absolute range: %016lx - %016lx\n",
255 mb_array[i].logicalStart,
256 mb_array[i].logicalEnd,
257 mb_array[i].absStart, mb_array[i].absEnd);
258 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
260 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
262 mb_array[i].logicalStart =
263 addr_to_chunk(mb_array[i].logicalStart);
264 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
268 return numSegmentBlocks;
271 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
272 unsigned long max_entries)
275 unsigned long mem_blocks = 0;
277 if (cpu_has_feature(CPU_FTR_SLB))
278 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
281 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
284 printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
285 for (i = 0; i < mem_blocks; ++i) {
286 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
287 " abs chunks %016lx - %016lx\n",
288 i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
289 mb_array[i].absStart, mb_array[i].absEnd);
294 static void __init iSeries_get_cmdline(void)
298 /* copy the command line parameter from the primary VSP */
299 HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
300 HvLpDma_Direction_RemoteToLocal);
305 if (!*p || *p == '\n')
312 static void __init iSeries_init_early(void)
314 extern unsigned long memory_limit;
316 DBG(" -> iSeries_init_early()\n");
318 ppc64_firmware_features = FW_FEATURE_ISERIES;
322 #if defined(CONFIG_BLK_DEV_INITRD)
324 * If the init RAM disk has been configured and there is
325 * a non-zero starting address for it, set it up
328 initrd_start = (unsigned long)__va(naca.xRamDisk);
329 initrd_end = initrd_start + naca.xRamDiskSize * PAGE_SIZE;
330 initrd_below_start_ok = 1; // ramdisk in kernel space
331 ROOT_DEV = Root_RAM0;
332 if (((rd_size * 1024) / PAGE_SIZE) < naca.xRamDiskSize)
333 rd_size = (naca.xRamDiskSize * PAGE_SIZE) / 1024;
335 #endif /* CONFIG_BLK_DEV_INITRD */
337 /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
340 iSeries_recal_tb = get_tb();
341 iSeries_recal_titan = HvCallXm_loadTod();
344 * Cache sizes must be initialized before hpte_init_iSeries is called
345 * as the later need them for flush_icache_range()
347 setup_iSeries_cache_sizes();
350 * Initialize the hash table management pointers
355 * Initialize the DMA/TCE management
357 iommu_init_early_iSeries();
360 * Initialize the table which translate Linux physical addresses to
361 * AS/400 absolute addresses
363 build_iSeries_Memory_Map();
365 iSeries_get_cmdline();
367 /* Save unparsed command line copy for /proc/cmdline */
368 strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
370 /* Parse early parameters, in particular mem=x */
374 if (memory_limit < systemcfg->physicalMemorySize)
375 systemcfg->physicalMemorySize = memory_limit;
377 printk("Ignoring mem=%lu >= ram_top.\n", memory_limit);
382 /* Bolt kernel mappings for all of memory (or just a bit if we've got a limit) */
383 iSeries_bolt_kernel(0, systemcfg->physicalMemorySize);
386 lmb_add(0, systemcfg->physicalMemorySize);
388 lmb_reserve(0, __pa(klimit));
390 /* Initialize machine-dependency vectors */
394 if (itLpNaca.xPirEnvironMode == 0)
395 piranha_simulator = 1;
397 /* Associate Lp Event Queue 0 with processor 0 */
398 HvCallEvent_setLpEventQueueInterruptProc(0, 0);
404 /* If we were passed an initrd, set the ROOT_DEV properly if the values
405 * look sensible. If not, clear initrd reference.
407 #ifdef CONFIG_BLK_DEV_INITRD
408 if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
409 initrd_end > initrd_start)
410 ROOT_DEV = Root_RAM0;
412 initrd_start = initrd_end = 0;
413 #endif /* CONFIG_BLK_DEV_INITRD */
415 DBG(" <- iSeries_init_early()\n");
418 struct mschunks_map mschunks_map = {
419 /* XXX We don't use these, but Piranha might need them. */
420 .chunk_size = MSCHUNKS_CHUNK_SIZE,
421 .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
422 .chunk_mask = MSCHUNKS_OFFSET_MASK,
424 EXPORT_SYMBOL(mschunks_map);
426 void mschunks_alloc(unsigned long num_chunks)
428 klimit = _ALIGN(klimit, sizeof(u32));
429 mschunks_map.mapping = (u32 *)klimit;
430 klimit += num_chunks * sizeof(u32);
431 mschunks_map.num_chunks = num_chunks;
435 * The iSeries may have very large memories ( > 128 GB ) and a partition
436 * may get memory in "chunks" that may be anywhere in the 2**52 real
437 * address space. The chunks are 256K in size. To map this to the
438 * memory model Linux expects, the AS/400 specific code builds a
439 * translation table to translate what Linux thinks are "physical"
440 * addresses to the actual real addresses. This allows us to make
441 * it appear to Linux that we have contiguous memory starting at
442 * physical address zero while in fact this could be far from the truth.
443 * To avoid confusion, I'll let the words physical and/or real address
444 * apply to the Linux addresses while I'll use "absolute address" to
445 * refer to the actual hardware real address.
447 * build_iSeries_Memory_Map gets information from the Hypervisor and
448 * looks at the Main Store VPD to determine the absolute addresses
449 * of the memory that has been assigned to our partition and builds
450 * a table used to translate Linux's physical addresses to these
451 * absolute addresses. Absolute addresses are needed when
452 * communicating with the hypervisor (e.g. to build HPT entries)
455 static void __init build_iSeries_Memory_Map(void)
457 u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
459 u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
461 u32 totalChunks,moreChunks;
462 u32 currChunk, thisChunk, absChunk;
466 struct MemoryBlock mb[32];
467 unsigned long numMemoryBlocks, curBlock;
469 /* Chunk size on iSeries is 256K bytes */
470 totalChunks = (u32)HvLpConfig_getMsChunks();
471 mschunks_alloc(totalChunks);
474 * Get absolute address of our load area
475 * and map it to physical address 0
476 * This guarantees that the loadarea ends up at physical 0
477 * otherwise, it might not be returned by PLIC as the first
481 loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
482 loadAreaSize = itLpNaca.xLoadAreaChunks;
485 * Only add the pages already mapped here.
486 * Otherwise we might add the hpt pages
487 * The rest of the pages of the load area
488 * aren't in the HPT yet and can still
489 * be assigned an arbitrary physical address
491 if ((loadAreaSize * 64) > HvPagesToMap)
492 loadAreaSize = HvPagesToMap / 64;
494 loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
497 * TODO Do we need to do something if the HPT is in the 64MB load area?
498 * This would be required if the itLpNaca.xLoadAreaChunks includes
502 printk("Mapping load area - physical addr = 0000000000000000\n"
503 " absolute addr = %016lx\n",
504 chunk_to_addr(loadAreaFirstChunk));
505 printk("Load area size %dK\n", loadAreaSize * 256);
507 for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
508 mschunks_map.mapping[nextPhysChunk] =
509 loadAreaFirstChunk + nextPhysChunk;
512 * Get absolute address of our HPT and remember it so
513 * we won't map it to any physical address
515 hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
516 hptSizePages = (u32)HvCallHpt_getHptPages();
517 hptSizeChunks = hptSizePages >> (MSCHUNKS_CHUNK_SHIFT - PAGE_SHIFT);
518 hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
520 printk("HPT absolute addr = %016lx, size = %dK\n",
521 chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
523 /* Fill in the hashed page table hash mask */
524 num_ptegs = hptSizePages *
525 (PAGE_SIZE / (sizeof(hpte_t) * HPTES_PER_GROUP));
526 htab_hash_mask = num_ptegs - 1;
529 * The actual hashed page table is in the hypervisor,
530 * we have no direct access
535 * Determine if absolute memory has any
536 * holes so that we can interpret the
537 * access map we get back from the hypervisor
540 numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
543 * Process the main store access map from the hypervisor
544 * to build up our physical -> absolute translation table
549 moreChunks = totalChunks;
552 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
554 thisChunk = currChunk;
556 chunkBit = map >> 63;
560 while (thisChunk >= mb[curBlock].logicalEnd) {
562 if (curBlock >= numMemoryBlocks)
563 panic("out of memory blocks");
565 if (thisChunk < mb[curBlock].logicalStart)
566 panic("memory block error");
568 absChunk = mb[curBlock].absStart +
569 (thisChunk - mb[curBlock].logicalStart);
570 if (((absChunk < hptFirstChunk) ||
571 (absChunk > hptLastChunk)) &&
572 ((absChunk < loadAreaFirstChunk) ||
573 (absChunk > loadAreaLastChunk))) {
574 mschunks_map.mapping[nextPhysChunk] =
586 * main store size (in chunks) is
587 * totalChunks - hptSizeChunks
588 * which should be equal to
591 systemcfg->physicalMemorySize = chunk_to_addr(nextPhysChunk);
595 * Set up the variables that describe the cache line sizes
598 static void __init setup_iSeries_cache_sizes(void)
601 unsigned int procIx = get_paca()->lppaca.dyn_hv_phys_proc_index;
603 systemcfg->icache_size =
604 ppc64_caches.isize = xIoHriProcessorVpd[procIx].xInstCacheSize * 1024;
605 systemcfg->icache_line_size =
606 ppc64_caches.iline_size =
607 xIoHriProcessorVpd[procIx].xInstCacheOperandSize;
608 systemcfg->dcache_size =
610 xIoHriProcessorVpd[procIx].xDataL1CacheSizeKB * 1024;
611 systemcfg->dcache_line_size =
612 ppc64_caches.dline_size =
613 xIoHriProcessorVpd[procIx].xDataCacheOperandSize;
614 ppc64_caches.ilines_per_page = PAGE_SIZE / ppc64_caches.iline_size;
615 ppc64_caches.dlines_per_page = PAGE_SIZE / ppc64_caches.dline_size;
617 i = ppc64_caches.iline_size;
619 while ((i = (i / 2)))
621 ppc64_caches.log_iline_size = n;
623 i = ppc64_caches.dline_size;
625 while ((i = (i / 2)))
627 ppc64_caches.log_dline_size = n;
629 printk("D-cache line size = %d\n",
630 (unsigned int)ppc64_caches.dline_size);
631 printk("I-cache line size = %d\n",
632 (unsigned int)ppc64_caches.iline_size);
636 * Create a pte. Used during initialization only.
638 static void iSeries_make_pte(unsigned long va, unsigned long pa,
641 hpte_t local_hpte, rhpte;
642 unsigned long hash, vpn;
645 vpn = va >> PAGE_SHIFT;
646 hash = hpt_hash(vpn, 0);
648 local_hpte.r = pa | mode;
649 local_hpte.v = ((va >> 23) << HPTE_V_AVPN_SHIFT)
650 | HPTE_V_BOLTED | HPTE_V_VALID;
652 slot = HvCallHpt_findValid(&rhpte, vpn);
654 /* Must find space in primary group */
655 panic("hash_page: hpte already exists\n");
657 HvCallHpt_addValidate(slot, 0, &local_hpte);
661 * Bolt the kernel addr space into the HPT
663 static void __init iSeries_bolt_kernel(unsigned long saddr, unsigned long eaddr)
666 unsigned long mode_rw = _PAGE_ACCESSED | _PAGE_COHERENT | PP_RWXX;
669 for (pa = saddr; pa < eaddr ;pa += PAGE_SIZE) {
670 unsigned long ea = (unsigned long)__va(pa);
671 unsigned long vsid = get_kernel_vsid(ea);
672 unsigned long va = (vsid << 28) | (pa & 0xfffffff);
673 unsigned long vpn = va >> PAGE_SHIFT;
674 unsigned long slot = HvCallHpt_findValid(&hpte, vpn);
676 /* Make non-kernel text non-executable */
677 if (!in_kernel_text(ea))
678 mode_rw |= HW_NO_EXEC;
680 if (hpte.v & HPTE_V_VALID) {
681 /* HPTE exists, so just bolt it */
682 HvCallHpt_setSwBits(slot, 0x10, 0);
683 /* And make sure the pp bits are correct */
684 HvCallHpt_setPp(slot, PP_RWXX);
686 /* No HPTE exists, so create a new bolted one */
687 iSeries_make_pte(va, phys_to_abs(pa), mode_rw);
694 static void __init iSeries_setup_arch(void)
696 unsigned procIx = get_paca()->lppaca.dyn_hv_phys_proc_index;
698 /* Add an eye catcher and the systemcfg layout version number */
699 strcpy(systemcfg->eye_catcher, "SYSTEMCFG:PPC64");
700 systemcfg->version.major = SYSTEMCFG_MAJOR;
701 systemcfg->version.minor = SYSTEMCFG_MINOR;
703 /* Setup the Lp Event Queue */
704 setup_hvlpevent_queue();
706 /* Compute processor frequency */
707 procFreqHz = ((1UL << 34) * 1000000) /
708 xIoHriProcessorVpd[procIx].xProcFreq;
709 procFreqMhz = procFreqHz / 1000000;
710 procFreqMhzHundreths = (procFreqHz / 10000) - (procFreqMhz * 100);
711 ppc_proc_freq = procFreqHz;
713 /* Compute time base frequency */
714 tbFreqHz = ((1UL << 32) * 1000000) /
715 xIoHriProcessorVpd[procIx].xTimeBaseFreq;
716 tbFreqMhz = tbFreqHz / 1000000;
717 tbFreqMhzHundreths = (tbFreqHz / 10000) - (tbFreqMhz * 100);
718 ppc_tb_freq = tbFreqHz;
720 printk("Max logical processors = %d\n",
721 itVpdAreas.xSlicMaxLogicalProcs);
722 printk("Max physical processors = %d\n",
723 itVpdAreas.xSlicMaxPhysicalProcs);
724 printk("Processor frequency = %lu.%02lu\n", procFreqMhz,
725 procFreqMhzHundreths);
726 printk("Time base frequency = %lu.%02lu\n", tbFreqMhz,
728 systemcfg->processor = xIoHriProcessorVpd[procIx].xPVR;
729 printk("Processor version = %x\n", systemcfg->processor);
732 static void iSeries_get_cpuinfo(struct seq_file *m)
734 seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
741 static int iSeries_get_irq(struct pt_regs *regs)
743 /* -2 means ignore this interrupt */
750 static void iSeries_restart(char *cmd)
758 static void iSeries_power_off(void)
766 static void iSeries_halt(void)
772 * void __init iSeries_calibrate_decr()
775 * This routine retrieves the internal processor frequency from the VPD,
776 * and sets up the kernel timer decrementer based on that value.
779 static void __init iSeries_calibrate_decr(void)
781 unsigned long cyclesPerUsec;
782 struct div_result divres;
784 /* Compute decrementer (and TB) frequency in cycles/sec */
785 cyclesPerUsec = ppc_tb_freq / 1000000;
788 * Set the amount to refresh the decrementer by. This
789 * is the number of decrementer ticks it takes for
792 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
795 /* TEST CODE FOR ADJTIME */
796 tb_ticks_per_jiffy += tb_ticks_per_jiffy / 5000;
797 /* END OF TEST CODE */
801 * tb_ticks_per_sec = freq; would give better accuracy
802 * but tb_ticks_per_sec = tb_ticks_per_jiffy*HZ; assures
803 * that jiffies (and xtime) will match the time returned
804 * by do_gettimeofday.
806 tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
807 tb_ticks_per_usec = cyclesPerUsec;
808 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
809 div128_by_32(1024 * 1024, 0, tb_ticks_per_sec, &divres);
810 tb_to_xs = divres.result_low;
811 setup_default_decr();
814 static void __init iSeries_progress(char * st, unsigned short code)
816 printk("Progress: [%04x] - %s\n", (unsigned)code, st);
817 if (!piranha_simulator && mf_initialized) {
819 mf_display_progress(code);
825 static void __init iSeries_fixup_klimit(void)
828 * Change klimit to take into account any ram disk
829 * that may be included
832 klimit = KERNELBASE + (u64)naca.xRamDisk +
833 (naca.xRamDiskSize * PAGE_SIZE);
836 * No ram disk was included - check and see if there
837 * was an embedded system map. Change klimit to take
838 * into account any embedded system map
840 if (embedded_sysmap_end)
841 klimit = KERNELBASE + ((embedded_sysmap_end + 4095) &
846 static int __init iSeries_src_init(void)
848 /* clear the progress line */
849 ppc_md.progress(" ", 0xffff);
853 late_initcall(iSeries_src_init);
855 static inline void process_iSeries_events(void)
857 asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
860 static void yield_shared_processor(void)
864 HvCall_setEnabledInterrupts(HvCall_MaskIPI |
870 /* Compute future tb value when yield should expire */
871 HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
874 * The decrementer stops during the yield. Force a fake decrementer
875 * here and let the timer_interrupt code sort out the actual time.
877 get_paca()->lppaca.int_dword.fields.decr_int = 1;
878 process_iSeries_events();
881 static int iseries_shared_idle(void)
884 while (!need_resched() && !hvlpevent_is_pending()) {
886 ppc64_runlatch_off();
888 /* Recheck with irqs off */
889 if (!need_resched() && !hvlpevent_is_pending())
890 yield_shared_processor();
898 if (hvlpevent_is_pending())
899 process_iSeries_events();
907 static int iseries_dedicated_idle(void)
912 oldval = test_and_clear_thread_flag(TIF_NEED_RESCHED);
915 set_thread_flag(TIF_POLLING_NRFLAG);
917 while (!need_resched()) {
918 ppc64_runlatch_off();
921 if (hvlpevent_is_pending()) {
924 process_iSeries_events();
929 clear_thread_flag(TIF_POLLING_NRFLAG);
942 void __init iSeries_init_IRQ(void) { }
945 void __init iSeries_early_setup(void)
947 iSeries_fixup_klimit();
949 ppc_md.setup_arch = iSeries_setup_arch;
950 ppc_md.get_cpuinfo = iSeries_get_cpuinfo;
951 ppc_md.init_IRQ = iSeries_init_IRQ;
952 ppc_md.get_irq = iSeries_get_irq;
953 ppc_md.init_early = iSeries_init_early,
955 ppc_md.pcibios_fixup = iSeries_pci_final_fixup;
957 ppc_md.restart = iSeries_restart;
958 ppc_md.power_off = iSeries_power_off;
959 ppc_md.halt = iSeries_halt;
961 ppc_md.get_boot_time = iSeries_get_boot_time;
962 ppc_md.set_rtc_time = iSeries_set_rtc_time;
963 ppc_md.get_rtc_time = iSeries_get_rtc_time;
964 ppc_md.calibrate_decr = iSeries_calibrate_decr;
965 ppc_md.progress = iSeries_progress;
967 /* XXX Implement enable_pmcs for iSeries */
969 if (get_paca()->lppaca.shared_proc) {
970 ppc_md.idle_loop = iseries_shared_idle;
971 printk(KERN_INFO "Using shared processor idle loop\n");
973 ppc_md.idle_loop = iseries_dedicated_idle;
974 printk(KERN_INFO "Using dedicated idle loop\n");