2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright (C) 2001-2003 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
10 * $Id: gc.c,v 1.155 2005/11/07 11:14:39 gleixner Exp $
14 #include <linux/kernel.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/slab.h>
17 #include <linux/pagemap.h>
18 #include <linux/crc32.h>
19 #include <linux/compiler.h>
20 #include <linux/stat.h>
24 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
25 struct jffs2_inode_cache *ic,
26 struct jffs2_raw_node_ref *raw);
27 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
28 struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
29 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
30 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
31 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
32 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
33 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
34 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
35 uint32_t start, uint32_t end);
36 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
37 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
38 uint32_t start, uint32_t end);
39 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
40 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
42 /* Called with erase_completion_lock held */
43 static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
45 struct jffs2_eraseblock *ret;
46 struct list_head *nextlist = NULL;
47 int n = jiffies % 128;
49 /* Pick an eraseblock to garbage collect next. This is where we'll
50 put the clever wear-levelling algorithms. Eventually. */
51 /* We possibly want to favour the dirtier blocks more when the
52 number of free blocks is low. */
54 if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
55 D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
56 nextlist = &c->bad_used_list;
57 } else if (n < 50 && !list_empty(&c->erasable_list)) {
58 /* Note that most of them will have gone directly to be erased.
59 So don't favour the erasable_list _too_ much. */
60 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
61 nextlist = &c->erasable_list;
62 } else if (n < 110 && !list_empty(&c->very_dirty_list)) {
63 /* Most of the time, pick one off the very_dirty list */
64 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
65 nextlist = &c->very_dirty_list;
66 } else if (n < 126 && !list_empty(&c->dirty_list)) {
67 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
68 nextlist = &c->dirty_list;
69 } else if (!list_empty(&c->clean_list)) {
70 D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
71 nextlist = &c->clean_list;
72 } else if (!list_empty(&c->dirty_list)) {
73 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
75 nextlist = &c->dirty_list;
76 } else if (!list_empty(&c->very_dirty_list)) {
77 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
78 nextlist = &c->very_dirty_list;
79 } else if (!list_empty(&c->erasable_list)) {
80 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
82 nextlist = &c->erasable_list;
83 } else if (!list_empty(&c->erasable_pending_wbuf_list)) {
84 /* There are blocks are wating for the wbuf sync */
85 D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
86 spin_unlock(&c->erase_completion_lock);
87 jffs2_flush_wbuf_pad(c);
88 spin_lock(&c->erase_completion_lock);
91 /* Eep. All were empty */
92 D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
96 ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
99 ret->gc_node = ret->first_node;
101 printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
105 /* Have we accidentally picked a clean block with wasted space ? */
106 if (ret->wasted_size) {
107 D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
108 ret->dirty_size += ret->wasted_size;
109 c->wasted_size -= ret->wasted_size;
110 c->dirty_size += ret->wasted_size;
111 ret->wasted_size = 0;
117 /* jffs2_garbage_collect_pass
118 * Make a single attempt to progress GC. Move one node, and possibly
119 * start erasing one eraseblock.
121 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
123 struct jffs2_inode_info *f;
124 struct jffs2_inode_cache *ic;
125 struct jffs2_eraseblock *jeb;
126 struct jffs2_raw_node_ref *raw;
127 int ret = 0, inum, nlink;
130 if (down_interruptible(&c->alloc_sem))
134 spin_lock(&c->erase_completion_lock);
135 if (!c->unchecked_size)
138 /* We can't start doing GC yet. We haven't finished checking
139 the node CRCs etc. Do it now. */
141 /* checked_ino is protected by the alloc_sem */
142 if (c->checked_ino > c->highest_ino && xattr) {
143 printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
145 jffs2_dbg_dump_block_lists_nolock(c);
146 spin_unlock(&c->erase_completion_lock);
150 spin_unlock(&c->erase_completion_lock);
153 xattr = jffs2_verify_xattr(c);
155 spin_lock(&c->inocache_lock);
157 ic = jffs2_get_ino_cache(c, c->checked_ino++);
160 spin_unlock(&c->inocache_lock);
165 D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n",
167 spin_unlock(&c->inocache_lock);
171 case INO_STATE_CHECKEDABSENT:
172 case INO_STATE_PRESENT:
173 D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
174 spin_unlock(&c->inocache_lock);
178 case INO_STATE_CHECKING:
179 printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
180 spin_unlock(&c->inocache_lock);
183 case INO_STATE_READING:
184 /* We need to wait for it to finish, lest we move on
185 and trigger the BUG() above while we haven't yet
186 finished checking all its nodes */
187 D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
188 /* We need to come back again for the _same_ inode. We've
189 made no progress in this case, but that should be OK */
193 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
199 case INO_STATE_UNCHECKED:
202 ic->state = INO_STATE_CHECKING;
203 spin_unlock(&c->inocache_lock);
205 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
207 ret = jffs2_do_crccheck_inode(c, ic);
209 printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
211 jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
216 /* First, work out which block we're garbage-collecting */
220 jeb = jffs2_find_gc_block(c);
223 D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
224 spin_unlock(&c->erase_completion_lock);
229 D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
231 printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
233 if (!jeb->used_size) {
240 while(ref_obsolete(raw)) {
241 D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
242 raw = raw->next_phys;
243 if (unlikely(!raw)) {
244 printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
245 printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
246 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
248 spin_unlock(&c->erase_completion_lock);
255 D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
257 if (!raw->next_in_ino) {
258 /* Inode-less node. Clean marker, snapshot or something like that */
259 /* FIXME: If it's something that needs to be copied, including something
260 we don't grok that has JFFS2_NODETYPE_RWCOMPAT_COPY, we should do so */
261 spin_unlock(&c->erase_completion_lock);
262 jffs2_mark_node_obsolete(c, raw);
267 ic = jffs2_raw_ref_to_ic(raw);
269 /* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr.
270 We can decide whether this node is inode or xattr by ic->class.
271 ret = 0 : ic is xattr_datum/xattr_ref, and GC was SUCCESSED.
272 ret < 0 : ic is xattr_datum/xattr_ref, but GC was FAILED.
273 ret > 0 : ic is NOT xattr_datum/xattr_ref.
275 ret = jffs2_garbage_collect_xattr(c, ic);
279 /* We need to hold the inocache. Either the erase_completion_lock or
280 the inocache_lock are sufficient; we trade down since the inocache_lock
281 causes less contention. */
282 spin_lock(&c->inocache_lock);
284 spin_unlock(&c->erase_completion_lock);
286 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
288 /* Three possibilities:
289 1. Inode is already in-core. We must iget it and do proper
290 updating to its fragtree, etc.
291 2. Inode is not in-core, node is REF_PRISTINE. We lock the
292 inocache to prevent a read_inode(), copy the node intact.
293 3. Inode is not in-core, node is not pristine. We must iget()
294 and take the slow path.
298 case INO_STATE_CHECKEDABSENT:
299 /* It's been checked, but it's not currently in-core.
300 We can just copy any pristine nodes, but have
301 to prevent anyone else from doing read_inode() while
302 we're at it, so we set the state accordingly */
303 if (ref_flags(raw) == REF_PRISTINE)
304 ic->state = INO_STATE_GC;
306 D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
311 case INO_STATE_PRESENT:
312 /* It's in-core. GC must iget() it. */
315 case INO_STATE_UNCHECKED:
316 case INO_STATE_CHECKING:
318 /* Should never happen. We should have finished checking
319 by the time we actually start doing any GC, and since
320 we're holding the alloc_sem, no other garbage collection
323 printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
326 spin_unlock(&c->inocache_lock);
329 case INO_STATE_READING:
330 /* Someone's currently trying to read it. We must wait for
331 them to finish and then go through the full iget() route
332 to do the GC. However, sometimes read_inode() needs to get
333 the alloc_sem() (for marking nodes invalid) so we must
334 drop the alloc_sem before sleeping. */
337 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
338 ic->ino, ic->state));
339 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
340 /* And because we dropped the alloc_sem we must start again from the
341 beginning. Ponder chance of livelock here -- we're returning success
342 without actually making any progress.
344 Q: What are the chances that the inode is back in INO_STATE_READING
345 again by the time we next enter this function? And that this happens
346 enough times to cause a real delay?
348 A: Small enough that I don't care :)
353 /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
354 node intact, and we don't have to muck about with the fragtree etc.
355 because we know it's not in-core. If it _was_ in-core, we go through
356 all the iget() crap anyway */
358 if (ic->state == INO_STATE_GC) {
359 spin_unlock(&c->inocache_lock);
361 ret = jffs2_garbage_collect_pristine(c, ic, raw);
363 spin_lock(&c->inocache_lock);
364 ic->state = INO_STATE_CHECKEDABSENT;
365 wake_up(&c->inocache_wq);
367 if (ret != -EBADFD) {
368 spin_unlock(&c->inocache_lock);
372 /* Fall through if it wanted us to, with inocache_lock held */
375 /* Prevent the fairly unlikely race where the gcblock is
376 entirely obsoleted by the final close of a file which had
377 the only valid nodes in the block, followed by erasure,
378 followed by freeing of the ic because the erased block(s)
379 held _all_ the nodes of that inode.... never been seen but
380 it's vaguely possible. */
384 spin_unlock(&c->inocache_lock);
386 f = jffs2_gc_fetch_inode(c, inum, nlink);
396 ret = jffs2_garbage_collect_live(c, jeb, raw, f);
398 jffs2_gc_release_inode(c, f);
404 /* If we've finished this block, start it erasing */
405 spin_lock(&c->erase_completion_lock);
408 if (c->gcblock && !c->gcblock->used_size) {
409 D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
410 /* We're GC'ing an empty block? */
411 list_add_tail(&c->gcblock->list, &c->erase_pending_list);
413 c->nr_erasing_blocks++;
414 jffs2_erase_pending_trigger(c);
416 spin_unlock(&c->erase_completion_lock);
421 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
422 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
424 struct jffs2_node_frag *frag;
425 struct jffs2_full_dnode *fn = NULL;
426 struct jffs2_full_dirent *fd;
427 uint32_t start = 0, end = 0, nrfrags = 0;
432 /* Now we have the lock for this inode. Check that it's still the one at the head
435 spin_lock(&c->erase_completion_lock);
437 if (c->gcblock != jeb) {
438 spin_unlock(&c->erase_completion_lock);
439 D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
442 if (ref_obsolete(raw)) {
443 spin_unlock(&c->erase_completion_lock);
444 D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
445 /* They'll call again */
448 spin_unlock(&c->erase_completion_lock);
450 /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
451 if (f->metadata && f->metadata->raw == raw) {
453 ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
457 /* FIXME. Read node and do lookup? */
458 for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
459 if (frag->node && frag->node->raw == raw) {
461 end = frag->ofs + frag->size;
464 if (nrfrags == frag->node->frags)
465 break; /* We've found them all */
469 if (ref_flags(raw) == REF_PRISTINE) {
470 ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
472 /* Urgh. Return it sensibly. */
473 frag->node->raw = f->inocache->nodes;
478 /* We found a datanode. Do the GC */
479 if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
480 /* It crosses a page boundary. Therefore, it must be a hole. */
481 ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
483 /* It could still be a hole. But we GC the page this way anyway */
484 ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
489 /* Wasn't a dnode. Try dirent */
490 for (fd = f->dents; fd; fd=fd->next) {
496 ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
498 ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
500 printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
501 ref_offset(raw), f->inocache->ino);
502 if (ref_obsolete(raw)) {
503 printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
505 jffs2_dbg_dump_node(c, ref_offset(raw));
515 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
516 struct jffs2_inode_cache *ic,
517 struct jffs2_raw_node_ref *raw)
519 union jffs2_node_union *node;
520 struct jffs2_raw_node_ref *nraw;
523 uint32_t phys_ofs, alloclen;
524 uint32_t crc, rawlen;
527 D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
529 rawlen = ref_totlen(c, c->gcblock, raw);
531 /* Ask for a small amount of space (or the totlen if smaller) because we
532 don't want to force wastage of the end of a block if splitting would
534 ret = jffs2_reserve_space_gc(c, min_t(uint32_t, sizeof(struct jffs2_raw_inode) +
535 JFFS2_MIN_DATA_LEN, rawlen), &phys_ofs, &alloclen, rawlen);
536 /* this is not the exact summary size of it,
537 it is only an upper estimation */
542 if (alloclen < rawlen) {
543 /* Doesn't fit untouched. We'll go the old route and split it */
547 node = kmalloc(rawlen, GFP_KERNEL);
551 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
552 if (!ret && retlen != rawlen)
557 crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
558 if (je32_to_cpu(node->u.hdr_crc) != crc) {
559 printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
560 ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
564 switch(je16_to_cpu(node->u.nodetype)) {
565 case JFFS2_NODETYPE_INODE:
566 crc = crc32(0, node, sizeof(node->i)-8);
567 if (je32_to_cpu(node->i.node_crc) != crc) {
568 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
569 ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
573 if (je32_to_cpu(node->i.dsize)) {
574 crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
575 if (je32_to_cpu(node->i.data_crc) != crc) {
576 printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
577 ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
583 case JFFS2_NODETYPE_DIRENT:
584 crc = crc32(0, node, sizeof(node->d)-8);
585 if (je32_to_cpu(node->d.node_crc) != crc) {
586 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
587 ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
592 crc = crc32(0, node->d.name, node->d.nsize);
593 if (je32_to_cpu(node->d.name_crc) != crc) {
594 printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
595 ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
601 printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
602 ref_offset(raw), je16_to_cpu(node->u.nodetype));
606 nraw = jffs2_alloc_raw_node_ref();
612 /* OK, all the CRCs are good; this node can just be copied as-is. */
614 nraw->flash_offset = phys_ofs;
615 nraw->__totlen = rawlen;
616 nraw->next_phys = NULL;
618 ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
620 if (ret || (retlen != rawlen)) {
621 printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
622 rawlen, phys_ofs, ret, retlen);
624 /* Doesn't belong to any inode */
625 nraw->next_in_ino = NULL;
627 nraw->flash_offset |= REF_OBSOLETE;
628 jffs2_add_physical_node_ref(c, nraw);
629 jffs2_mark_node_obsolete(c, nraw);
631 printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", nraw->flash_offset);
632 jffs2_free_raw_node_ref(nraw);
634 if (!retried && (nraw = jffs2_alloc_raw_node_ref())) {
635 /* Try to reallocate space and retry */
637 struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
641 D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
643 jffs2_dbg_acct_sanity_check(c,jeb);
644 jffs2_dbg_acct_paranoia_check(c, jeb);
646 ret = jffs2_reserve_space_gc(c, rawlen, &phys_ofs, &dummy, rawlen);
647 /* this is not the exact summary size of it,
648 it is only an upper estimation */
651 D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
653 jffs2_dbg_acct_sanity_check(c,jeb);
654 jffs2_dbg_acct_paranoia_check(c, jeb);
658 D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
659 jffs2_free_raw_node_ref(nraw);
662 jffs2_free_raw_node_ref(nraw);
667 nraw->flash_offset |= REF_PRISTINE;
668 jffs2_add_physical_node_ref(c, nraw);
670 /* Link into per-inode list. This is safe because of the ic
671 state being INO_STATE_GC. Note that if we're doing this
672 for an inode which is in-core, the 'nraw' pointer is then
673 going to be fetched from ic->nodes by our caller. */
674 spin_lock(&c->erase_completion_lock);
675 nraw->next_in_ino = ic->nodes;
677 spin_unlock(&c->erase_completion_lock);
679 jffs2_mark_node_obsolete(c, raw);
680 D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
690 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
691 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
693 struct jffs2_full_dnode *new_fn;
694 struct jffs2_raw_inode ri;
695 struct jffs2_node_frag *last_frag;
697 char *mdata = NULL, mdatalen = 0;
698 uint32_t alloclen, phys_ofs, ilen;
701 if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
702 S_ISCHR(JFFS2_F_I_MODE(f)) ) {
703 /* For these, we don't actually need to read the old node */
704 /* FIXME: for minor or major > 255. */
705 dev = cpu_to_je16(((JFFS2_F_I_RDEV_MAJ(f) << 8) |
706 JFFS2_F_I_RDEV_MIN(f)));
707 mdata = (char *)&dev;
708 mdatalen = sizeof(dev);
709 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
710 } else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
712 mdata = kmalloc(fn->size, GFP_KERNEL);
714 printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
717 ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
719 printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
723 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
727 ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &phys_ofs, &alloclen,
728 JFFS2_SUMMARY_INODE_SIZE);
730 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
731 sizeof(ri)+ mdatalen, ret);
735 last_frag = frag_last(&f->fragtree);
737 /* Fetch the inode length from the fragtree rather then
738 * from i_size since i_size may have not been updated yet */
739 ilen = last_frag->ofs + last_frag->size;
741 ilen = JFFS2_F_I_SIZE(f);
743 memset(&ri, 0, sizeof(ri));
744 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
745 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
746 ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
747 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
749 ri.ino = cpu_to_je32(f->inocache->ino);
750 ri.version = cpu_to_je32(++f->highest_version);
751 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
752 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
753 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
754 ri.isize = cpu_to_je32(ilen);
755 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
756 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
757 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
758 ri.offset = cpu_to_je32(0);
759 ri.csize = cpu_to_je32(mdatalen);
760 ri.dsize = cpu_to_je32(mdatalen);
761 ri.compr = JFFS2_COMPR_NONE;
762 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
763 ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
765 new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, phys_ofs, ALLOC_GC);
767 if (IS_ERR(new_fn)) {
768 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
769 ret = PTR_ERR(new_fn);
772 jffs2_mark_node_obsolete(c, fn->raw);
773 jffs2_free_full_dnode(fn);
774 f->metadata = new_fn;
776 if (S_ISLNK(JFFS2_F_I_MODE(f)))
781 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
782 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
784 struct jffs2_full_dirent *new_fd;
785 struct jffs2_raw_dirent rd;
786 uint32_t alloclen, phys_ofs;
789 rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
790 rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
791 rd.nsize = strlen(fd->name);
792 rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
793 rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
795 rd.pino = cpu_to_je32(f->inocache->ino);
796 rd.version = cpu_to_je32(++f->highest_version);
797 rd.ino = cpu_to_je32(fd->ino);
798 /* If the times on this inode were set by explicit utime() they can be different,
799 so refrain from splatting them. */
800 if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
801 rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
803 rd.mctime = cpu_to_je32(0);
805 rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
806 rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
808 ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &phys_ofs, &alloclen,
809 JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
811 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
812 sizeof(rd)+rd.nsize, ret);
815 new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, phys_ofs, ALLOC_GC);
817 if (IS_ERR(new_fd)) {
818 printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
819 return PTR_ERR(new_fd);
821 jffs2_add_fd_to_list(c, new_fd, &f->dents);
825 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
826 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
828 struct jffs2_full_dirent **fdp = &f->dents;
831 /* On a medium where we can't actually mark nodes obsolete
832 pernamently, such as NAND flash, we need to work out
833 whether this deletion dirent is still needed to actively
834 delete a 'real' dirent with the same name that's still
835 somewhere else on the flash. */
836 if (!jffs2_can_mark_obsolete(c)) {
837 struct jffs2_raw_dirent *rd;
838 struct jffs2_raw_node_ref *raw;
841 int name_len = strlen(fd->name);
842 uint32_t name_crc = crc32(0, fd->name, name_len);
843 uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
845 rd = kmalloc(rawlen, GFP_KERNEL);
849 /* Prevent the erase code from nicking the obsolete node refs while
850 we're looking at them. I really don't like this extra lock but
851 can't see any alternative. Suggestions on a postcard to... */
852 down(&c->erase_free_sem);
854 for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
856 /* We only care about obsolete ones */
857 if (!(ref_obsolete(raw)))
860 /* Any dirent with the same name is going to have the same length... */
861 if (ref_totlen(c, NULL, raw) != rawlen)
864 /* Doesn't matter if there's one in the same erase block. We're going to
865 delete it too at the same time. */
866 if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
869 D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
871 /* This is an obsolete node belonging to the same directory, and it's of the right
872 length. We need to take a closer look...*/
873 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
875 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
876 /* If we can't read it, we don't need to continue to obsolete it. Continue */
879 if (retlen != rawlen) {
880 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
881 retlen, rawlen, ref_offset(raw));
885 if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
888 /* If the name CRC doesn't match, skip */
889 if (je32_to_cpu(rd->name_crc) != name_crc)
892 /* If the name length doesn't match, or it's another deletion dirent, skip */
893 if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
896 /* OK, check the actual name now */
897 if (memcmp(rd->name, fd->name, name_len))
900 /* OK. The name really does match. There really is still an older node on
901 the flash which our deletion dirent obsoletes. So we have to write out
902 a new deletion dirent to replace it */
903 up(&c->erase_free_sem);
905 D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
906 ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
909 return jffs2_garbage_collect_dirent(c, jeb, f, fd);
912 up(&c->erase_free_sem);
916 /* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
917 we should update the metadata node with those times accordingly */
919 /* No need for it any more. Just mark it obsolete and remove it from the list */
929 printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
931 jffs2_mark_node_obsolete(c, fd->raw);
932 jffs2_free_full_dirent(fd);
936 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
937 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
938 uint32_t start, uint32_t end)
940 struct jffs2_raw_inode ri;
941 struct jffs2_node_frag *frag;
942 struct jffs2_full_dnode *new_fn;
943 uint32_t alloclen, phys_ofs, ilen;
946 D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
947 f->inocache->ino, start, end));
949 memset(&ri, 0, sizeof(ri));
954 /* It's partially obsoleted by a later write. So we have to
955 write it out again with the _same_ version as before */
956 ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
957 if (readlen != sizeof(ri) || ret) {
958 printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
961 if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
962 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
964 je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
967 if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
968 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
970 je32_to_cpu(ri.totlen), sizeof(ri));
973 crc = crc32(0, &ri, sizeof(ri)-8);
974 if (crc != je32_to_cpu(ri.node_crc)) {
975 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
977 je32_to_cpu(ri.node_crc), crc);
978 /* FIXME: We could possibly deal with this by writing new holes for each frag */
979 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
980 start, end, f->inocache->ino);
983 if (ri.compr != JFFS2_COMPR_ZERO) {
984 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
985 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
986 start, end, f->inocache->ino);
991 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
992 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
993 ri.totlen = cpu_to_je32(sizeof(ri));
994 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
996 ri.ino = cpu_to_je32(f->inocache->ino);
997 ri.version = cpu_to_je32(++f->highest_version);
998 ri.offset = cpu_to_je32(start);
999 ri.dsize = cpu_to_je32(end - start);
1000 ri.csize = cpu_to_je32(0);
1001 ri.compr = JFFS2_COMPR_ZERO;
1004 frag = frag_last(&f->fragtree);
1006 /* Fetch the inode length from the fragtree rather then
1007 * from i_size since i_size may have not been updated yet */
1008 ilen = frag->ofs + frag->size;
1010 ilen = JFFS2_F_I_SIZE(f);
1012 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1013 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1014 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1015 ri.isize = cpu_to_je32(ilen);
1016 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1017 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1018 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1019 ri.data_crc = cpu_to_je32(0);
1020 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1022 ret = jffs2_reserve_space_gc(c, sizeof(ri), &phys_ofs, &alloclen,
1023 JFFS2_SUMMARY_INODE_SIZE);
1025 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1029 new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, phys_ofs, ALLOC_GC);
1031 if (IS_ERR(new_fn)) {
1032 printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1033 return PTR_ERR(new_fn);
1035 if (je32_to_cpu(ri.version) == f->highest_version) {
1036 jffs2_add_full_dnode_to_inode(c, f, new_fn);
1038 jffs2_mark_node_obsolete(c, f->metadata->raw);
1039 jffs2_free_full_dnode(f->metadata);
1046 * We should only get here in the case where the node we are
1047 * replacing had more than one frag, so we kept the same version
1048 * number as before. (Except in case of error -- see 'goto fill;'
1051 D1(if(unlikely(fn->frags <= 1)) {
1052 printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1053 fn->frags, je32_to_cpu(ri.version), f->highest_version,
1054 je32_to_cpu(ri.ino));
1057 /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1058 mark_ref_normal(new_fn->raw);
1060 for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1061 frag; frag = frag_next(frag)) {
1062 if (frag->ofs > fn->size + fn->ofs)
1064 if (frag->node == fn) {
1065 frag->node = new_fn;
1071 printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1074 if (!new_fn->frags) {
1075 printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1079 jffs2_mark_node_obsolete(c, fn->raw);
1080 jffs2_free_full_dnode(fn);
1085 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1086 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1087 uint32_t start, uint32_t end)
1089 struct jffs2_full_dnode *new_fn;
1090 struct jffs2_raw_inode ri;
1091 uint32_t alloclen, phys_ofs, offset, orig_end, orig_start;
1093 unsigned char *comprbuf = NULL, *writebuf;
1095 unsigned char *pg_ptr;
1097 memset(&ri, 0, sizeof(ri));
1099 D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1100 f->inocache->ino, start, end));
1105 if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1106 /* Attempt to do some merging. But only expand to cover logically
1107 adjacent frags if the block containing them is already considered
1108 to be dirty. Otherwise we end up with GC just going round in
1109 circles dirtying the nodes it already wrote out, especially
1110 on NAND where we have small eraseblocks and hence a much higher
1111 chance of nodes having to be split to cross boundaries. */
1113 struct jffs2_node_frag *frag;
1116 min = start & ~(PAGE_CACHE_SIZE-1);
1117 max = min + PAGE_CACHE_SIZE;
1119 frag = jffs2_lookup_node_frag(&f->fragtree, start);
1121 /* BUG_ON(!frag) but that'll happen anyway... */
1123 BUG_ON(frag->ofs != start);
1125 /* First grow down... */
1126 while((frag = frag_prev(frag)) && frag->ofs >= min) {
1128 /* If the previous frag doesn't even reach the beginning, there's
1129 excessive fragmentation. Just merge. */
1130 if (frag->ofs > min) {
1131 D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
1132 frag->ofs, frag->ofs+frag->size));
1136 /* OK. This frag holds the first byte of the page. */
1137 if (!frag->node || !frag->node->raw) {
1138 D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1139 frag->ofs, frag->ofs+frag->size));
1143 /* OK, it's a frag which extends to the beginning of the page. Does it live
1144 in a block which is still considered clean? If so, don't obsolete it.
1145 If not, cover it anyway. */
1147 struct jffs2_raw_node_ref *raw = frag->node->raw;
1148 struct jffs2_eraseblock *jeb;
1150 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1152 if (jeb == c->gcblock) {
1153 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1154 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1158 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1159 D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1160 frag->ofs, frag->ofs+frag->size, jeb->offset));
1164 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1165 frag->ofs, frag->ofs+frag->size, jeb->offset));
1173 /* Find last frag which is actually part of the node we're to GC. */
1174 frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1176 while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1178 /* If the previous frag doesn't even reach the beginning, there's lots
1179 of fragmentation. Just merge. */
1180 if (frag->ofs+frag->size < max) {
1181 D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
1182 frag->ofs, frag->ofs+frag->size));
1183 end = frag->ofs + frag->size;
1187 if (!frag->node || !frag->node->raw) {
1188 D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1189 frag->ofs, frag->ofs+frag->size));
1193 /* OK, it's a frag which extends to the beginning of the page. Does it live
1194 in a block which is still considered clean? If so, don't obsolete it.
1195 If not, cover it anyway. */
1197 struct jffs2_raw_node_ref *raw = frag->node->raw;
1198 struct jffs2_eraseblock *jeb;
1200 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1202 if (jeb == c->gcblock) {
1203 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1204 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1205 end = frag->ofs + frag->size;
1208 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1209 D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1210 frag->ofs, frag->ofs+frag->size, jeb->offset));
1214 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1215 frag->ofs, frag->ofs+frag->size, jeb->offset));
1216 end = frag->ofs + frag->size;
1220 D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1221 orig_start, orig_end, start, end));
1223 D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1224 BUG_ON(end < orig_end);
1225 BUG_ON(start > orig_start);
1228 /* First, use readpage() to read the appropriate page into the page cache */
1229 /* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1230 * triggered garbage collection in the first place?
1231 * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1232 * page OK. We'll actually write it out again in commit_write, which is a little
1233 * suboptimal, but at least we're correct.
1235 pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1237 if (IS_ERR(pg_ptr)) {
1238 printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1239 return PTR_ERR(pg_ptr);
1243 while(offset < orig_end) {
1246 uint16_t comprtype = JFFS2_COMPR_NONE;
1248 ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN, &phys_ofs,
1249 &alloclen, JFFS2_SUMMARY_INODE_SIZE);
1252 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1253 sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1256 cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1257 datalen = end - offset;
1259 writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1261 comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1263 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1264 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1265 ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1266 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1268 ri.ino = cpu_to_je32(f->inocache->ino);
1269 ri.version = cpu_to_je32(++f->highest_version);
1270 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1271 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1272 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1273 ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1274 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1275 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1276 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1277 ri.offset = cpu_to_je32(offset);
1278 ri.csize = cpu_to_je32(cdatalen);
1279 ri.dsize = cpu_to_je32(datalen);
1280 ri.compr = comprtype & 0xff;
1281 ri.usercompr = (comprtype >> 8) & 0xff;
1282 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1283 ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1285 new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, phys_ofs, ALLOC_GC);
1287 jffs2_free_comprbuf(comprbuf, writebuf);
1289 if (IS_ERR(new_fn)) {
1290 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1291 ret = PTR_ERR(new_fn);
1294 ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1297 jffs2_mark_node_obsolete(c, f->metadata->raw);
1298 jffs2_free_full_dnode(f->metadata);
1303 jffs2_gc_release_page(c, pg_ptr, &pg);