perfcounters: fix task clock counter
[linux-2.6] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_counter.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55
56 #include <asm/uaccess.h>
57 #include <asm/mmu_context.h>
58 #include <asm/tlb.h>
59
60 #ifdef __alpha__
61 /* for /sbin/loader handling in search_binary_handler() */
62 #include <linux/a.out.h>
63 #endif
64
65 int core_uses_pid;
66 char core_pattern[CORENAME_MAX_SIZE] = "core";
67 int suid_dumpable = 0;
68
69 /* The maximal length of core_pattern is also specified in sysctl.c */
70
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73
74 int register_binfmt(struct linux_binfmt * fmt)
75 {
76         if (!fmt)
77                 return -EINVAL;
78         write_lock(&binfmt_lock);
79         list_add(&fmt->lh, &formats);
80         write_unlock(&binfmt_lock);
81         return 0;       
82 }
83
84 EXPORT_SYMBOL(register_binfmt);
85
86 void unregister_binfmt(struct linux_binfmt * fmt)
87 {
88         write_lock(&binfmt_lock);
89         list_del(&fmt->lh);
90         write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(unregister_binfmt);
94
95 static inline void put_binfmt(struct linux_binfmt * fmt)
96 {
97         module_put(fmt->module);
98 }
99
100 /*
101  * Note that a shared library must be both readable and executable due to
102  * security reasons.
103  *
104  * Also note that we take the address to load from from the file itself.
105  */
106 asmlinkage long sys_uselib(const char __user * library)
107 {
108         struct file *file;
109         struct nameidata nd;
110         char *tmp = getname(library);
111         int error = PTR_ERR(tmp);
112
113         if (!IS_ERR(tmp)) {
114                 error = path_lookup_open(AT_FDCWD, tmp,
115                                          LOOKUP_FOLLOW, &nd,
116                                          FMODE_READ|FMODE_EXEC);
117                 putname(tmp);
118         }
119         if (error)
120                 goto out;
121
122         error = -EINVAL;
123         if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
124                 goto exit;
125
126         error = -EACCES;
127         if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
128                 goto exit;
129
130         error = vfs_permission(&nd, MAY_READ | MAY_EXEC | MAY_OPEN);
131         if (error)
132                 goto exit;
133
134         file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
135         error = PTR_ERR(file);
136         if (IS_ERR(file))
137                 goto out;
138
139         error = -ENOEXEC;
140         if(file->f_op) {
141                 struct linux_binfmt * fmt;
142
143                 read_lock(&binfmt_lock);
144                 list_for_each_entry(fmt, &formats, lh) {
145                         if (!fmt->load_shlib)
146                                 continue;
147                         if (!try_module_get(fmt->module))
148                                 continue;
149                         read_unlock(&binfmt_lock);
150                         error = fmt->load_shlib(file);
151                         read_lock(&binfmt_lock);
152                         put_binfmt(fmt);
153                         if (error != -ENOEXEC)
154                                 break;
155                 }
156                 read_unlock(&binfmt_lock);
157         }
158         fput(file);
159 out:
160         return error;
161 exit:
162         release_open_intent(&nd);
163         path_put(&nd.path);
164         goto out;
165 }
166
167 #ifdef CONFIG_MMU
168
169 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
170                 int write)
171 {
172         struct page *page;
173         int ret;
174
175 #ifdef CONFIG_STACK_GROWSUP
176         if (write) {
177                 ret = expand_stack_downwards(bprm->vma, pos);
178                 if (ret < 0)
179                         return NULL;
180         }
181 #endif
182         ret = get_user_pages(current, bprm->mm, pos,
183                         1, write, 1, &page, NULL);
184         if (ret <= 0)
185                 return NULL;
186
187         if (write) {
188                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
189                 struct rlimit *rlim;
190
191                 /*
192                  * We've historically supported up to 32 pages (ARG_MAX)
193                  * of argument strings even with small stacks
194                  */
195                 if (size <= ARG_MAX)
196                         return page;
197
198                 /*
199                  * Limit to 1/4-th the stack size for the argv+env strings.
200                  * This ensures that:
201                  *  - the remaining binfmt code will not run out of stack space,
202                  *  - the program will have a reasonable amount of stack left
203                  *    to work from.
204                  */
205                 rlim = current->signal->rlim;
206                 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
207                         put_page(page);
208                         return NULL;
209                 }
210         }
211
212         return page;
213 }
214
215 static void put_arg_page(struct page *page)
216 {
217         put_page(page);
218 }
219
220 static void free_arg_page(struct linux_binprm *bprm, int i)
221 {
222 }
223
224 static void free_arg_pages(struct linux_binprm *bprm)
225 {
226 }
227
228 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
229                 struct page *page)
230 {
231         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
232 }
233
234 static int __bprm_mm_init(struct linux_binprm *bprm)
235 {
236         int err = -ENOMEM;
237         struct vm_area_struct *vma = NULL;
238         struct mm_struct *mm = bprm->mm;
239
240         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
241         if (!vma)
242                 goto err;
243
244         down_write(&mm->mmap_sem);
245         vma->vm_mm = mm;
246
247         /*
248          * Place the stack at the largest stack address the architecture
249          * supports. Later, we'll move this to an appropriate place. We don't
250          * use STACK_TOP because that can depend on attributes which aren't
251          * configured yet.
252          */
253         vma->vm_end = STACK_TOP_MAX;
254         vma->vm_start = vma->vm_end - PAGE_SIZE;
255
256         vma->vm_flags = VM_STACK_FLAGS;
257         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
258         err = insert_vm_struct(mm, vma);
259         if (err) {
260                 up_write(&mm->mmap_sem);
261                 goto err;
262         }
263
264         mm->stack_vm = mm->total_vm = 1;
265         up_write(&mm->mmap_sem);
266
267         bprm->p = vma->vm_end - sizeof(void *);
268
269         return 0;
270
271 err:
272         if (vma) {
273                 bprm->vma = NULL;
274                 kmem_cache_free(vm_area_cachep, vma);
275         }
276
277         return err;
278 }
279
280 static bool valid_arg_len(struct linux_binprm *bprm, long len)
281 {
282         return len <= MAX_ARG_STRLEN;
283 }
284
285 #else
286
287 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
288                 int write)
289 {
290         struct page *page;
291
292         page = bprm->page[pos / PAGE_SIZE];
293         if (!page && write) {
294                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
295                 if (!page)
296                         return NULL;
297                 bprm->page[pos / PAGE_SIZE] = page;
298         }
299
300         return page;
301 }
302
303 static void put_arg_page(struct page *page)
304 {
305 }
306
307 static void free_arg_page(struct linux_binprm *bprm, int i)
308 {
309         if (bprm->page[i]) {
310                 __free_page(bprm->page[i]);
311                 bprm->page[i] = NULL;
312         }
313 }
314
315 static void free_arg_pages(struct linux_binprm *bprm)
316 {
317         int i;
318
319         for (i = 0; i < MAX_ARG_PAGES; i++)
320                 free_arg_page(bprm, i);
321 }
322
323 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
324                 struct page *page)
325 {
326 }
327
328 static int __bprm_mm_init(struct linux_binprm *bprm)
329 {
330         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
331         return 0;
332 }
333
334 static bool valid_arg_len(struct linux_binprm *bprm, long len)
335 {
336         return len <= bprm->p;
337 }
338
339 #endif /* CONFIG_MMU */
340
341 /*
342  * Create a new mm_struct and populate it with a temporary stack
343  * vm_area_struct.  We don't have enough context at this point to set the stack
344  * flags, permissions, and offset, so we use temporary values.  We'll update
345  * them later in setup_arg_pages().
346  */
347 int bprm_mm_init(struct linux_binprm *bprm)
348 {
349         int err;
350         struct mm_struct *mm = NULL;
351
352         bprm->mm = mm = mm_alloc();
353         err = -ENOMEM;
354         if (!mm)
355                 goto err;
356
357         err = init_new_context(current, mm);
358         if (err)
359                 goto err;
360
361         err = __bprm_mm_init(bprm);
362         if (err)
363                 goto err;
364
365         return 0;
366
367 err:
368         if (mm) {
369                 bprm->mm = NULL;
370                 mmdrop(mm);
371         }
372
373         return err;
374 }
375
376 /*
377  * count() counts the number of strings in array ARGV.
378  */
379 static int count(char __user * __user * argv, int max)
380 {
381         int i = 0;
382
383         if (argv != NULL) {
384                 for (;;) {
385                         char __user * p;
386
387                         if (get_user(p, argv))
388                                 return -EFAULT;
389                         if (!p)
390                                 break;
391                         argv++;
392                         if (i++ >= max)
393                                 return -E2BIG;
394                         cond_resched();
395                 }
396         }
397         return i;
398 }
399
400 /*
401  * 'copy_strings()' copies argument/environment strings from the old
402  * processes's memory to the new process's stack.  The call to get_user_pages()
403  * ensures the destination page is created and not swapped out.
404  */
405 static int copy_strings(int argc, char __user * __user * argv,
406                         struct linux_binprm *bprm)
407 {
408         struct page *kmapped_page = NULL;
409         char *kaddr = NULL;
410         unsigned long kpos = 0;
411         int ret;
412
413         while (argc-- > 0) {
414                 char __user *str;
415                 int len;
416                 unsigned long pos;
417
418                 if (get_user(str, argv+argc) ||
419                                 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
420                         ret = -EFAULT;
421                         goto out;
422                 }
423
424                 if (!valid_arg_len(bprm, len)) {
425                         ret = -E2BIG;
426                         goto out;
427                 }
428
429                 /* We're going to work our way backwords. */
430                 pos = bprm->p;
431                 str += len;
432                 bprm->p -= len;
433
434                 while (len > 0) {
435                         int offset, bytes_to_copy;
436
437                         offset = pos % PAGE_SIZE;
438                         if (offset == 0)
439                                 offset = PAGE_SIZE;
440
441                         bytes_to_copy = offset;
442                         if (bytes_to_copy > len)
443                                 bytes_to_copy = len;
444
445                         offset -= bytes_to_copy;
446                         pos -= bytes_to_copy;
447                         str -= bytes_to_copy;
448                         len -= bytes_to_copy;
449
450                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
451                                 struct page *page;
452
453                                 page = get_arg_page(bprm, pos, 1);
454                                 if (!page) {
455                                         ret = -E2BIG;
456                                         goto out;
457                                 }
458
459                                 if (kmapped_page) {
460                                         flush_kernel_dcache_page(kmapped_page);
461                                         kunmap(kmapped_page);
462                                         put_arg_page(kmapped_page);
463                                 }
464                                 kmapped_page = page;
465                                 kaddr = kmap(kmapped_page);
466                                 kpos = pos & PAGE_MASK;
467                                 flush_arg_page(bprm, kpos, kmapped_page);
468                         }
469                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
470                                 ret = -EFAULT;
471                                 goto out;
472                         }
473                 }
474         }
475         ret = 0;
476 out:
477         if (kmapped_page) {
478                 flush_kernel_dcache_page(kmapped_page);
479                 kunmap(kmapped_page);
480                 put_arg_page(kmapped_page);
481         }
482         return ret;
483 }
484
485 /*
486  * Like copy_strings, but get argv and its values from kernel memory.
487  */
488 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
489 {
490         int r;
491         mm_segment_t oldfs = get_fs();
492         set_fs(KERNEL_DS);
493         r = copy_strings(argc, (char __user * __user *)argv, bprm);
494         set_fs(oldfs);
495         return r;
496 }
497 EXPORT_SYMBOL(copy_strings_kernel);
498
499 #ifdef CONFIG_MMU
500
501 /*
502  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
503  * the binfmt code determines where the new stack should reside, we shift it to
504  * its final location.  The process proceeds as follows:
505  *
506  * 1) Use shift to calculate the new vma endpoints.
507  * 2) Extend vma to cover both the old and new ranges.  This ensures the
508  *    arguments passed to subsequent functions are consistent.
509  * 3) Move vma's page tables to the new range.
510  * 4) Free up any cleared pgd range.
511  * 5) Shrink the vma to cover only the new range.
512  */
513 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
514 {
515         struct mm_struct *mm = vma->vm_mm;
516         unsigned long old_start = vma->vm_start;
517         unsigned long old_end = vma->vm_end;
518         unsigned long length = old_end - old_start;
519         unsigned long new_start = old_start - shift;
520         unsigned long new_end = old_end - shift;
521         struct mmu_gather *tlb;
522
523         BUG_ON(new_start > new_end);
524
525         /*
526          * ensure there are no vmas between where we want to go
527          * and where we are
528          */
529         if (vma != find_vma(mm, new_start))
530                 return -EFAULT;
531
532         /*
533          * cover the whole range: [new_start, old_end)
534          */
535         vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
536
537         /*
538          * move the page tables downwards, on failure we rely on
539          * process cleanup to remove whatever mess we made.
540          */
541         if (length != move_page_tables(vma, old_start,
542                                        vma, new_start, length))
543                 return -ENOMEM;
544
545         lru_add_drain();
546         tlb = tlb_gather_mmu(mm, 0);
547         if (new_end > old_start) {
548                 /*
549                  * when the old and new regions overlap clear from new_end.
550                  */
551                 free_pgd_range(tlb, new_end, old_end, new_end,
552                         vma->vm_next ? vma->vm_next->vm_start : 0);
553         } else {
554                 /*
555                  * otherwise, clean from old_start; this is done to not touch
556                  * the address space in [new_end, old_start) some architectures
557                  * have constraints on va-space that make this illegal (IA64) -
558                  * for the others its just a little faster.
559                  */
560                 free_pgd_range(tlb, old_start, old_end, new_end,
561                         vma->vm_next ? vma->vm_next->vm_start : 0);
562         }
563         tlb_finish_mmu(tlb, new_end, old_end);
564
565         /*
566          * shrink the vma to just the new range.
567          */
568         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
569
570         return 0;
571 }
572
573 #define EXTRA_STACK_VM_PAGES    20      /* random */
574
575 /*
576  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
577  * the stack is optionally relocated, and some extra space is added.
578  */
579 int setup_arg_pages(struct linux_binprm *bprm,
580                     unsigned long stack_top,
581                     int executable_stack)
582 {
583         unsigned long ret;
584         unsigned long stack_shift;
585         struct mm_struct *mm = current->mm;
586         struct vm_area_struct *vma = bprm->vma;
587         struct vm_area_struct *prev = NULL;
588         unsigned long vm_flags;
589         unsigned long stack_base;
590
591 #ifdef CONFIG_STACK_GROWSUP
592         /* Limit stack size to 1GB */
593         stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
594         if (stack_base > (1 << 30))
595                 stack_base = 1 << 30;
596
597         /* Make sure we didn't let the argument array grow too large. */
598         if (vma->vm_end - vma->vm_start > stack_base)
599                 return -ENOMEM;
600
601         stack_base = PAGE_ALIGN(stack_top - stack_base);
602
603         stack_shift = vma->vm_start - stack_base;
604         mm->arg_start = bprm->p - stack_shift;
605         bprm->p = vma->vm_end - stack_shift;
606 #else
607         stack_top = arch_align_stack(stack_top);
608         stack_top = PAGE_ALIGN(stack_top);
609         stack_shift = vma->vm_end - stack_top;
610
611         bprm->p -= stack_shift;
612         mm->arg_start = bprm->p;
613 #endif
614
615         if (bprm->loader)
616                 bprm->loader -= stack_shift;
617         bprm->exec -= stack_shift;
618
619         down_write(&mm->mmap_sem);
620         vm_flags = VM_STACK_FLAGS;
621
622         /*
623          * Adjust stack execute permissions; explicitly enable for
624          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
625          * (arch default) otherwise.
626          */
627         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
628                 vm_flags |= VM_EXEC;
629         else if (executable_stack == EXSTACK_DISABLE_X)
630                 vm_flags &= ~VM_EXEC;
631         vm_flags |= mm->def_flags;
632
633         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
634                         vm_flags);
635         if (ret)
636                 goto out_unlock;
637         BUG_ON(prev != vma);
638
639         /* Move stack pages down in memory. */
640         if (stack_shift) {
641                 ret = shift_arg_pages(vma, stack_shift);
642                 if (ret) {
643                         up_write(&mm->mmap_sem);
644                         return ret;
645                 }
646         }
647
648 #ifdef CONFIG_STACK_GROWSUP
649         stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
650 #else
651         stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
652 #endif
653         ret = expand_stack(vma, stack_base);
654         if (ret)
655                 ret = -EFAULT;
656
657 out_unlock:
658         up_write(&mm->mmap_sem);
659         return 0;
660 }
661 EXPORT_SYMBOL(setup_arg_pages);
662
663 #endif /* CONFIG_MMU */
664
665 struct file *open_exec(const char *name)
666 {
667         struct nameidata nd;
668         struct file *file;
669         int err;
670
671         err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
672                                 FMODE_READ|FMODE_EXEC);
673         if (err)
674                 goto out;
675
676         err = -EACCES;
677         if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
678                 goto out_path_put;
679
680         if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
681                 goto out_path_put;
682
683         err = vfs_permission(&nd, MAY_EXEC | MAY_OPEN);
684         if (err)
685                 goto out_path_put;
686
687         file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
688         if (IS_ERR(file))
689                 return file;
690
691         err = deny_write_access(file);
692         if (err) {
693                 fput(file);
694                 goto out;
695         }
696
697         return file;
698
699  out_path_put:
700         release_open_intent(&nd);
701         path_put(&nd.path);
702  out:
703         return ERR_PTR(err);
704 }
705 EXPORT_SYMBOL(open_exec);
706
707 int kernel_read(struct file *file, unsigned long offset,
708         char *addr, unsigned long count)
709 {
710         mm_segment_t old_fs;
711         loff_t pos = offset;
712         int result;
713
714         old_fs = get_fs();
715         set_fs(get_ds());
716         /* The cast to a user pointer is valid due to the set_fs() */
717         result = vfs_read(file, (void __user *)addr, count, &pos);
718         set_fs(old_fs);
719         return result;
720 }
721
722 EXPORT_SYMBOL(kernel_read);
723
724 static int exec_mmap(struct mm_struct *mm)
725 {
726         struct task_struct *tsk;
727         struct mm_struct * old_mm, *active_mm;
728
729         /* Notify parent that we're no longer interested in the old VM */
730         tsk = current;
731         old_mm = current->mm;
732         mm_release(tsk, old_mm);
733
734         if (old_mm) {
735                 /*
736                  * Make sure that if there is a core dump in progress
737                  * for the old mm, we get out and die instead of going
738                  * through with the exec.  We must hold mmap_sem around
739                  * checking core_state and changing tsk->mm.
740                  */
741                 down_read(&old_mm->mmap_sem);
742                 if (unlikely(old_mm->core_state)) {
743                         up_read(&old_mm->mmap_sem);
744                         return -EINTR;
745                 }
746         }
747         task_lock(tsk);
748         active_mm = tsk->active_mm;
749         tsk->mm = mm;
750         tsk->active_mm = mm;
751         activate_mm(active_mm, mm);
752         task_unlock(tsk);
753         arch_pick_mmap_layout(mm);
754         if (old_mm) {
755                 up_read(&old_mm->mmap_sem);
756                 BUG_ON(active_mm != old_mm);
757                 mm_update_next_owner(old_mm);
758                 mmput(old_mm);
759                 return 0;
760         }
761         mmdrop(active_mm);
762         return 0;
763 }
764
765 /*
766  * This function makes sure the current process has its own signal table,
767  * so that flush_signal_handlers can later reset the handlers without
768  * disturbing other processes.  (Other processes might share the signal
769  * table via the CLONE_SIGHAND option to clone().)
770  */
771 static int de_thread(struct task_struct *tsk)
772 {
773         struct signal_struct *sig = tsk->signal;
774         struct sighand_struct *oldsighand = tsk->sighand;
775         spinlock_t *lock = &oldsighand->siglock;
776         struct task_struct *leader = NULL;
777         int count;
778
779         if (thread_group_empty(tsk))
780                 goto no_thread_group;
781
782         /*
783          * Kill all other threads in the thread group.
784          */
785         spin_lock_irq(lock);
786         if (signal_group_exit(sig)) {
787                 /*
788                  * Another group action in progress, just
789                  * return so that the signal is processed.
790                  */
791                 spin_unlock_irq(lock);
792                 return -EAGAIN;
793         }
794         sig->group_exit_task = tsk;
795         zap_other_threads(tsk);
796
797         /* Account for the thread group leader hanging around: */
798         count = thread_group_leader(tsk) ? 1 : 2;
799         sig->notify_count = count;
800         while (atomic_read(&sig->count) > count) {
801                 __set_current_state(TASK_UNINTERRUPTIBLE);
802                 spin_unlock_irq(lock);
803                 schedule();
804                 spin_lock_irq(lock);
805         }
806         spin_unlock_irq(lock);
807
808         /*
809          * At this point all other threads have exited, all we have to
810          * do is to wait for the thread group leader to become inactive,
811          * and to assume its PID:
812          */
813         if (!thread_group_leader(tsk)) {
814                 leader = tsk->group_leader;
815
816                 sig->notify_count = -1; /* for exit_notify() */
817                 for (;;) {
818                         write_lock_irq(&tasklist_lock);
819                         if (likely(leader->exit_state))
820                                 break;
821                         __set_current_state(TASK_UNINTERRUPTIBLE);
822                         write_unlock_irq(&tasklist_lock);
823                         schedule();
824                 }
825
826                 /*
827                  * The only record we have of the real-time age of a
828                  * process, regardless of execs it's done, is start_time.
829                  * All the past CPU time is accumulated in signal_struct
830                  * from sister threads now dead.  But in this non-leader
831                  * exec, nothing survives from the original leader thread,
832                  * whose birth marks the true age of this process now.
833                  * When we take on its identity by switching to its PID, we
834                  * also take its birthdate (always earlier than our own).
835                  */
836                 tsk->start_time = leader->start_time;
837
838                 BUG_ON(!same_thread_group(leader, tsk));
839                 BUG_ON(has_group_leader_pid(tsk));
840                 /*
841                  * An exec() starts a new thread group with the
842                  * TGID of the previous thread group. Rehash the
843                  * two threads with a switched PID, and release
844                  * the former thread group leader:
845                  */
846
847                 /* Become a process group leader with the old leader's pid.
848                  * The old leader becomes a thread of the this thread group.
849                  * Note: The old leader also uses this pid until release_task
850                  *       is called.  Odd but simple and correct.
851                  */
852                 detach_pid(tsk, PIDTYPE_PID);
853                 tsk->pid = leader->pid;
854                 attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
855                 transfer_pid(leader, tsk, PIDTYPE_PGID);
856                 transfer_pid(leader, tsk, PIDTYPE_SID);
857                 list_replace_rcu(&leader->tasks, &tsk->tasks);
858
859                 tsk->group_leader = tsk;
860                 leader->group_leader = tsk;
861
862                 tsk->exit_signal = SIGCHLD;
863
864                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
865                 leader->exit_state = EXIT_DEAD;
866
867                 write_unlock_irq(&tasklist_lock);
868         }
869
870         sig->group_exit_task = NULL;
871         sig->notify_count = 0;
872
873 no_thread_group:
874         exit_itimers(sig);
875         flush_itimer_signals();
876         if (leader)
877                 release_task(leader);
878
879         if (atomic_read(&oldsighand->count) != 1) {
880                 struct sighand_struct *newsighand;
881                 /*
882                  * This ->sighand is shared with the CLONE_SIGHAND
883                  * but not CLONE_THREAD task, switch to the new one.
884                  */
885                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
886                 if (!newsighand)
887                         return -ENOMEM;
888
889                 atomic_set(&newsighand->count, 1);
890                 memcpy(newsighand->action, oldsighand->action,
891                        sizeof(newsighand->action));
892
893                 write_lock_irq(&tasklist_lock);
894                 spin_lock(&oldsighand->siglock);
895                 rcu_assign_pointer(tsk->sighand, newsighand);
896                 spin_unlock(&oldsighand->siglock);
897                 write_unlock_irq(&tasklist_lock);
898
899                 __cleanup_sighand(oldsighand);
900         }
901
902         BUG_ON(!thread_group_leader(tsk));
903         return 0;
904 }
905
906 /*
907  * These functions flushes out all traces of the currently running executable
908  * so that a new one can be started
909  */
910 static void flush_old_files(struct files_struct * files)
911 {
912         long j = -1;
913         struct fdtable *fdt;
914
915         spin_lock(&files->file_lock);
916         for (;;) {
917                 unsigned long set, i;
918
919                 j++;
920                 i = j * __NFDBITS;
921                 fdt = files_fdtable(files);
922                 if (i >= fdt->max_fds)
923                         break;
924                 set = fdt->close_on_exec->fds_bits[j];
925                 if (!set)
926                         continue;
927                 fdt->close_on_exec->fds_bits[j] = 0;
928                 spin_unlock(&files->file_lock);
929                 for ( ; set ; i++,set >>= 1) {
930                         if (set & 1) {
931                                 sys_close(i);
932                         }
933                 }
934                 spin_lock(&files->file_lock);
935
936         }
937         spin_unlock(&files->file_lock);
938 }
939
940 char *get_task_comm(char *buf, struct task_struct *tsk)
941 {
942         /* buf must be at least sizeof(tsk->comm) in size */
943         task_lock(tsk);
944         strncpy(buf, tsk->comm, sizeof(tsk->comm));
945         task_unlock(tsk);
946         return buf;
947 }
948
949 void set_task_comm(struct task_struct *tsk, char *buf)
950 {
951         task_lock(tsk);
952         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
953         task_unlock(tsk);
954 }
955
956 int flush_old_exec(struct linux_binprm * bprm)
957 {
958         char * name;
959         int i, ch, retval;
960         char tcomm[sizeof(current->comm)];
961
962         /*
963          * Make sure we have a private signal table and that
964          * we are unassociated from the previous thread group.
965          */
966         retval = de_thread(current);
967         if (retval)
968                 goto out;
969
970         set_mm_exe_file(bprm->mm, bprm->file);
971
972         /*
973          * Release all of the old mmap stuff
974          */
975         retval = exec_mmap(bprm->mm);
976         if (retval)
977                 goto out;
978
979         bprm->mm = NULL;                /* We're using it now */
980
981         /* This is the point of no return */
982         current->sas_ss_sp = current->sas_ss_size = 0;
983
984         if (current->euid == current->uid && current->egid == current->gid)
985                 set_dumpable(current->mm, 1);
986         else
987                 set_dumpable(current->mm, suid_dumpable);
988
989         name = bprm->filename;
990
991         /* Copies the binary name from after last slash */
992         for (i=0; (ch = *(name++)) != '\0';) {
993                 if (ch == '/')
994                         i = 0; /* overwrite what we wrote */
995                 else
996                         if (i < (sizeof(tcomm) - 1))
997                                 tcomm[i++] = ch;
998         }
999         tcomm[i] = '\0';
1000         set_task_comm(current, tcomm);
1001
1002         current->flags &= ~PF_RANDOMIZE;
1003         flush_thread();
1004
1005         /* Set the new mm task size. We have to do that late because it may
1006          * depend on TIF_32BIT which is only updated in flush_thread() on
1007          * some architectures like powerpc
1008          */
1009         current->mm->task_size = TASK_SIZE;
1010
1011         if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1012                 suid_keys(current);
1013                 set_dumpable(current->mm, suid_dumpable);
1014                 current->pdeath_signal = 0;
1015         } else if (file_permission(bprm->file, MAY_READ) ||
1016                         (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1017                 suid_keys(current);
1018                 set_dumpable(current->mm, suid_dumpable);
1019         }
1020
1021         /*
1022          * Flush performance counters when crossing a
1023          * security domain:
1024          */
1025         if (!get_dumpable(current->mm))
1026                 perf_counter_exit_task(current);
1027
1028         /* An exec changes our domain. We are no longer part of the thread
1029            group */
1030
1031         current->self_exec_id++;
1032                         
1033         flush_signal_handlers(current, 0);
1034         flush_old_files(current->files);
1035
1036         return 0;
1037
1038 out:
1039         return retval;
1040 }
1041
1042 EXPORT_SYMBOL(flush_old_exec);
1043
1044 /* 
1045  * Fill the binprm structure from the inode. 
1046  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1047  */
1048 int prepare_binprm(struct linux_binprm *bprm)
1049 {
1050         int mode;
1051         struct inode * inode = bprm->file->f_path.dentry->d_inode;
1052         int retval;
1053
1054         mode = inode->i_mode;
1055         if (bprm->file->f_op == NULL)
1056                 return -EACCES;
1057
1058         bprm->e_uid = current->euid;
1059         bprm->e_gid = current->egid;
1060
1061         if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1062                 /* Set-uid? */
1063                 if (mode & S_ISUID) {
1064                         current->personality &= ~PER_CLEAR_ON_SETID;
1065                         bprm->e_uid = inode->i_uid;
1066                 }
1067
1068                 /* Set-gid? */
1069                 /*
1070                  * If setgid is set but no group execute bit then this
1071                  * is a candidate for mandatory locking, not a setgid
1072                  * executable.
1073                  */
1074                 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1075                         current->personality &= ~PER_CLEAR_ON_SETID;
1076                         bprm->e_gid = inode->i_gid;
1077                 }
1078         }
1079
1080         /* fill in binprm security blob */
1081         retval = security_bprm_set(bprm);
1082         if (retval)
1083                 return retval;
1084
1085         memset(bprm->buf,0,BINPRM_BUF_SIZE);
1086         return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1087 }
1088
1089 EXPORT_SYMBOL(prepare_binprm);
1090
1091 static int unsafe_exec(struct task_struct *p)
1092 {
1093         int unsafe = tracehook_unsafe_exec(p);
1094
1095         if (atomic_read(&p->fs->count) > 1 ||
1096             atomic_read(&p->files->count) > 1 ||
1097             atomic_read(&p->sighand->count) > 1)
1098                 unsafe |= LSM_UNSAFE_SHARE;
1099
1100         return unsafe;
1101 }
1102
1103 void compute_creds(struct linux_binprm *bprm)
1104 {
1105         int unsafe;
1106
1107         if (bprm->e_uid != current->uid) {
1108                 suid_keys(current);
1109                 current->pdeath_signal = 0;
1110         }
1111         exec_keys(current);
1112
1113         task_lock(current);
1114         unsafe = unsafe_exec(current);
1115         security_bprm_apply_creds(bprm, unsafe);
1116         task_unlock(current);
1117         security_bprm_post_apply_creds(bprm);
1118 }
1119 EXPORT_SYMBOL(compute_creds);
1120
1121 /*
1122  * Arguments are '\0' separated strings found at the location bprm->p
1123  * points to; chop off the first by relocating brpm->p to right after
1124  * the first '\0' encountered.
1125  */
1126 int remove_arg_zero(struct linux_binprm *bprm)
1127 {
1128         int ret = 0;
1129         unsigned long offset;
1130         char *kaddr;
1131         struct page *page;
1132
1133         if (!bprm->argc)
1134                 return 0;
1135
1136         do {
1137                 offset = bprm->p & ~PAGE_MASK;
1138                 page = get_arg_page(bprm, bprm->p, 0);
1139                 if (!page) {
1140                         ret = -EFAULT;
1141                         goto out;
1142                 }
1143                 kaddr = kmap_atomic(page, KM_USER0);
1144
1145                 for (; offset < PAGE_SIZE && kaddr[offset];
1146                                 offset++, bprm->p++)
1147                         ;
1148
1149                 kunmap_atomic(kaddr, KM_USER0);
1150                 put_arg_page(page);
1151
1152                 if (offset == PAGE_SIZE)
1153                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1154         } while (offset == PAGE_SIZE);
1155
1156         bprm->p++;
1157         bprm->argc--;
1158         ret = 0;
1159
1160 out:
1161         return ret;
1162 }
1163 EXPORT_SYMBOL(remove_arg_zero);
1164
1165 /*
1166  * cycle the list of binary formats handler, until one recognizes the image
1167  */
1168 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1169 {
1170         unsigned int depth = bprm->recursion_depth;
1171         int try,retval;
1172         struct linux_binfmt *fmt;
1173 #ifdef __alpha__
1174         /* handle /sbin/loader.. */
1175         {
1176             struct exec * eh = (struct exec *) bprm->buf;
1177
1178             if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1179                 (eh->fh.f_flags & 0x3000) == 0x3000)
1180             {
1181                 struct file * file;
1182                 unsigned long loader;
1183
1184                 allow_write_access(bprm->file);
1185                 fput(bprm->file);
1186                 bprm->file = NULL;
1187
1188                 loader = bprm->vma->vm_end - sizeof(void *);
1189
1190                 file = open_exec("/sbin/loader");
1191                 retval = PTR_ERR(file);
1192                 if (IS_ERR(file))
1193                         return retval;
1194
1195                 /* Remember if the application is TASO.  */
1196                 bprm->taso = eh->ah.entry < 0x100000000UL;
1197
1198                 bprm->file = file;
1199                 bprm->loader = loader;
1200                 retval = prepare_binprm(bprm);
1201                 if (retval<0)
1202                         return retval;
1203                 /* should call search_binary_handler recursively here,
1204                    but it does not matter */
1205             }
1206         }
1207 #endif
1208         retval = security_bprm_check(bprm);
1209         if (retval)
1210                 return retval;
1211
1212         /* kernel module loader fixup */
1213         /* so we don't try to load run modprobe in kernel space. */
1214         set_fs(USER_DS);
1215
1216         retval = audit_bprm(bprm);
1217         if (retval)
1218                 return retval;
1219
1220         retval = -ENOENT;
1221         for (try=0; try<2; try++) {
1222                 read_lock(&binfmt_lock);
1223                 list_for_each_entry(fmt, &formats, lh) {
1224                         int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1225                         if (!fn)
1226                                 continue;
1227                         if (!try_module_get(fmt->module))
1228                                 continue;
1229                         read_unlock(&binfmt_lock);
1230                         retval = fn(bprm, regs);
1231                         /*
1232                          * Restore the depth counter to its starting value
1233                          * in this call, so we don't have to rely on every
1234                          * load_binary function to restore it on return.
1235                          */
1236                         bprm->recursion_depth = depth;
1237                         if (retval >= 0) {
1238                                 if (depth == 0)
1239                                         tracehook_report_exec(fmt, bprm, regs);
1240                                 put_binfmt(fmt);
1241                                 allow_write_access(bprm->file);
1242                                 if (bprm->file)
1243                                         fput(bprm->file);
1244                                 bprm->file = NULL;
1245                                 current->did_exec = 1;
1246                                 proc_exec_connector(current);
1247                                 return retval;
1248                         }
1249                         read_lock(&binfmt_lock);
1250                         put_binfmt(fmt);
1251                         if (retval != -ENOEXEC || bprm->mm == NULL)
1252                                 break;
1253                         if (!bprm->file) {
1254                                 read_unlock(&binfmt_lock);
1255                                 return retval;
1256                         }
1257                 }
1258                 read_unlock(&binfmt_lock);
1259                 if (retval != -ENOEXEC || bprm->mm == NULL) {
1260                         break;
1261 #ifdef CONFIG_MODULES
1262                 } else {
1263 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1264                         if (printable(bprm->buf[0]) &&
1265                             printable(bprm->buf[1]) &&
1266                             printable(bprm->buf[2]) &&
1267                             printable(bprm->buf[3]))
1268                                 break; /* -ENOEXEC */
1269                         request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1270 #endif
1271                 }
1272         }
1273         return retval;
1274 }
1275
1276 EXPORT_SYMBOL(search_binary_handler);
1277
1278 void free_bprm(struct linux_binprm *bprm)
1279 {
1280         free_arg_pages(bprm);
1281         kfree(bprm);
1282 }
1283
1284 /*
1285  * sys_execve() executes a new program.
1286  */
1287 int do_execve(char * filename,
1288         char __user *__user *argv,
1289         char __user *__user *envp,
1290         struct pt_regs * regs)
1291 {
1292         struct linux_binprm *bprm;
1293         struct file *file;
1294         struct files_struct *displaced;
1295         int retval;
1296
1297         retval = unshare_files(&displaced);
1298         if (retval)
1299                 goto out_ret;
1300
1301         retval = -ENOMEM;
1302         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1303         if (!bprm)
1304                 goto out_files;
1305
1306         file = open_exec(filename);
1307         retval = PTR_ERR(file);
1308         if (IS_ERR(file))
1309                 goto out_kfree;
1310
1311         sched_exec();
1312
1313         bprm->file = file;
1314         bprm->filename = filename;
1315         bprm->interp = filename;
1316
1317         retval = bprm_mm_init(bprm);
1318         if (retval)
1319                 goto out_file;
1320
1321         bprm->argc = count(argv, MAX_ARG_STRINGS);
1322         if ((retval = bprm->argc) < 0)
1323                 goto out_mm;
1324
1325         bprm->envc = count(envp, MAX_ARG_STRINGS);
1326         if ((retval = bprm->envc) < 0)
1327                 goto out_mm;
1328
1329         retval = security_bprm_alloc(bprm);
1330         if (retval)
1331                 goto out;
1332
1333         retval = prepare_binprm(bprm);
1334         if (retval < 0)
1335                 goto out;
1336
1337         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1338         if (retval < 0)
1339                 goto out;
1340
1341         bprm->exec = bprm->p;
1342         retval = copy_strings(bprm->envc, envp, bprm);
1343         if (retval < 0)
1344                 goto out;
1345
1346         retval = copy_strings(bprm->argc, argv, bprm);
1347         if (retval < 0)
1348                 goto out;
1349
1350         current->flags &= ~PF_KTHREAD;
1351         retval = search_binary_handler(bprm,regs);
1352         if (retval >= 0) {
1353                 /* execve success */
1354                 security_bprm_free(bprm);
1355                 acct_update_integrals(current);
1356                 free_bprm(bprm);
1357                 if (displaced)
1358                         put_files_struct(displaced);
1359                 return retval;
1360         }
1361
1362 out:
1363         if (bprm->security)
1364                 security_bprm_free(bprm);
1365
1366 out_mm:
1367         if (bprm->mm)
1368                 mmput (bprm->mm);
1369
1370 out_file:
1371         if (bprm->file) {
1372                 allow_write_access(bprm->file);
1373                 fput(bprm->file);
1374         }
1375 out_kfree:
1376         free_bprm(bprm);
1377
1378 out_files:
1379         if (displaced)
1380                 reset_files_struct(displaced);
1381 out_ret:
1382         return retval;
1383 }
1384
1385 int set_binfmt(struct linux_binfmt *new)
1386 {
1387         struct linux_binfmt *old = current->binfmt;
1388
1389         if (new) {
1390                 if (!try_module_get(new->module))
1391                         return -1;
1392         }
1393         current->binfmt = new;
1394         if (old)
1395                 module_put(old->module);
1396         return 0;
1397 }
1398
1399 EXPORT_SYMBOL(set_binfmt);
1400
1401 /* format_corename will inspect the pattern parameter, and output a
1402  * name into corename, which must have space for at least
1403  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1404  */
1405 static int format_corename(char *corename, long signr)
1406 {
1407         const char *pat_ptr = core_pattern;
1408         int ispipe = (*pat_ptr == '|');
1409         char *out_ptr = corename;
1410         char *const out_end = corename + CORENAME_MAX_SIZE;
1411         int rc;
1412         int pid_in_pattern = 0;
1413
1414         /* Repeat as long as we have more pattern to process and more output
1415            space */
1416         while (*pat_ptr) {
1417                 if (*pat_ptr != '%') {
1418                         if (out_ptr == out_end)
1419                                 goto out;
1420                         *out_ptr++ = *pat_ptr++;
1421                 } else {
1422                         switch (*++pat_ptr) {
1423                         case 0:
1424                                 goto out;
1425                         /* Double percent, output one percent */
1426                         case '%':
1427                                 if (out_ptr == out_end)
1428                                         goto out;
1429                                 *out_ptr++ = '%';
1430                                 break;
1431                         /* pid */
1432                         case 'p':
1433                                 pid_in_pattern = 1;
1434                                 rc = snprintf(out_ptr, out_end - out_ptr,
1435                                               "%d", task_tgid_vnr(current));
1436                                 if (rc > out_end - out_ptr)
1437                                         goto out;
1438                                 out_ptr += rc;
1439                                 break;
1440                         /* uid */
1441                         case 'u':
1442                                 rc = snprintf(out_ptr, out_end - out_ptr,
1443                                               "%d", current->uid);
1444                                 if (rc > out_end - out_ptr)
1445                                         goto out;
1446                                 out_ptr += rc;
1447                                 break;
1448                         /* gid */
1449                         case 'g':
1450                                 rc = snprintf(out_ptr, out_end - out_ptr,
1451                                               "%d", current->gid);
1452                                 if (rc > out_end - out_ptr)
1453                                         goto out;
1454                                 out_ptr += rc;
1455                                 break;
1456                         /* signal that caused the coredump */
1457                         case 's':
1458                                 rc = snprintf(out_ptr, out_end - out_ptr,
1459                                               "%ld", signr);
1460                                 if (rc > out_end - out_ptr)
1461                                         goto out;
1462                                 out_ptr += rc;
1463                                 break;
1464                         /* UNIX time of coredump */
1465                         case 't': {
1466                                 struct timeval tv;
1467                                 do_gettimeofday(&tv);
1468                                 rc = snprintf(out_ptr, out_end - out_ptr,
1469                                               "%lu", tv.tv_sec);
1470                                 if (rc > out_end - out_ptr)
1471                                         goto out;
1472                                 out_ptr += rc;
1473                                 break;
1474                         }
1475                         /* hostname */
1476                         case 'h':
1477                                 down_read(&uts_sem);
1478                                 rc = snprintf(out_ptr, out_end - out_ptr,
1479                                               "%s", utsname()->nodename);
1480                                 up_read(&uts_sem);
1481                                 if (rc > out_end - out_ptr)
1482                                         goto out;
1483                                 out_ptr += rc;
1484                                 break;
1485                         /* executable */
1486                         case 'e':
1487                                 rc = snprintf(out_ptr, out_end - out_ptr,
1488                                               "%s", current->comm);
1489                                 if (rc > out_end - out_ptr)
1490                                         goto out;
1491                                 out_ptr += rc;
1492                                 break;
1493                         /* core limit size */
1494                         case 'c':
1495                                 rc = snprintf(out_ptr, out_end - out_ptr,
1496                                               "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1497                                 if (rc > out_end - out_ptr)
1498                                         goto out;
1499                                 out_ptr += rc;
1500                                 break;
1501                         default:
1502                                 break;
1503                         }
1504                         ++pat_ptr;
1505                 }
1506         }
1507         /* Backward compatibility with core_uses_pid:
1508          *
1509          * If core_pattern does not include a %p (as is the default)
1510          * and core_uses_pid is set, then .%pid will be appended to
1511          * the filename. Do not do this for piped commands. */
1512         if (!ispipe && !pid_in_pattern && core_uses_pid) {
1513                 rc = snprintf(out_ptr, out_end - out_ptr,
1514                               ".%d", task_tgid_vnr(current));
1515                 if (rc > out_end - out_ptr)
1516                         goto out;
1517                 out_ptr += rc;
1518         }
1519 out:
1520         *out_ptr = 0;
1521         return ispipe;
1522 }
1523
1524 static int zap_process(struct task_struct *start)
1525 {
1526         struct task_struct *t;
1527         int nr = 0;
1528
1529         start->signal->flags = SIGNAL_GROUP_EXIT;
1530         start->signal->group_stop_count = 0;
1531
1532         t = start;
1533         do {
1534                 if (t != current && t->mm) {
1535                         sigaddset(&t->pending.signal, SIGKILL);
1536                         signal_wake_up(t, 1);
1537                         nr++;
1538                 }
1539         } while_each_thread(start, t);
1540
1541         return nr;
1542 }
1543
1544 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1545                                 struct core_state *core_state, int exit_code)
1546 {
1547         struct task_struct *g, *p;
1548         unsigned long flags;
1549         int nr = -EAGAIN;
1550
1551         spin_lock_irq(&tsk->sighand->siglock);
1552         if (!signal_group_exit(tsk->signal)) {
1553                 mm->core_state = core_state;
1554                 tsk->signal->group_exit_code = exit_code;
1555                 nr = zap_process(tsk);
1556         }
1557         spin_unlock_irq(&tsk->sighand->siglock);
1558         if (unlikely(nr < 0))
1559                 return nr;
1560
1561         if (atomic_read(&mm->mm_users) == nr + 1)
1562                 goto done;
1563         /*
1564          * We should find and kill all tasks which use this mm, and we should
1565          * count them correctly into ->nr_threads. We don't take tasklist
1566          * lock, but this is safe wrt:
1567          *
1568          * fork:
1569          *      None of sub-threads can fork after zap_process(leader). All
1570          *      processes which were created before this point should be
1571          *      visible to zap_threads() because copy_process() adds the new
1572          *      process to the tail of init_task.tasks list, and lock/unlock
1573          *      of ->siglock provides a memory barrier.
1574          *
1575          * do_exit:
1576          *      The caller holds mm->mmap_sem. This means that the task which
1577          *      uses this mm can't pass exit_mm(), so it can't exit or clear
1578          *      its ->mm.
1579          *
1580          * de_thread:
1581          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
1582          *      we must see either old or new leader, this does not matter.
1583          *      However, it can change p->sighand, so lock_task_sighand(p)
1584          *      must be used. Since p->mm != NULL and we hold ->mmap_sem
1585          *      it can't fail.
1586          *
1587          *      Note also that "g" can be the old leader with ->mm == NULL
1588          *      and already unhashed and thus removed from ->thread_group.
1589          *      This is OK, __unhash_process()->list_del_rcu() does not
1590          *      clear the ->next pointer, we will find the new leader via
1591          *      next_thread().
1592          */
1593         rcu_read_lock();
1594         for_each_process(g) {
1595                 if (g == tsk->group_leader)
1596                         continue;
1597                 if (g->flags & PF_KTHREAD)
1598                         continue;
1599                 p = g;
1600                 do {
1601                         if (p->mm) {
1602                                 if (unlikely(p->mm == mm)) {
1603                                         lock_task_sighand(p, &flags);
1604                                         nr += zap_process(p);
1605                                         unlock_task_sighand(p, &flags);
1606                                 }
1607                                 break;
1608                         }
1609                 } while_each_thread(g, p);
1610         }
1611         rcu_read_unlock();
1612 done:
1613         atomic_set(&core_state->nr_threads, nr);
1614         return nr;
1615 }
1616
1617 static int coredump_wait(int exit_code, struct core_state *core_state)
1618 {
1619         struct task_struct *tsk = current;
1620         struct mm_struct *mm = tsk->mm;
1621         struct completion *vfork_done;
1622         int core_waiters;
1623
1624         init_completion(&core_state->startup);
1625         core_state->dumper.task = tsk;
1626         core_state->dumper.next = NULL;
1627         core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1628         up_write(&mm->mmap_sem);
1629
1630         if (unlikely(core_waiters < 0))
1631                 goto fail;
1632
1633         /*
1634          * Make sure nobody is waiting for us to release the VM,
1635          * otherwise we can deadlock when we wait on each other
1636          */
1637         vfork_done = tsk->vfork_done;
1638         if (vfork_done) {
1639                 tsk->vfork_done = NULL;
1640                 complete(vfork_done);
1641         }
1642
1643         if (core_waiters)
1644                 wait_for_completion(&core_state->startup);
1645 fail:
1646         return core_waiters;
1647 }
1648
1649 static void coredump_finish(struct mm_struct *mm)
1650 {
1651         struct core_thread *curr, *next;
1652         struct task_struct *task;
1653
1654         next = mm->core_state->dumper.next;
1655         while ((curr = next) != NULL) {
1656                 next = curr->next;
1657                 task = curr->task;
1658                 /*
1659                  * see exit_mm(), curr->task must not see
1660                  * ->task == NULL before we read ->next.
1661                  */
1662                 smp_mb();
1663                 curr->task = NULL;
1664                 wake_up_process(task);
1665         }
1666
1667         mm->core_state = NULL;
1668 }
1669
1670 /*
1671  * set_dumpable converts traditional three-value dumpable to two flags and
1672  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1673  * these bits are not changed atomically.  So get_dumpable can observe the
1674  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1675  * return either old dumpable or new one by paying attention to the order of
1676  * modifying the bits.
1677  *
1678  * dumpable |   mm->flags (binary)
1679  * old  new | initial interim  final
1680  * ---------+-----------------------
1681  *  0    1  |   00      01      01
1682  *  0    2  |   00      10(*)   11
1683  *  1    0  |   01      00      00
1684  *  1    2  |   01      11      11
1685  *  2    0  |   11      10(*)   00
1686  *  2    1  |   11      11      01
1687  *
1688  * (*) get_dumpable regards interim value of 10 as 11.
1689  */
1690 void set_dumpable(struct mm_struct *mm, int value)
1691 {
1692         switch (value) {
1693         case 0:
1694                 clear_bit(MMF_DUMPABLE, &mm->flags);
1695                 smp_wmb();
1696                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1697                 break;
1698         case 1:
1699                 set_bit(MMF_DUMPABLE, &mm->flags);
1700                 smp_wmb();
1701                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1702                 break;
1703         case 2:
1704                 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1705                 smp_wmb();
1706                 set_bit(MMF_DUMPABLE, &mm->flags);
1707                 break;
1708         }
1709 }
1710
1711 int get_dumpable(struct mm_struct *mm)
1712 {
1713         int ret;
1714
1715         ret = mm->flags & 0x3;
1716         return (ret >= 2) ? 2 : ret;
1717 }
1718
1719 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1720 {
1721         struct core_state core_state;
1722         char corename[CORENAME_MAX_SIZE + 1];
1723         struct mm_struct *mm = current->mm;
1724         struct linux_binfmt * binfmt;
1725         struct inode * inode;
1726         struct file * file;
1727         int retval = 0;
1728         int fsuid = current->fsuid;
1729         int flag = 0;
1730         int ispipe = 0;
1731         unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1732         char **helper_argv = NULL;
1733         int helper_argc = 0;
1734         char *delimit;
1735
1736         audit_core_dumps(signr);
1737
1738         binfmt = current->binfmt;
1739         if (!binfmt || !binfmt->core_dump)
1740                 goto fail;
1741         down_write(&mm->mmap_sem);
1742         /*
1743          * If another thread got here first, or we are not dumpable, bail out.
1744          */
1745         if (mm->core_state || !get_dumpable(mm)) {
1746                 up_write(&mm->mmap_sem);
1747                 goto fail;
1748         }
1749
1750         /*
1751          *      We cannot trust fsuid as being the "true" uid of the
1752          *      process nor do we know its entire history. We only know it
1753          *      was tainted so we dump it as root in mode 2.
1754          */
1755         if (get_dumpable(mm) == 2) {    /* Setuid core dump mode */
1756                 flag = O_EXCL;          /* Stop rewrite attacks */
1757                 current->fsuid = 0;     /* Dump root private */
1758         }
1759
1760         retval = coredump_wait(exit_code, &core_state);
1761         if (retval < 0)
1762                 goto fail;
1763
1764         /*
1765          * Clear any false indication of pending signals that might
1766          * be seen by the filesystem code called to write the core file.
1767          */
1768         clear_thread_flag(TIF_SIGPENDING);
1769
1770         /*
1771          * lock_kernel() because format_corename() is controlled by sysctl, which
1772          * uses lock_kernel()
1773          */
1774         lock_kernel();
1775         ispipe = format_corename(corename, signr);
1776         unlock_kernel();
1777         /*
1778          * Don't bother to check the RLIMIT_CORE value if core_pattern points
1779          * to a pipe.  Since we're not writing directly to the filesystem
1780          * RLIMIT_CORE doesn't really apply, as no actual core file will be
1781          * created unless the pipe reader choses to write out the core file
1782          * at which point file size limits and permissions will be imposed
1783          * as it does with any other process
1784          */
1785         if ((!ispipe) && (core_limit < binfmt->min_coredump))
1786                 goto fail_unlock;
1787
1788         if (ispipe) {
1789                 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1790                 /* Terminate the string before the first option */
1791                 delimit = strchr(corename, ' ');
1792                 if (delimit)
1793                         *delimit = '\0';
1794                 delimit = strrchr(helper_argv[0], '/');
1795                 if (delimit)
1796                         delimit++;
1797                 else
1798                         delimit = helper_argv[0];
1799                 if (!strcmp(delimit, current->comm)) {
1800                         printk(KERN_NOTICE "Recursive core dump detected, "
1801                                         "aborting\n");
1802                         goto fail_unlock;
1803                 }
1804
1805                 core_limit = RLIM_INFINITY;
1806
1807                 /* SIGPIPE can happen, but it's just never processed */
1808                 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1809                                 &file)) {
1810                         printk(KERN_INFO "Core dump to %s pipe failed\n",
1811                                corename);
1812                         goto fail_unlock;
1813                 }
1814         } else
1815                 file = filp_open(corename,
1816                                  O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1817                                  0600);
1818         if (IS_ERR(file))
1819                 goto fail_unlock;
1820         inode = file->f_path.dentry->d_inode;
1821         if (inode->i_nlink > 1)
1822                 goto close_fail;        /* multiple links - don't dump */
1823         if (!ispipe && d_unhashed(file->f_path.dentry))
1824                 goto close_fail;
1825
1826         /* AK: actually i see no reason to not allow this for named pipes etc.,
1827            but keep the previous behaviour for now. */
1828         if (!ispipe && !S_ISREG(inode->i_mode))
1829                 goto close_fail;
1830         /*
1831          * Dont allow local users get cute and trick others to coredump
1832          * into their pre-created files:
1833          */
1834         if (inode->i_uid != current->fsuid)
1835                 goto close_fail;
1836         if (!file->f_op)
1837                 goto close_fail;
1838         if (!file->f_op->write)
1839                 goto close_fail;
1840         if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1841                 goto close_fail;
1842
1843         retval = binfmt->core_dump(signr, regs, file, core_limit);
1844
1845         if (retval)
1846                 current->signal->group_exit_code |= 0x80;
1847 close_fail:
1848         filp_close(file, NULL);
1849 fail_unlock:
1850         if (helper_argv)
1851                 argv_free(helper_argv);
1852
1853         current->fsuid = fsuid;
1854         coredump_finish(mm);
1855 fail:
1856         return retval;
1857 }