4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_counter.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
56 #include <asm/uaccess.h>
57 #include <asm/mmu_context.h>
61 /* for /sbin/loader handling in search_binary_handler() */
62 #include <linux/a.out.h>
66 char core_pattern[CORENAME_MAX_SIZE] = "core";
67 int suid_dumpable = 0;
69 /* The maximal length of core_pattern is also specified in sysctl.c */
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
74 int register_binfmt(struct linux_binfmt * fmt)
78 write_lock(&binfmt_lock);
79 list_add(&fmt->lh, &formats);
80 write_unlock(&binfmt_lock);
84 EXPORT_SYMBOL(register_binfmt);
86 void unregister_binfmt(struct linux_binfmt * fmt)
88 write_lock(&binfmt_lock);
90 write_unlock(&binfmt_lock);
93 EXPORT_SYMBOL(unregister_binfmt);
95 static inline void put_binfmt(struct linux_binfmt * fmt)
97 module_put(fmt->module);
101 * Note that a shared library must be both readable and executable due to
104 * Also note that we take the address to load from from the file itself.
106 asmlinkage long sys_uselib(const char __user * library)
110 char *tmp = getname(library);
111 int error = PTR_ERR(tmp);
114 error = path_lookup_open(AT_FDCWD, tmp,
116 FMODE_READ|FMODE_EXEC);
123 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
127 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
130 error = vfs_permission(&nd, MAY_READ | MAY_EXEC | MAY_OPEN);
134 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
135 error = PTR_ERR(file);
141 struct linux_binfmt * fmt;
143 read_lock(&binfmt_lock);
144 list_for_each_entry(fmt, &formats, lh) {
145 if (!fmt->load_shlib)
147 if (!try_module_get(fmt->module))
149 read_unlock(&binfmt_lock);
150 error = fmt->load_shlib(file);
151 read_lock(&binfmt_lock);
153 if (error != -ENOEXEC)
156 read_unlock(&binfmt_lock);
162 release_open_intent(&nd);
169 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
175 #ifdef CONFIG_STACK_GROWSUP
177 ret = expand_stack_downwards(bprm->vma, pos);
182 ret = get_user_pages(current, bprm->mm, pos,
183 1, write, 1, &page, NULL);
188 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
192 * We've historically supported up to 32 pages (ARG_MAX)
193 * of argument strings even with small stacks
199 * Limit to 1/4-th the stack size for the argv+env strings.
201 * - the remaining binfmt code will not run out of stack space,
202 * - the program will have a reasonable amount of stack left
205 rlim = current->signal->rlim;
206 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
215 static void put_arg_page(struct page *page)
220 static void free_arg_page(struct linux_binprm *bprm, int i)
224 static void free_arg_pages(struct linux_binprm *bprm)
228 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
231 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
234 static int __bprm_mm_init(struct linux_binprm *bprm)
237 struct vm_area_struct *vma = NULL;
238 struct mm_struct *mm = bprm->mm;
240 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
244 down_write(&mm->mmap_sem);
248 * Place the stack at the largest stack address the architecture
249 * supports. Later, we'll move this to an appropriate place. We don't
250 * use STACK_TOP because that can depend on attributes which aren't
253 vma->vm_end = STACK_TOP_MAX;
254 vma->vm_start = vma->vm_end - PAGE_SIZE;
256 vma->vm_flags = VM_STACK_FLAGS;
257 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
258 err = insert_vm_struct(mm, vma);
260 up_write(&mm->mmap_sem);
264 mm->stack_vm = mm->total_vm = 1;
265 up_write(&mm->mmap_sem);
267 bprm->p = vma->vm_end - sizeof(void *);
274 kmem_cache_free(vm_area_cachep, vma);
280 static bool valid_arg_len(struct linux_binprm *bprm, long len)
282 return len <= MAX_ARG_STRLEN;
287 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
292 page = bprm->page[pos / PAGE_SIZE];
293 if (!page && write) {
294 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
297 bprm->page[pos / PAGE_SIZE] = page;
303 static void put_arg_page(struct page *page)
307 static void free_arg_page(struct linux_binprm *bprm, int i)
310 __free_page(bprm->page[i]);
311 bprm->page[i] = NULL;
315 static void free_arg_pages(struct linux_binprm *bprm)
319 for (i = 0; i < MAX_ARG_PAGES; i++)
320 free_arg_page(bprm, i);
323 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
328 static int __bprm_mm_init(struct linux_binprm *bprm)
330 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
334 static bool valid_arg_len(struct linux_binprm *bprm, long len)
336 return len <= bprm->p;
339 #endif /* CONFIG_MMU */
342 * Create a new mm_struct and populate it with a temporary stack
343 * vm_area_struct. We don't have enough context at this point to set the stack
344 * flags, permissions, and offset, so we use temporary values. We'll update
345 * them later in setup_arg_pages().
347 int bprm_mm_init(struct linux_binprm *bprm)
350 struct mm_struct *mm = NULL;
352 bprm->mm = mm = mm_alloc();
357 err = init_new_context(current, mm);
361 err = __bprm_mm_init(bprm);
377 * count() counts the number of strings in array ARGV.
379 static int count(char __user * __user * argv, int max)
387 if (get_user(p, argv))
401 * 'copy_strings()' copies argument/environment strings from the old
402 * processes's memory to the new process's stack. The call to get_user_pages()
403 * ensures the destination page is created and not swapped out.
405 static int copy_strings(int argc, char __user * __user * argv,
406 struct linux_binprm *bprm)
408 struct page *kmapped_page = NULL;
410 unsigned long kpos = 0;
418 if (get_user(str, argv+argc) ||
419 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
424 if (!valid_arg_len(bprm, len)) {
429 /* We're going to work our way backwords. */
435 int offset, bytes_to_copy;
437 offset = pos % PAGE_SIZE;
441 bytes_to_copy = offset;
442 if (bytes_to_copy > len)
445 offset -= bytes_to_copy;
446 pos -= bytes_to_copy;
447 str -= bytes_to_copy;
448 len -= bytes_to_copy;
450 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
453 page = get_arg_page(bprm, pos, 1);
460 flush_kernel_dcache_page(kmapped_page);
461 kunmap(kmapped_page);
462 put_arg_page(kmapped_page);
465 kaddr = kmap(kmapped_page);
466 kpos = pos & PAGE_MASK;
467 flush_arg_page(bprm, kpos, kmapped_page);
469 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
478 flush_kernel_dcache_page(kmapped_page);
479 kunmap(kmapped_page);
480 put_arg_page(kmapped_page);
486 * Like copy_strings, but get argv and its values from kernel memory.
488 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
491 mm_segment_t oldfs = get_fs();
493 r = copy_strings(argc, (char __user * __user *)argv, bprm);
497 EXPORT_SYMBOL(copy_strings_kernel);
502 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
503 * the binfmt code determines where the new stack should reside, we shift it to
504 * its final location. The process proceeds as follows:
506 * 1) Use shift to calculate the new vma endpoints.
507 * 2) Extend vma to cover both the old and new ranges. This ensures the
508 * arguments passed to subsequent functions are consistent.
509 * 3) Move vma's page tables to the new range.
510 * 4) Free up any cleared pgd range.
511 * 5) Shrink the vma to cover only the new range.
513 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
515 struct mm_struct *mm = vma->vm_mm;
516 unsigned long old_start = vma->vm_start;
517 unsigned long old_end = vma->vm_end;
518 unsigned long length = old_end - old_start;
519 unsigned long new_start = old_start - shift;
520 unsigned long new_end = old_end - shift;
521 struct mmu_gather *tlb;
523 BUG_ON(new_start > new_end);
526 * ensure there are no vmas between where we want to go
529 if (vma != find_vma(mm, new_start))
533 * cover the whole range: [new_start, old_end)
535 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
538 * move the page tables downwards, on failure we rely on
539 * process cleanup to remove whatever mess we made.
541 if (length != move_page_tables(vma, old_start,
542 vma, new_start, length))
546 tlb = tlb_gather_mmu(mm, 0);
547 if (new_end > old_start) {
549 * when the old and new regions overlap clear from new_end.
551 free_pgd_range(tlb, new_end, old_end, new_end,
552 vma->vm_next ? vma->vm_next->vm_start : 0);
555 * otherwise, clean from old_start; this is done to not touch
556 * the address space in [new_end, old_start) some architectures
557 * have constraints on va-space that make this illegal (IA64) -
558 * for the others its just a little faster.
560 free_pgd_range(tlb, old_start, old_end, new_end,
561 vma->vm_next ? vma->vm_next->vm_start : 0);
563 tlb_finish_mmu(tlb, new_end, old_end);
566 * shrink the vma to just the new range.
568 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
573 #define EXTRA_STACK_VM_PAGES 20 /* random */
576 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
577 * the stack is optionally relocated, and some extra space is added.
579 int setup_arg_pages(struct linux_binprm *bprm,
580 unsigned long stack_top,
581 int executable_stack)
584 unsigned long stack_shift;
585 struct mm_struct *mm = current->mm;
586 struct vm_area_struct *vma = bprm->vma;
587 struct vm_area_struct *prev = NULL;
588 unsigned long vm_flags;
589 unsigned long stack_base;
591 #ifdef CONFIG_STACK_GROWSUP
592 /* Limit stack size to 1GB */
593 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
594 if (stack_base > (1 << 30))
595 stack_base = 1 << 30;
597 /* Make sure we didn't let the argument array grow too large. */
598 if (vma->vm_end - vma->vm_start > stack_base)
601 stack_base = PAGE_ALIGN(stack_top - stack_base);
603 stack_shift = vma->vm_start - stack_base;
604 mm->arg_start = bprm->p - stack_shift;
605 bprm->p = vma->vm_end - stack_shift;
607 stack_top = arch_align_stack(stack_top);
608 stack_top = PAGE_ALIGN(stack_top);
609 stack_shift = vma->vm_end - stack_top;
611 bprm->p -= stack_shift;
612 mm->arg_start = bprm->p;
616 bprm->loader -= stack_shift;
617 bprm->exec -= stack_shift;
619 down_write(&mm->mmap_sem);
620 vm_flags = VM_STACK_FLAGS;
623 * Adjust stack execute permissions; explicitly enable for
624 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
625 * (arch default) otherwise.
627 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
629 else if (executable_stack == EXSTACK_DISABLE_X)
630 vm_flags &= ~VM_EXEC;
631 vm_flags |= mm->def_flags;
633 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
639 /* Move stack pages down in memory. */
641 ret = shift_arg_pages(vma, stack_shift);
643 up_write(&mm->mmap_sem);
648 #ifdef CONFIG_STACK_GROWSUP
649 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
651 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
653 ret = expand_stack(vma, stack_base);
658 up_write(&mm->mmap_sem);
661 EXPORT_SYMBOL(setup_arg_pages);
663 #endif /* CONFIG_MMU */
665 struct file *open_exec(const char *name)
671 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
672 FMODE_READ|FMODE_EXEC);
677 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
680 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
683 err = vfs_permission(&nd, MAY_EXEC | MAY_OPEN);
687 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
691 err = deny_write_access(file);
700 release_open_intent(&nd);
705 EXPORT_SYMBOL(open_exec);
707 int kernel_read(struct file *file, unsigned long offset,
708 char *addr, unsigned long count)
716 /* The cast to a user pointer is valid due to the set_fs() */
717 result = vfs_read(file, (void __user *)addr, count, &pos);
722 EXPORT_SYMBOL(kernel_read);
724 static int exec_mmap(struct mm_struct *mm)
726 struct task_struct *tsk;
727 struct mm_struct * old_mm, *active_mm;
729 /* Notify parent that we're no longer interested in the old VM */
731 old_mm = current->mm;
732 mm_release(tsk, old_mm);
736 * Make sure that if there is a core dump in progress
737 * for the old mm, we get out and die instead of going
738 * through with the exec. We must hold mmap_sem around
739 * checking core_state and changing tsk->mm.
741 down_read(&old_mm->mmap_sem);
742 if (unlikely(old_mm->core_state)) {
743 up_read(&old_mm->mmap_sem);
748 active_mm = tsk->active_mm;
751 activate_mm(active_mm, mm);
753 arch_pick_mmap_layout(mm);
755 up_read(&old_mm->mmap_sem);
756 BUG_ON(active_mm != old_mm);
757 mm_update_next_owner(old_mm);
766 * This function makes sure the current process has its own signal table,
767 * so that flush_signal_handlers can later reset the handlers without
768 * disturbing other processes. (Other processes might share the signal
769 * table via the CLONE_SIGHAND option to clone().)
771 static int de_thread(struct task_struct *tsk)
773 struct signal_struct *sig = tsk->signal;
774 struct sighand_struct *oldsighand = tsk->sighand;
775 spinlock_t *lock = &oldsighand->siglock;
776 struct task_struct *leader = NULL;
779 if (thread_group_empty(tsk))
780 goto no_thread_group;
783 * Kill all other threads in the thread group.
786 if (signal_group_exit(sig)) {
788 * Another group action in progress, just
789 * return so that the signal is processed.
791 spin_unlock_irq(lock);
794 sig->group_exit_task = tsk;
795 zap_other_threads(tsk);
797 /* Account for the thread group leader hanging around: */
798 count = thread_group_leader(tsk) ? 1 : 2;
799 sig->notify_count = count;
800 while (atomic_read(&sig->count) > count) {
801 __set_current_state(TASK_UNINTERRUPTIBLE);
802 spin_unlock_irq(lock);
806 spin_unlock_irq(lock);
809 * At this point all other threads have exited, all we have to
810 * do is to wait for the thread group leader to become inactive,
811 * and to assume its PID:
813 if (!thread_group_leader(tsk)) {
814 leader = tsk->group_leader;
816 sig->notify_count = -1; /* for exit_notify() */
818 write_lock_irq(&tasklist_lock);
819 if (likely(leader->exit_state))
821 __set_current_state(TASK_UNINTERRUPTIBLE);
822 write_unlock_irq(&tasklist_lock);
827 * The only record we have of the real-time age of a
828 * process, regardless of execs it's done, is start_time.
829 * All the past CPU time is accumulated in signal_struct
830 * from sister threads now dead. But in this non-leader
831 * exec, nothing survives from the original leader thread,
832 * whose birth marks the true age of this process now.
833 * When we take on its identity by switching to its PID, we
834 * also take its birthdate (always earlier than our own).
836 tsk->start_time = leader->start_time;
838 BUG_ON(!same_thread_group(leader, tsk));
839 BUG_ON(has_group_leader_pid(tsk));
841 * An exec() starts a new thread group with the
842 * TGID of the previous thread group. Rehash the
843 * two threads with a switched PID, and release
844 * the former thread group leader:
847 /* Become a process group leader with the old leader's pid.
848 * The old leader becomes a thread of the this thread group.
849 * Note: The old leader also uses this pid until release_task
850 * is called. Odd but simple and correct.
852 detach_pid(tsk, PIDTYPE_PID);
853 tsk->pid = leader->pid;
854 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
855 transfer_pid(leader, tsk, PIDTYPE_PGID);
856 transfer_pid(leader, tsk, PIDTYPE_SID);
857 list_replace_rcu(&leader->tasks, &tsk->tasks);
859 tsk->group_leader = tsk;
860 leader->group_leader = tsk;
862 tsk->exit_signal = SIGCHLD;
864 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
865 leader->exit_state = EXIT_DEAD;
867 write_unlock_irq(&tasklist_lock);
870 sig->group_exit_task = NULL;
871 sig->notify_count = 0;
875 flush_itimer_signals();
877 release_task(leader);
879 if (atomic_read(&oldsighand->count) != 1) {
880 struct sighand_struct *newsighand;
882 * This ->sighand is shared with the CLONE_SIGHAND
883 * but not CLONE_THREAD task, switch to the new one.
885 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
889 atomic_set(&newsighand->count, 1);
890 memcpy(newsighand->action, oldsighand->action,
891 sizeof(newsighand->action));
893 write_lock_irq(&tasklist_lock);
894 spin_lock(&oldsighand->siglock);
895 rcu_assign_pointer(tsk->sighand, newsighand);
896 spin_unlock(&oldsighand->siglock);
897 write_unlock_irq(&tasklist_lock);
899 __cleanup_sighand(oldsighand);
902 BUG_ON(!thread_group_leader(tsk));
907 * These functions flushes out all traces of the currently running executable
908 * so that a new one can be started
910 static void flush_old_files(struct files_struct * files)
915 spin_lock(&files->file_lock);
917 unsigned long set, i;
921 fdt = files_fdtable(files);
922 if (i >= fdt->max_fds)
924 set = fdt->close_on_exec->fds_bits[j];
927 fdt->close_on_exec->fds_bits[j] = 0;
928 spin_unlock(&files->file_lock);
929 for ( ; set ; i++,set >>= 1) {
934 spin_lock(&files->file_lock);
937 spin_unlock(&files->file_lock);
940 char *get_task_comm(char *buf, struct task_struct *tsk)
942 /* buf must be at least sizeof(tsk->comm) in size */
944 strncpy(buf, tsk->comm, sizeof(tsk->comm));
949 void set_task_comm(struct task_struct *tsk, char *buf)
952 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
956 int flush_old_exec(struct linux_binprm * bprm)
960 char tcomm[sizeof(current->comm)];
963 * Make sure we have a private signal table and that
964 * we are unassociated from the previous thread group.
966 retval = de_thread(current);
970 set_mm_exe_file(bprm->mm, bprm->file);
973 * Release all of the old mmap stuff
975 retval = exec_mmap(bprm->mm);
979 bprm->mm = NULL; /* We're using it now */
981 /* This is the point of no return */
982 current->sas_ss_sp = current->sas_ss_size = 0;
984 if (current->euid == current->uid && current->egid == current->gid)
985 set_dumpable(current->mm, 1);
987 set_dumpable(current->mm, suid_dumpable);
989 name = bprm->filename;
991 /* Copies the binary name from after last slash */
992 for (i=0; (ch = *(name++)) != '\0';) {
994 i = 0; /* overwrite what we wrote */
996 if (i < (sizeof(tcomm) - 1))
1000 set_task_comm(current, tcomm);
1002 current->flags &= ~PF_RANDOMIZE;
1005 /* Set the new mm task size. We have to do that late because it may
1006 * depend on TIF_32BIT which is only updated in flush_thread() on
1007 * some architectures like powerpc
1009 current->mm->task_size = TASK_SIZE;
1011 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1013 set_dumpable(current->mm, suid_dumpable);
1014 current->pdeath_signal = 0;
1015 } else if (file_permission(bprm->file, MAY_READ) ||
1016 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1018 set_dumpable(current->mm, suid_dumpable);
1022 * Flush performance counters when crossing a
1025 if (!get_dumpable(current->mm))
1026 perf_counter_exit_task(current);
1028 /* An exec changes our domain. We are no longer part of the thread
1031 current->self_exec_id++;
1033 flush_signal_handlers(current, 0);
1034 flush_old_files(current->files);
1042 EXPORT_SYMBOL(flush_old_exec);
1045 * Fill the binprm structure from the inode.
1046 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1048 int prepare_binprm(struct linux_binprm *bprm)
1051 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1054 mode = inode->i_mode;
1055 if (bprm->file->f_op == NULL)
1058 bprm->e_uid = current->euid;
1059 bprm->e_gid = current->egid;
1061 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1063 if (mode & S_ISUID) {
1064 current->personality &= ~PER_CLEAR_ON_SETID;
1065 bprm->e_uid = inode->i_uid;
1070 * If setgid is set but no group execute bit then this
1071 * is a candidate for mandatory locking, not a setgid
1074 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1075 current->personality &= ~PER_CLEAR_ON_SETID;
1076 bprm->e_gid = inode->i_gid;
1080 /* fill in binprm security blob */
1081 retval = security_bprm_set(bprm);
1085 memset(bprm->buf,0,BINPRM_BUF_SIZE);
1086 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1089 EXPORT_SYMBOL(prepare_binprm);
1091 static int unsafe_exec(struct task_struct *p)
1093 int unsafe = tracehook_unsafe_exec(p);
1095 if (atomic_read(&p->fs->count) > 1 ||
1096 atomic_read(&p->files->count) > 1 ||
1097 atomic_read(&p->sighand->count) > 1)
1098 unsafe |= LSM_UNSAFE_SHARE;
1103 void compute_creds(struct linux_binprm *bprm)
1107 if (bprm->e_uid != current->uid) {
1109 current->pdeath_signal = 0;
1114 unsafe = unsafe_exec(current);
1115 security_bprm_apply_creds(bprm, unsafe);
1116 task_unlock(current);
1117 security_bprm_post_apply_creds(bprm);
1119 EXPORT_SYMBOL(compute_creds);
1122 * Arguments are '\0' separated strings found at the location bprm->p
1123 * points to; chop off the first by relocating brpm->p to right after
1124 * the first '\0' encountered.
1126 int remove_arg_zero(struct linux_binprm *bprm)
1129 unsigned long offset;
1137 offset = bprm->p & ~PAGE_MASK;
1138 page = get_arg_page(bprm, bprm->p, 0);
1143 kaddr = kmap_atomic(page, KM_USER0);
1145 for (; offset < PAGE_SIZE && kaddr[offset];
1146 offset++, bprm->p++)
1149 kunmap_atomic(kaddr, KM_USER0);
1152 if (offset == PAGE_SIZE)
1153 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1154 } while (offset == PAGE_SIZE);
1163 EXPORT_SYMBOL(remove_arg_zero);
1166 * cycle the list of binary formats handler, until one recognizes the image
1168 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1170 unsigned int depth = bprm->recursion_depth;
1172 struct linux_binfmt *fmt;
1174 /* handle /sbin/loader.. */
1176 struct exec * eh = (struct exec *) bprm->buf;
1178 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1179 (eh->fh.f_flags & 0x3000) == 0x3000)
1182 unsigned long loader;
1184 allow_write_access(bprm->file);
1188 loader = bprm->vma->vm_end - sizeof(void *);
1190 file = open_exec("/sbin/loader");
1191 retval = PTR_ERR(file);
1195 /* Remember if the application is TASO. */
1196 bprm->taso = eh->ah.entry < 0x100000000UL;
1199 bprm->loader = loader;
1200 retval = prepare_binprm(bprm);
1203 /* should call search_binary_handler recursively here,
1204 but it does not matter */
1208 retval = security_bprm_check(bprm);
1212 /* kernel module loader fixup */
1213 /* so we don't try to load run modprobe in kernel space. */
1216 retval = audit_bprm(bprm);
1221 for (try=0; try<2; try++) {
1222 read_lock(&binfmt_lock);
1223 list_for_each_entry(fmt, &formats, lh) {
1224 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1227 if (!try_module_get(fmt->module))
1229 read_unlock(&binfmt_lock);
1230 retval = fn(bprm, regs);
1232 * Restore the depth counter to its starting value
1233 * in this call, so we don't have to rely on every
1234 * load_binary function to restore it on return.
1236 bprm->recursion_depth = depth;
1239 tracehook_report_exec(fmt, bprm, regs);
1241 allow_write_access(bprm->file);
1245 current->did_exec = 1;
1246 proc_exec_connector(current);
1249 read_lock(&binfmt_lock);
1251 if (retval != -ENOEXEC || bprm->mm == NULL)
1254 read_unlock(&binfmt_lock);
1258 read_unlock(&binfmt_lock);
1259 if (retval != -ENOEXEC || bprm->mm == NULL) {
1261 #ifdef CONFIG_MODULES
1263 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1264 if (printable(bprm->buf[0]) &&
1265 printable(bprm->buf[1]) &&
1266 printable(bprm->buf[2]) &&
1267 printable(bprm->buf[3]))
1268 break; /* -ENOEXEC */
1269 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1276 EXPORT_SYMBOL(search_binary_handler);
1278 void free_bprm(struct linux_binprm *bprm)
1280 free_arg_pages(bprm);
1285 * sys_execve() executes a new program.
1287 int do_execve(char * filename,
1288 char __user *__user *argv,
1289 char __user *__user *envp,
1290 struct pt_regs * regs)
1292 struct linux_binprm *bprm;
1294 struct files_struct *displaced;
1297 retval = unshare_files(&displaced);
1302 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1306 file = open_exec(filename);
1307 retval = PTR_ERR(file);
1314 bprm->filename = filename;
1315 bprm->interp = filename;
1317 retval = bprm_mm_init(bprm);
1321 bprm->argc = count(argv, MAX_ARG_STRINGS);
1322 if ((retval = bprm->argc) < 0)
1325 bprm->envc = count(envp, MAX_ARG_STRINGS);
1326 if ((retval = bprm->envc) < 0)
1329 retval = security_bprm_alloc(bprm);
1333 retval = prepare_binprm(bprm);
1337 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1341 bprm->exec = bprm->p;
1342 retval = copy_strings(bprm->envc, envp, bprm);
1346 retval = copy_strings(bprm->argc, argv, bprm);
1350 current->flags &= ~PF_KTHREAD;
1351 retval = search_binary_handler(bprm,regs);
1353 /* execve success */
1354 security_bprm_free(bprm);
1355 acct_update_integrals(current);
1358 put_files_struct(displaced);
1364 security_bprm_free(bprm);
1372 allow_write_access(bprm->file);
1380 reset_files_struct(displaced);
1385 int set_binfmt(struct linux_binfmt *new)
1387 struct linux_binfmt *old = current->binfmt;
1390 if (!try_module_get(new->module))
1393 current->binfmt = new;
1395 module_put(old->module);
1399 EXPORT_SYMBOL(set_binfmt);
1401 /* format_corename will inspect the pattern parameter, and output a
1402 * name into corename, which must have space for at least
1403 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1405 static int format_corename(char *corename, long signr)
1407 const char *pat_ptr = core_pattern;
1408 int ispipe = (*pat_ptr == '|');
1409 char *out_ptr = corename;
1410 char *const out_end = corename + CORENAME_MAX_SIZE;
1412 int pid_in_pattern = 0;
1414 /* Repeat as long as we have more pattern to process and more output
1417 if (*pat_ptr != '%') {
1418 if (out_ptr == out_end)
1420 *out_ptr++ = *pat_ptr++;
1422 switch (*++pat_ptr) {
1425 /* Double percent, output one percent */
1427 if (out_ptr == out_end)
1434 rc = snprintf(out_ptr, out_end - out_ptr,
1435 "%d", task_tgid_vnr(current));
1436 if (rc > out_end - out_ptr)
1442 rc = snprintf(out_ptr, out_end - out_ptr,
1443 "%d", current->uid);
1444 if (rc > out_end - out_ptr)
1450 rc = snprintf(out_ptr, out_end - out_ptr,
1451 "%d", current->gid);
1452 if (rc > out_end - out_ptr)
1456 /* signal that caused the coredump */
1458 rc = snprintf(out_ptr, out_end - out_ptr,
1460 if (rc > out_end - out_ptr)
1464 /* UNIX time of coredump */
1467 do_gettimeofday(&tv);
1468 rc = snprintf(out_ptr, out_end - out_ptr,
1470 if (rc > out_end - out_ptr)
1477 down_read(&uts_sem);
1478 rc = snprintf(out_ptr, out_end - out_ptr,
1479 "%s", utsname()->nodename);
1481 if (rc > out_end - out_ptr)
1487 rc = snprintf(out_ptr, out_end - out_ptr,
1488 "%s", current->comm);
1489 if (rc > out_end - out_ptr)
1493 /* core limit size */
1495 rc = snprintf(out_ptr, out_end - out_ptr,
1496 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1497 if (rc > out_end - out_ptr)
1507 /* Backward compatibility with core_uses_pid:
1509 * If core_pattern does not include a %p (as is the default)
1510 * and core_uses_pid is set, then .%pid will be appended to
1511 * the filename. Do not do this for piped commands. */
1512 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1513 rc = snprintf(out_ptr, out_end - out_ptr,
1514 ".%d", task_tgid_vnr(current));
1515 if (rc > out_end - out_ptr)
1524 static int zap_process(struct task_struct *start)
1526 struct task_struct *t;
1529 start->signal->flags = SIGNAL_GROUP_EXIT;
1530 start->signal->group_stop_count = 0;
1534 if (t != current && t->mm) {
1535 sigaddset(&t->pending.signal, SIGKILL);
1536 signal_wake_up(t, 1);
1539 } while_each_thread(start, t);
1544 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1545 struct core_state *core_state, int exit_code)
1547 struct task_struct *g, *p;
1548 unsigned long flags;
1551 spin_lock_irq(&tsk->sighand->siglock);
1552 if (!signal_group_exit(tsk->signal)) {
1553 mm->core_state = core_state;
1554 tsk->signal->group_exit_code = exit_code;
1555 nr = zap_process(tsk);
1557 spin_unlock_irq(&tsk->sighand->siglock);
1558 if (unlikely(nr < 0))
1561 if (atomic_read(&mm->mm_users) == nr + 1)
1564 * We should find and kill all tasks which use this mm, and we should
1565 * count them correctly into ->nr_threads. We don't take tasklist
1566 * lock, but this is safe wrt:
1569 * None of sub-threads can fork after zap_process(leader). All
1570 * processes which were created before this point should be
1571 * visible to zap_threads() because copy_process() adds the new
1572 * process to the tail of init_task.tasks list, and lock/unlock
1573 * of ->siglock provides a memory barrier.
1576 * The caller holds mm->mmap_sem. This means that the task which
1577 * uses this mm can't pass exit_mm(), so it can't exit or clear
1581 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1582 * we must see either old or new leader, this does not matter.
1583 * However, it can change p->sighand, so lock_task_sighand(p)
1584 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1587 * Note also that "g" can be the old leader with ->mm == NULL
1588 * and already unhashed and thus removed from ->thread_group.
1589 * This is OK, __unhash_process()->list_del_rcu() does not
1590 * clear the ->next pointer, we will find the new leader via
1594 for_each_process(g) {
1595 if (g == tsk->group_leader)
1597 if (g->flags & PF_KTHREAD)
1602 if (unlikely(p->mm == mm)) {
1603 lock_task_sighand(p, &flags);
1604 nr += zap_process(p);
1605 unlock_task_sighand(p, &flags);
1609 } while_each_thread(g, p);
1613 atomic_set(&core_state->nr_threads, nr);
1617 static int coredump_wait(int exit_code, struct core_state *core_state)
1619 struct task_struct *tsk = current;
1620 struct mm_struct *mm = tsk->mm;
1621 struct completion *vfork_done;
1624 init_completion(&core_state->startup);
1625 core_state->dumper.task = tsk;
1626 core_state->dumper.next = NULL;
1627 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1628 up_write(&mm->mmap_sem);
1630 if (unlikely(core_waiters < 0))
1634 * Make sure nobody is waiting for us to release the VM,
1635 * otherwise we can deadlock when we wait on each other
1637 vfork_done = tsk->vfork_done;
1639 tsk->vfork_done = NULL;
1640 complete(vfork_done);
1644 wait_for_completion(&core_state->startup);
1646 return core_waiters;
1649 static void coredump_finish(struct mm_struct *mm)
1651 struct core_thread *curr, *next;
1652 struct task_struct *task;
1654 next = mm->core_state->dumper.next;
1655 while ((curr = next) != NULL) {
1659 * see exit_mm(), curr->task must not see
1660 * ->task == NULL before we read ->next.
1664 wake_up_process(task);
1667 mm->core_state = NULL;
1671 * set_dumpable converts traditional three-value dumpable to two flags and
1672 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1673 * these bits are not changed atomically. So get_dumpable can observe the
1674 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1675 * return either old dumpable or new one by paying attention to the order of
1676 * modifying the bits.
1678 * dumpable | mm->flags (binary)
1679 * old new | initial interim final
1680 * ---------+-----------------------
1688 * (*) get_dumpable regards interim value of 10 as 11.
1690 void set_dumpable(struct mm_struct *mm, int value)
1694 clear_bit(MMF_DUMPABLE, &mm->flags);
1696 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1699 set_bit(MMF_DUMPABLE, &mm->flags);
1701 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1704 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1706 set_bit(MMF_DUMPABLE, &mm->flags);
1711 int get_dumpable(struct mm_struct *mm)
1715 ret = mm->flags & 0x3;
1716 return (ret >= 2) ? 2 : ret;
1719 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1721 struct core_state core_state;
1722 char corename[CORENAME_MAX_SIZE + 1];
1723 struct mm_struct *mm = current->mm;
1724 struct linux_binfmt * binfmt;
1725 struct inode * inode;
1728 int fsuid = current->fsuid;
1731 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1732 char **helper_argv = NULL;
1733 int helper_argc = 0;
1736 audit_core_dumps(signr);
1738 binfmt = current->binfmt;
1739 if (!binfmt || !binfmt->core_dump)
1741 down_write(&mm->mmap_sem);
1743 * If another thread got here first, or we are not dumpable, bail out.
1745 if (mm->core_state || !get_dumpable(mm)) {
1746 up_write(&mm->mmap_sem);
1751 * We cannot trust fsuid as being the "true" uid of the
1752 * process nor do we know its entire history. We only know it
1753 * was tainted so we dump it as root in mode 2.
1755 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1756 flag = O_EXCL; /* Stop rewrite attacks */
1757 current->fsuid = 0; /* Dump root private */
1760 retval = coredump_wait(exit_code, &core_state);
1765 * Clear any false indication of pending signals that might
1766 * be seen by the filesystem code called to write the core file.
1768 clear_thread_flag(TIF_SIGPENDING);
1771 * lock_kernel() because format_corename() is controlled by sysctl, which
1772 * uses lock_kernel()
1775 ispipe = format_corename(corename, signr);
1778 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1779 * to a pipe. Since we're not writing directly to the filesystem
1780 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1781 * created unless the pipe reader choses to write out the core file
1782 * at which point file size limits and permissions will be imposed
1783 * as it does with any other process
1785 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1789 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1790 /* Terminate the string before the first option */
1791 delimit = strchr(corename, ' ');
1794 delimit = strrchr(helper_argv[0], '/');
1798 delimit = helper_argv[0];
1799 if (!strcmp(delimit, current->comm)) {
1800 printk(KERN_NOTICE "Recursive core dump detected, "
1805 core_limit = RLIM_INFINITY;
1807 /* SIGPIPE can happen, but it's just never processed */
1808 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1810 printk(KERN_INFO "Core dump to %s pipe failed\n",
1815 file = filp_open(corename,
1816 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1820 inode = file->f_path.dentry->d_inode;
1821 if (inode->i_nlink > 1)
1822 goto close_fail; /* multiple links - don't dump */
1823 if (!ispipe && d_unhashed(file->f_path.dentry))
1826 /* AK: actually i see no reason to not allow this for named pipes etc.,
1827 but keep the previous behaviour for now. */
1828 if (!ispipe && !S_ISREG(inode->i_mode))
1831 * Dont allow local users get cute and trick others to coredump
1832 * into their pre-created files:
1834 if (inode->i_uid != current->fsuid)
1838 if (!file->f_op->write)
1840 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1843 retval = binfmt->core_dump(signr, regs, file, core_limit);
1846 current->signal->group_exit_code |= 0x80;
1848 filp_close(file, NULL);
1851 argv_free(helper_argv);
1853 current->fsuid = fsuid;
1854 coredump_finish(mm);