4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
37 * FIXME: remove all knowledge of the buffer layer from the core VM
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 loff_t offset, unsigned long nr_segs);
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 * ->lock_page (access_process_vm)
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
82 * ->i_alloc_sem (various)
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
89 * ->anon_vma.lock (vma_adjust)
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 * ->dcache_lock (proc_pid_lookup)
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
115 void __remove_from_page_cache(struct page *page)
117 struct address_space *mapping = page->mapping;
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 BUG_ON(page_mapped(page));
126 void remove_from_page_cache(struct page *page)
128 struct address_space *mapping = page->mapping;
130 BUG_ON(!PageLocked(page));
132 write_lock_irq(&mapping->tree_lock);
133 __remove_from_page_cache(page);
134 write_unlock_irq(&mapping->tree_lock);
137 static int sync_page(void *word)
139 struct address_space *mapping;
142 page = container_of((unsigned long *)word, struct page, flags);
145 * page_mapping() is being called without PG_locked held.
146 * Some knowledge of the state and use of the page is used to
147 * reduce the requirements down to a memory barrier.
148 * The danger here is of a stale page_mapping() return value
149 * indicating a struct address_space different from the one it's
150 * associated with when it is associated with one.
151 * After smp_mb(), it's either the correct page_mapping() for
152 * the page, or an old page_mapping() and the page's own
153 * page_mapping() has gone NULL.
154 * The ->sync_page() address_space operation must tolerate
155 * page_mapping() going NULL. By an amazing coincidence,
156 * this comes about because none of the users of the page
157 * in the ->sync_page() methods make essential use of the
158 * page_mapping(), merely passing the page down to the backing
159 * device's unplug functions when it's non-NULL, which in turn
160 * ignore it for all cases but swap, where only page_private(page) is
161 * of interest. When page_mapping() does go NULL, the entire
162 * call stack gracefully ignores the page and returns.
166 mapping = page_mapping(page);
167 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
168 mapping->a_ops->sync_page(page);
174 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
175 * @mapping: address space structure to write
176 * @start: offset in bytes where the range starts
177 * @end: offset in bytes where the range ends (inclusive)
178 * @sync_mode: enable synchronous operation
180 * Start writeback against all of a mapping's dirty pages that lie
181 * within the byte offsets <start, end> inclusive.
183 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
184 * opposed to a regular memory cleansing writeback. The difference between
185 * these two operations is that if a dirty page/buffer is encountered, it must
186 * be waited upon, and not just skipped over.
188 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
189 loff_t end, int sync_mode)
192 struct writeback_control wbc = {
193 .sync_mode = sync_mode,
194 .nr_to_write = mapping->nrpages * 2,
195 .range_start = start,
199 if (!mapping_cap_writeback_dirty(mapping))
202 ret = do_writepages(mapping, &wbc);
206 static inline int __filemap_fdatawrite(struct address_space *mapping,
209 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
212 int filemap_fdatawrite(struct address_space *mapping)
214 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
216 EXPORT_SYMBOL(filemap_fdatawrite);
218 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
221 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
225 * filemap_flush - mostly a non-blocking flush
226 * @mapping: target address_space
228 * This is a mostly non-blocking flush. Not suitable for data-integrity
229 * purposes - I/O may not be started against all dirty pages.
231 int filemap_flush(struct address_space *mapping)
233 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
235 EXPORT_SYMBOL(filemap_flush);
238 * wait_on_page_writeback_range - wait for writeback to complete
239 * @mapping: target address_space
240 * @start: beginning page index
241 * @end: ending page index
243 * Wait for writeback to complete against pages indexed by start->end
246 int wait_on_page_writeback_range(struct address_space *mapping,
247 pgoff_t start, pgoff_t end)
257 pagevec_init(&pvec, 0);
259 while ((index <= end) &&
260 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
261 PAGECACHE_TAG_WRITEBACK,
262 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
265 for (i = 0; i < nr_pages; i++) {
266 struct page *page = pvec.pages[i];
268 /* until radix tree lookup accepts end_index */
269 if (page->index > end)
272 wait_on_page_writeback(page);
276 pagevec_release(&pvec);
280 /* Check for outstanding write errors */
281 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
283 if (test_and_clear_bit(AS_EIO, &mapping->flags))
290 * sync_page_range - write and wait on all pages in the passed range
291 * @inode: target inode
292 * @mapping: target address_space
293 * @pos: beginning offset in pages to write
294 * @count: number of bytes to write
296 * Write and wait upon all the pages in the passed range. This is a "data
297 * integrity" operation. It waits upon in-flight writeout before starting and
298 * waiting upon new writeout. If there was an IO error, return it.
300 * We need to re-take i_mutex during the generic_osync_inode list walk because
301 * it is otherwise livelockable.
303 int sync_page_range(struct inode *inode, struct address_space *mapping,
304 loff_t pos, loff_t count)
306 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
307 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
310 if (!mapping_cap_writeback_dirty(mapping) || !count)
312 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
314 mutex_lock(&inode->i_mutex);
315 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
316 mutex_unlock(&inode->i_mutex);
319 ret = wait_on_page_writeback_range(mapping, start, end);
322 EXPORT_SYMBOL(sync_page_range);
325 * sync_page_range_nolock
326 * @inode: target inode
327 * @mapping: target address_space
328 * @pos: beginning offset in pages to write
329 * @count: number of bytes to write
331 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
332 * as it forces O_SYNC writers to different parts of the same file
333 * to be serialised right until io completion.
335 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
336 loff_t pos, loff_t count)
338 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
339 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
342 if (!mapping_cap_writeback_dirty(mapping) || !count)
344 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
346 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
348 ret = wait_on_page_writeback_range(mapping, start, end);
351 EXPORT_SYMBOL(sync_page_range_nolock);
354 * filemap_fdatawait - wait for all under-writeback pages to complete
355 * @mapping: address space structure to wait for
357 * Walk the list of under-writeback pages of the given address space
358 * and wait for all of them.
360 int filemap_fdatawait(struct address_space *mapping)
362 loff_t i_size = i_size_read(mapping->host);
367 return wait_on_page_writeback_range(mapping, 0,
368 (i_size - 1) >> PAGE_CACHE_SHIFT);
370 EXPORT_SYMBOL(filemap_fdatawait);
372 int filemap_write_and_wait(struct address_space *mapping)
376 if (mapping->nrpages) {
377 err = filemap_fdatawrite(mapping);
379 * Even if the above returned error, the pages may be
380 * written partially (e.g. -ENOSPC), so we wait for it.
381 * But the -EIO is special case, it may indicate the worst
382 * thing (e.g. bug) happened, so we avoid waiting for it.
385 int err2 = filemap_fdatawait(mapping);
392 EXPORT_SYMBOL(filemap_write_and_wait);
395 * filemap_write_and_wait_range - write out & wait on a file range
396 * @mapping: the address_space for the pages
397 * @lstart: offset in bytes where the range starts
398 * @lend: offset in bytes where the range ends (inclusive)
400 * Write out and wait upon file offsets lstart->lend, inclusive.
402 * Note that `lend' is inclusive (describes the last byte to be written) so
403 * that this function can be used to write to the very end-of-file (end = -1).
405 int filemap_write_and_wait_range(struct address_space *mapping,
406 loff_t lstart, loff_t lend)
410 if (mapping->nrpages) {
411 err = __filemap_fdatawrite_range(mapping, lstart, lend,
413 /* See comment of filemap_write_and_wait() */
415 int err2 = wait_on_page_writeback_range(mapping,
416 lstart >> PAGE_CACHE_SHIFT,
417 lend >> PAGE_CACHE_SHIFT);
426 * add_to_page_cache - add newly allocated pagecache pages
428 * @mapping: the page's address_space
429 * @offset: page index
430 * @gfp_mask: page allocation mode
432 * This function is used to add newly allocated pagecache pages;
433 * the page is new, so we can just run SetPageLocked() against it.
434 * The other page state flags were set by rmqueue().
436 * This function does not add the page to the LRU. The caller must do that.
438 int add_to_page_cache(struct page *page, struct address_space *mapping,
439 pgoff_t offset, gfp_t gfp_mask)
441 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
444 write_lock_irq(&mapping->tree_lock);
445 error = radix_tree_insert(&mapping->page_tree, offset, page);
447 page_cache_get(page);
449 page->mapping = mapping;
450 page->index = offset;
452 __inc_zone_page_state(page, NR_FILE_PAGES);
454 write_unlock_irq(&mapping->tree_lock);
455 radix_tree_preload_end();
459 EXPORT_SYMBOL(add_to_page_cache);
461 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
462 pgoff_t offset, gfp_t gfp_mask)
464 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
471 struct page *__page_cache_alloc(gfp_t gfp)
473 if (cpuset_do_page_mem_spread()) {
474 int n = cpuset_mem_spread_node();
475 return alloc_pages_node(n, gfp, 0);
477 return alloc_pages(gfp, 0);
479 EXPORT_SYMBOL(__page_cache_alloc);
482 static int __sleep_on_page_lock(void *word)
489 * In order to wait for pages to become available there must be
490 * waitqueues associated with pages. By using a hash table of
491 * waitqueues where the bucket discipline is to maintain all
492 * waiters on the same queue and wake all when any of the pages
493 * become available, and for the woken contexts to check to be
494 * sure the appropriate page became available, this saves space
495 * at a cost of "thundering herd" phenomena during rare hash
498 static wait_queue_head_t *page_waitqueue(struct page *page)
500 const struct zone *zone = page_zone(page);
502 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
505 static inline void wake_up_page(struct page *page, int bit)
507 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
510 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
512 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
514 if (test_bit(bit_nr, &page->flags))
515 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
516 TASK_UNINTERRUPTIBLE);
518 EXPORT_SYMBOL(wait_on_page_bit);
521 * unlock_page - unlock a locked page
524 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
525 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
526 * mechananism between PageLocked pages and PageWriteback pages is shared.
527 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
529 * The first mb is necessary to safely close the critical section opened by the
530 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
531 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
532 * parallel wait_on_page_locked()).
534 void fastcall unlock_page(struct page *page)
536 smp_mb__before_clear_bit();
537 if (!TestClearPageLocked(page))
539 smp_mb__after_clear_bit();
540 wake_up_page(page, PG_locked);
542 EXPORT_SYMBOL(unlock_page);
545 * end_page_writeback - end writeback against a page
548 void end_page_writeback(struct page *page)
550 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
551 if (!test_clear_page_writeback(page))
554 smp_mb__after_clear_bit();
555 wake_up_page(page, PG_writeback);
557 EXPORT_SYMBOL(end_page_writeback);
560 * __lock_page - get a lock on the page, assuming we need to sleep to get it
561 * @page: the page to lock
563 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
564 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
565 * chances are that on the second loop, the block layer's plug list is empty,
566 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
568 void fastcall __lock_page(struct page *page)
570 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
572 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
573 TASK_UNINTERRUPTIBLE);
575 EXPORT_SYMBOL(__lock_page);
578 * Variant of lock_page that does not require the caller to hold a reference
579 * on the page's mapping.
581 void fastcall __lock_page_nosync(struct page *page)
583 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
584 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
585 TASK_UNINTERRUPTIBLE);
589 * find_get_page - find and get a page reference
590 * @mapping: the address_space to search
591 * @offset: the page index
593 * Is there a pagecache struct page at the given (mapping, offset) tuple?
594 * If yes, increment its refcount and return it; if no, return NULL.
596 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
600 read_lock_irq(&mapping->tree_lock);
601 page = radix_tree_lookup(&mapping->page_tree, offset);
603 page_cache_get(page);
604 read_unlock_irq(&mapping->tree_lock);
607 EXPORT_SYMBOL(find_get_page);
610 * find_lock_page - locate, pin and lock a pagecache page
611 * @mapping: the address_space to search
612 * @offset: the page index
614 * Locates the desired pagecache page, locks it, increments its reference
615 * count and returns its address.
617 * Returns zero if the page was not present. find_lock_page() may sleep.
619 struct page *find_lock_page(struct address_space *mapping,
620 unsigned long offset)
624 read_lock_irq(&mapping->tree_lock);
626 page = radix_tree_lookup(&mapping->page_tree, offset);
628 page_cache_get(page);
629 if (TestSetPageLocked(page)) {
630 read_unlock_irq(&mapping->tree_lock);
632 read_lock_irq(&mapping->tree_lock);
634 /* Has the page been truncated while we slept? */
635 if (unlikely(page->mapping != mapping ||
636 page->index != offset)) {
638 page_cache_release(page);
643 read_unlock_irq(&mapping->tree_lock);
646 EXPORT_SYMBOL(find_lock_page);
649 * find_or_create_page - locate or add a pagecache page
650 * @mapping: the page's address_space
651 * @index: the page's index into the mapping
652 * @gfp_mask: page allocation mode
654 * Locates a page in the pagecache. If the page is not present, a new page
655 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
656 * LRU list. The returned page is locked and has its reference count
659 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
662 * find_or_create_page() returns the desired page's address, or zero on
665 struct page *find_or_create_page(struct address_space *mapping,
666 unsigned long index, gfp_t gfp_mask)
668 struct page *page, *cached_page = NULL;
671 page = find_lock_page(mapping, index);
675 __page_cache_alloc(gfp_mask);
679 err = add_to_page_cache_lru(cached_page, mapping,
684 } else if (err == -EEXIST)
688 page_cache_release(cached_page);
691 EXPORT_SYMBOL(find_or_create_page);
694 * find_get_pages - gang pagecache lookup
695 * @mapping: The address_space to search
696 * @start: The starting page index
697 * @nr_pages: The maximum number of pages
698 * @pages: Where the resulting pages are placed
700 * find_get_pages() will search for and return a group of up to
701 * @nr_pages pages in the mapping. The pages are placed at @pages.
702 * find_get_pages() takes a reference against the returned pages.
704 * The search returns a group of mapping-contiguous pages with ascending
705 * indexes. There may be holes in the indices due to not-present pages.
707 * find_get_pages() returns the number of pages which were found.
709 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
710 unsigned int nr_pages, struct page **pages)
715 read_lock_irq(&mapping->tree_lock);
716 ret = radix_tree_gang_lookup(&mapping->page_tree,
717 (void **)pages, start, nr_pages);
718 for (i = 0; i < ret; i++)
719 page_cache_get(pages[i]);
720 read_unlock_irq(&mapping->tree_lock);
725 * find_get_pages_contig - gang contiguous pagecache lookup
726 * @mapping: The address_space to search
727 * @index: The starting page index
728 * @nr_pages: The maximum number of pages
729 * @pages: Where the resulting pages are placed
731 * find_get_pages_contig() works exactly like find_get_pages(), except
732 * that the returned number of pages are guaranteed to be contiguous.
734 * find_get_pages_contig() returns the number of pages which were found.
736 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
737 unsigned int nr_pages, struct page **pages)
742 read_lock_irq(&mapping->tree_lock);
743 ret = radix_tree_gang_lookup(&mapping->page_tree,
744 (void **)pages, index, nr_pages);
745 for (i = 0; i < ret; i++) {
746 if (pages[i]->mapping == NULL || pages[i]->index != index)
749 page_cache_get(pages[i]);
752 read_unlock_irq(&mapping->tree_lock);
755 EXPORT_SYMBOL(find_get_pages_contig);
758 * find_get_pages_tag - find and return pages that match @tag
759 * @mapping: the address_space to search
760 * @index: the starting page index
761 * @tag: the tag index
762 * @nr_pages: the maximum number of pages
763 * @pages: where the resulting pages are placed
765 * Like find_get_pages, except we only return pages which are tagged with
766 * @tag. We update @index to index the next page for the traversal.
768 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
769 int tag, unsigned int nr_pages, struct page **pages)
774 read_lock_irq(&mapping->tree_lock);
775 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
776 (void **)pages, *index, nr_pages, tag);
777 for (i = 0; i < ret; i++)
778 page_cache_get(pages[i]);
780 *index = pages[ret - 1]->index + 1;
781 read_unlock_irq(&mapping->tree_lock);
784 EXPORT_SYMBOL(find_get_pages_tag);
787 * grab_cache_page_nowait - returns locked page at given index in given cache
788 * @mapping: target address_space
789 * @index: the page index
791 * Same as grab_cache_page(), but do not wait if the page is unavailable.
792 * This is intended for speculative data generators, where the data can
793 * be regenerated if the page couldn't be grabbed. This routine should
794 * be safe to call while holding the lock for another page.
796 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
797 * and deadlock against the caller's locked page.
800 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
802 struct page *page = find_get_page(mapping, index);
805 if (!TestSetPageLocked(page))
807 page_cache_release(page);
810 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
811 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
812 page_cache_release(page);
817 EXPORT_SYMBOL(grab_cache_page_nowait);
820 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
821 * a _large_ part of the i/o request. Imagine the worst scenario:
823 * ---R__________________________________________B__________
824 * ^ reading here ^ bad block(assume 4k)
826 * read(R) => miss => readahead(R...B) => media error => frustrating retries
827 * => failing the whole request => read(R) => read(R+1) =>
828 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
829 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
830 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
832 * It is going insane. Fix it by quickly scaling down the readahead size.
834 static void shrink_readahead_size_eio(struct file *filp,
835 struct file_ra_state *ra)
844 * do_generic_mapping_read - generic file read routine
845 * @mapping: address_space to be read
846 * @_ra: file's readahead state
847 * @filp: the file to read
848 * @ppos: current file position
849 * @desc: read_descriptor
850 * @actor: read method
852 * This is a generic file read routine, and uses the
853 * mapping->a_ops->readpage() function for the actual low-level stuff.
855 * This is really ugly. But the goto's actually try to clarify some
856 * of the logic when it comes to error handling etc.
858 * Note the struct file* is only passed for the use of readpage.
861 void do_generic_mapping_read(struct address_space *mapping,
862 struct file_ra_state *_ra,
865 read_descriptor_t *desc,
868 struct inode *inode = mapping->host;
870 unsigned long offset;
871 unsigned long last_index;
872 unsigned long next_index;
873 unsigned long prev_index;
874 unsigned int prev_offset;
875 struct page *cached_page;
877 struct file_ra_state ra = *_ra;
880 index = *ppos >> PAGE_CACHE_SHIFT;
882 prev_index = ra.prev_index;
883 prev_offset = ra.prev_offset;
884 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
885 offset = *ppos & ~PAGE_CACHE_MASK;
889 unsigned long end_index;
891 unsigned long nr, ret;
895 page = find_get_page(mapping, index);
897 page_cache_sync_readahead(mapping,
899 index, last_index - index);
900 page = find_get_page(mapping, index);
901 if (unlikely(page == NULL))
904 if (PageReadahead(page)) {
905 page_cache_async_readahead(mapping,
907 index, last_index - index);
909 if (!PageUptodate(page))
910 goto page_not_up_to_date;
913 * i_size must be checked after we know the page is Uptodate.
915 * Checking i_size after the check allows us to calculate
916 * the correct value for "nr", which means the zero-filled
917 * part of the page is not copied back to userspace (unless
918 * another truncate extends the file - this is desired though).
921 isize = i_size_read(inode);
922 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
923 if (unlikely(!isize || index > end_index)) {
924 page_cache_release(page);
928 /* nr is the maximum number of bytes to copy from this page */
929 nr = PAGE_CACHE_SIZE;
930 if (index == end_index) {
931 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
933 page_cache_release(page);
939 /* If users can be writing to this page using arbitrary
940 * virtual addresses, take care about potential aliasing
941 * before reading the page on the kernel side.
943 if (mapping_writably_mapped(mapping))
944 flush_dcache_page(page);
947 * When a sequential read accesses a page several times,
948 * only mark it as accessed the first time.
950 if (prev_index != index || offset != prev_offset)
951 mark_page_accessed(page);
955 * Ok, we have the page, and it's up-to-date, so
956 * now we can copy it to user space...
958 * The actor routine returns how many bytes were actually used..
959 * NOTE! This may not be the same as how much of a user buffer
960 * we filled up (we may be padding etc), so we can only update
961 * "pos" here (the actor routine has to update the user buffer
962 * pointers and the remaining count).
964 ret = actor(desc, page, offset, nr);
966 index += offset >> PAGE_CACHE_SHIFT;
967 offset &= ~PAGE_CACHE_MASK;
968 prev_offset = offset;
969 ra.prev_offset = offset;
971 page_cache_release(page);
972 if (ret == nr && desc->count)
977 /* Get exclusive access to the page ... */
980 /* Did it get truncated before we got the lock? */
981 if (!page->mapping) {
983 page_cache_release(page);
987 /* Did somebody else fill it already? */
988 if (PageUptodate(page)) {
994 /* Start the actual read. The read will unlock the page. */
995 error = mapping->a_ops->readpage(filp, page);
997 if (unlikely(error)) {
998 if (error == AOP_TRUNCATED_PAGE) {
999 page_cache_release(page);
1002 goto readpage_error;
1005 if (!PageUptodate(page)) {
1007 if (!PageUptodate(page)) {
1008 if (page->mapping == NULL) {
1010 * invalidate_inode_pages got it
1013 page_cache_release(page);
1018 shrink_readahead_size_eio(filp, &ra);
1019 goto readpage_error;
1027 /* UHHUH! A synchronous read error occurred. Report it */
1028 desc->error = error;
1029 page_cache_release(page);
1034 * Ok, it wasn't cached, so we need to create a new
1038 cached_page = page_cache_alloc_cold(mapping);
1040 desc->error = -ENOMEM;
1044 error = add_to_page_cache_lru(cached_page, mapping,
1047 if (error == -EEXIST)
1049 desc->error = error;
1059 _ra->prev_index = prev_index;
1061 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1063 page_cache_release(cached_page);
1065 file_accessed(filp);
1067 EXPORT_SYMBOL(do_generic_mapping_read);
1069 int file_read_actor(read_descriptor_t *desc, struct page *page,
1070 unsigned long offset, unsigned long size)
1073 unsigned long left, count = desc->count;
1079 * Faults on the destination of a read are common, so do it before
1082 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1083 kaddr = kmap_atomic(page, KM_USER0);
1084 left = __copy_to_user_inatomic(desc->arg.buf,
1085 kaddr + offset, size);
1086 kunmap_atomic(kaddr, KM_USER0);
1091 /* Do it the slow way */
1093 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1098 desc->error = -EFAULT;
1101 desc->count = count - size;
1102 desc->written += size;
1103 desc->arg.buf += size;
1108 * Performs necessary checks before doing a write
1109 * @iov: io vector request
1110 * @nr_segs: number of segments in the iovec
1111 * @count: number of bytes to write
1112 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1114 * Adjust number of segments and amount of bytes to write (nr_segs should be
1115 * properly initialized first). Returns appropriate error code that caller
1116 * should return or zero in case that write should be allowed.
1118 int generic_segment_checks(const struct iovec *iov,
1119 unsigned long *nr_segs, size_t *count, int access_flags)
1123 for (seg = 0; seg < *nr_segs; seg++) {
1124 const struct iovec *iv = &iov[seg];
1127 * If any segment has a negative length, or the cumulative
1128 * length ever wraps negative then return -EINVAL.
1131 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1133 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1138 cnt -= iv->iov_len; /* This segment is no good */
1144 EXPORT_SYMBOL(generic_segment_checks);
1147 * generic_file_aio_read - generic filesystem read routine
1148 * @iocb: kernel I/O control block
1149 * @iov: io vector request
1150 * @nr_segs: number of segments in the iovec
1151 * @pos: current file position
1153 * This is the "read()" routine for all filesystems
1154 * that can use the page cache directly.
1157 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1158 unsigned long nr_segs, loff_t pos)
1160 struct file *filp = iocb->ki_filp;
1164 loff_t *ppos = &iocb->ki_pos;
1167 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1171 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1172 if (filp->f_flags & O_DIRECT) {
1174 struct address_space *mapping;
1175 struct inode *inode;
1177 mapping = filp->f_mapping;
1178 inode = mapping->host;
1181 goto out; /* skip atime */
1182 size = i_size_read(inode);
1184 retval = generic_file_direct_IO(READ, iocb,
1187 *ppos = pos + retval;
1189 if (likely(retval != 0)) {
1190 file_accessed(filp);
1197 for (seg = 0; seg < nr_segs; seg++) {
1198 read_descriptor_t desc;
1201 desc.arg.buf = iov[seg].iov_base;
1202 desc.count = iov[seg].iov_len;
1203 if (desc.count == 0)
1206 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1207 retval += desc.written;
1209 retval = retval ?: desc.error;
1219 EXPORT_SYMBOL(generic_file_aio_read);
1222 do_readahead(struct address_space *mapping, struct file *filp,
1223 unsigned long index, unsigned long nr)
1225 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1228 force_page_cache_readahead(mapping, filp, index,
1229 max_sane_readahead(nr));
1233 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1241 if (file->f_mode & FMODE_READ) {
1242 struct address_space *mapping = file->f_mapping;
1243 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1244 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1245 unsigned long len = end - start + 1;
1246 ret = do_readahead(mapping, file, start, len);
1254 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1256 * page_cache_read - adds requested page to the page cache if not already there
1257 * @file: file to read
1258 * @offset: page index
1260 * This adds the requested page to the page cache if it isn't already there,
1261 * and schedules an I/O to read in its contents from disk.
1263 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1265 struct address_space *mapping = file->f_mapping;
1270 page = page_cache_alloc_cold(mapping);
1274 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1276 ret = mapping->a_ops->readpage(file, page);
1277 else if (ret == -EEXIST)
1278 ret = 0; /* losing race to add is OK */
1280 page_cache_release(page);
1282 } while (ret == AOP_TRUNCATED_PAGE);
1287 #define MMAP_LOTSAMISS (100)
1290 * filemap_fault - read in file data for page fault handling
1291 * @vma: vma in which the fault was taken
1292 * @vmf: struct vm_fault containing details of the fault
1294 * filemap_fault() is invoked via the vma operations vector for a
1295 * mapped memory region to read in file data during a page fault.
1297 * The goto's are kind of ugly, but this streamlines the normal case of having
1298 * it in the page cache, and handles the special cases reasonably without
1299 * having a lot of duplicated code.
1301 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1304 struct file *file = vma->vm_file;
1305 struct address_space *mapping = file->f_mapping;
1306 struct file_ra_state *ra = &file->f_ra;
1307 struct inode *inode = mapping->host;
1310 int did_readaround = 0;
1313 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1314 if (vmf->pgoff >= size)
1315 goto outside_data_content;
1317 /* If we don't want any read-ahead, don't bother */
1318 if (VM_RandomReadHint(vma))
1319 goto no_cached_page;
1322 * Do we have something in the page cache already?
1325 page = find_lock_page(mapping, vmf->pgoff);
1327 * For sequential accesses, we use the generic readahead logic.
1329 if (VM_SequentialReadHint(vma)) {
1331 page_cache_sync_readahead(mapping, ra, file,
1333 page = find_lock_page(mapping, vmf->pgoff);
1335 goto no_cached_page;
1337 if (PageReadahead(page)) {
1338 page_cache_async_readahead(mapping, ra, file, page,
1344 unsigned long ra_pages;
1349 * Do we miss much more than hit in this file? If so,
1350 * stop bothering with read-ahead. It will only hurt.
1352 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1353 goto no_cached_page;
1356 * To keep the pgmajfault counter straight, we need to
1357 * check did_readaround, as this is an inner loop.
1359 if (!did_readaround) {
1360 ret = VM_FAULT_MAJOR;
1361 count_vm_event(PGMAJFAULT);
1364 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1368 if (vmf->pgoff > ra_pages / 2)
1369 start = vmf->pgoff - ra_pages / 2;
1370 do_page_cache_readahead(mapping, file, start, ra_pages);
1372 page = find_lock_page(mapping, vmf->pgoff);
1374 goto no_cached_page;
1377 if (!did_readaround)
1381 * We have a locked page in the page cache, now we need to check
1382 * that it's up-to-date. If not, it is going to be due to an error.
1384 if (unlikely(!PageUptodate(page)))
1385 goto page_not_uptodate;
1387 /* Must recheck i_size under page lock */
1388 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1389 if (unlikely(vmf->pgoff >= size)) {
1391 goto outside_data_content;
1395 * Found the page and have a reference on it.
1397 mark_page_accessed(page);
1398 ra->prev_index = page->index;
1400 return ret | VM_FAULT_LOCKED;
1402 outside_data_content:
1404 * An external ptracer can access pages that normally aren't
1407 if (vma->vm_mm == current->mm)
1408 return VM_FAULT_SIGBUS;
1410 /* Fall through to the non-read-ahead case */
1413 * We're only likely to ever get here if MADV_RANDOM is in
1416 error = page_cache_read(file, vmf->pgoff);
1419 * The page we want has now been added to the page cache.
1420 * In the unlikely event that someone removed it in the
1421 * meantime, we'll just come back here and read it again.
1427 * An error return from page_cache_read can result if the
1428 * system is low on memory, or a problem occurs while trying
1431 if (error == -ENOMEM)
1432 return VM_FAULT_OOM;
1433 return VM_FAULT_SIGBUS;
1437 if (!did_readaround) {
1438 ret = VM_FAULT_MAJOR;
1439 count_vm_event(PGMAJFAULT);
1443 * Umm, take care of errors if the page isn't up-to-date.
1444 * Try to re-read it _once_. We do this synchronously,
1445 * because there really aren't any performance issues here
1446 * and we need to check for errors.
1448 ClearPageError(page);
1449 error = mapping->a_ops->readpage(file, page);
1450 page_cache_release(page);
1452 if (!error || error == AOP_TRUNCATED_PAGE)
1455 /* Things didn't work out. Return zero to tell the mm layer so. */
1456 shrink_readahead_size_eio(file, ra);
1457 return VM_FAULT_SIGBUS;
1459 EXPORT_SYMBOL(filemap_fault);
1461 struct vm_operations_struct generic_file_vm_ops = {
1462 .fault = filemap_fault,
1465 /* This is used for a general mmap of a disk file */
1467 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1469 struct address_space *mapping = file->f_mapping;
1471 if (!mapping->a_ops->readpage)
1473 file_accessed(file);
1474 vma->vm_ops = &generic_file_vm_ops;
1475 vma->vm_flags |= VM_CAN_NONLINEAR;
1480 * This is for filesystems which do not implement ->writepage.
1482 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1484 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1486 return generic_file_mmap(file, vma);
1489 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1493 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1497 #endif /* CONFIG_MMU */
1499 EXPORT_SYMBOL(generic_file_mmap);
1500 EXPORT_SYMBOL(generic_file_readonly_mmap);
1502 static struct page *__read_cache_page(struct address_space *mapping,
1503 unsigned long index,
1504 int (*filler)(void *,struct page*),
1507 struct page *page, *cached_page = NULL;
1510 page = find_get_page(mapping, index);
1513 cached_page = page_cache_alloc_cold(mapping);
1515 return ERR_PTR(-ENOMEM);
1517 err = add_to_page_cache_lru(cached_page, mapping,
1522 /* Presumably ENOMEM for radix tree node */
1523 page_cache_release(cached_page);
1524 return ERR_PTR(err);
1528 err = filler(data, page);
1530 page_cache_release(page);
1531 page = ERR_PTR(err);
1535 page_cache_release(cached_page);
1540 * Same as read_cache_page, but don't wait for page to become unlocked
1541 * after submitting it to the filler.
1543 struct page *read_cache_page_async(struct address_space *mapping,
1544 unsigned long index,
1545 int (*filler)(void *,struct page*),
1552 page = __read_cache_page(mapping, index, filler, data);
1555 if (PageUptodate(page))
1559 if (!page->mapping) {
1561 page_cache_release(page);
1564 if (PageUptodate(page)) {
1568 err = filler(data, page);
1570 page_cache_release(page);
1571 return ERR_PTR(err);
1574 mark_page_accessed(page);
1577 EXPORT_SYMBOL(read_cache_page_async);
1580 * read_cache_page - read into page cache, fill it if needed
1581 * @mapping: the page's address_space
1582 * @index: the page index
1583 * @filler: function to perform the read
1584 * @data: destination for read data
1586 * Read into the page cache. If a page already exists, and PageUptodate() is
1587 * not set, try to fill the page then wait for it to become unlocked.
1589 * If the page does not get brought uptodate, return -EIO.
1591 struct page *read_cache_page(struct address_space *mapping,
1592 unsigned long index,
1593 int (*filler)(void *,struct page*),
1598 page = read_cache_page_async(mapping, index, filler, data);
1601 wait_on_page_locked(page);
1602 if (!PageUptodate(page)) {
1603 page_cache_release(page);
1604 page = ERR_PTR(-EIO);
1609 EXPORT_SYMBOL(read_cache_page);
1612 * If the page was newly created, increment its refcount and add it to the
1613 * caller's lru-buffering pagevec. This function is specifically for
1614 * generic_file_write().
1616 static inline struct page *
1617 __grab_cache_page(struct address_space *mapping, unsigned long index,
1618 struct page **cached_page, struct pagevec *lru_pvec)
1623 page = find_lock_page(mapping, index);
1625 if (!*cached_page) {
1626 *cached_page = page_cache_alloc(mapping);
1630 err = add_to_page_cache(*cached_page, mapping,
1635 page = *cached_page;
1636 page_cache_get(page);
1637 if (!pagevec_add(lru_pvec, page))
1638 __pagevec_lru_add(lru_pvec);
1639 *cached_page = NULL;
1646 * The logic we want is
1648 * if suid or (sgid and xgrp)
1651 int should_remove_suid(struct dentry *dentry)
1653 mode_t mode = dentry->d_inode->i_mode;
1656 /* suid always must be killed */
1657 if (unlikely(mode & S_ISUID))
1658 kill = ATTR_KILL_SUID;
1661 * sgid without any exec bits is just a mandatory locking mark; leave
1662 * it alone. If some exec bits are set, it's a real sgid; kill it.
1664 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1665 kill |= ATTR_KILL_SGID;
1667 if (unlikely(kill && !capable(CAP_FSETID)))
1672 EXPORT_SYMBOL(should_remove_suid);
1674 int __remove_suid(struct dentry *dentry, int kill)
1676 struct iattr newattrs;
1678 newattrs.ia_valid = ATTR_FORCE | kill;
1679 return notify_change(dentry, &newattrs);
1682 int remove_suid(struct dentry *dentry)
1684 int kill = should_remove_suid(dentry);
1687 return __remove_suid(dentry, kill);
1691 EXPORT_SYMBOL(remove_suid);
1694 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1695 const struct iovec *iov, size_t base, size_t bytes)
1697 size_t copied = 0, left = 0;
1700 char __user *buf = iov->iov_base + base;
1701 int copy = min(bytes, iov->iov_len - base);
1704 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1713 return copied - left;
1717 * Performs necessary checks before doing a write
1719 * Can adjust writing position or amount of bytes to write.
1720 * Returns appropriate error code that caller should return or
1721 * zero in case that write should be allowed.
1723 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1725 struct inode *inode = file->f_mapping->host;
1726 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1728 if (unlikely(*pos < 0))
1732 /* FIXME: this is for backwards compatibility with 2.4 */
1733 if (file->f_flags & O_APPEND)
1734 *pos = i_size_read(inode);
1736 if (limit != RLIM_INFINITY) {
1737 if (*pos >= limit) {
1738 send_sig(SIGXFSZ, current, 0);
1741 if (*count > limit - (typeof(limit))*pos) {
1742 *count = limit - (typeof(limit))*pos;
1750 if (unlikely(*pos + *count > MAX_NON_LFS &&
1751 !(file->f_flags & O_LARGEFILE))) {
1752 if (*pos >= MAX_NON_LFS) {
1755 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1756 *count = MAX_NON_LFS - (unsigned long)*pos;
1761 * Are we about to exceed the fs block limit ?
1763 * If we have written data it becomes a short write. If we have
1764 * exceeded without writing data we send a signal and return EFBIG.
1765 * Linus frestrict idea will clean these up nicely..
1767 if (likely(!isblk)) {
1768 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1769 if (*count || *pos > inode->i_sb->s_maxbytes) {
1772 /* zero-length writes at ->s_maxbytes are OK */
1775 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1776 *count = inode->i_sb->s_maxbytes - *pos;
1780 if (bdev_read_only(I_BDEV(inode)))
1782 isize = i_size_read(inode);
1783 if (*pos >= isize) {
1784 if (*count || *pos > isize)
1788 if (*pos + *count > isize)
1789 *count = isize - *pos;
1796 EXPORT_SYMBOL(generic_write_checks);
1799 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1800 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1801 size_t count, size_t ocount)
1803 struct file *file = iocb->ki_filp;
1804 struct address_space *mapping = file->f_mapping;
1805 struct inode *inode = mapping->host;
1808 if (count != ocount)
1809 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1811 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1813 loff_t end = pos + written;
1814 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1815 i_size_write(inode, end);
1816 mark_inode_dirty(inode);
1822 * Sync the fs metadata but not the minor inode changes and
1823 * of course not the data as we did direct DMA for the IO.
1824 * i_mutex is held, which protects generic_osync_inode() from
1825 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
1827 if ((written >= 0 || written == -EIOCBQUEUED) &&
1828 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1829 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1835 EXPORT_SYMBOL(generic_file_direct_write);
1838 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1839 unsigned long nr_segs, loff_t pos, loff_t *ppos,
1840 size_t count, ssize_t written)
1842 struct file *file = iocb->ki_filp;
1843 struct address_space * mapping = file->f_mapping;
1844 const struct address_space_operations *a_ops = mapping->a_ops;
1845 struct inode *inode = mapping->host;
1848 struct page *cached_page = NULL;
1850 struct pagevec lru_pvec;
1851 const struct iovec *cur_iov = iov; /* current iovec */
1852 size_t iov_base = 0; /* offset in the current iovec */
1855 pagevec_init(&lru_pvec, 0);
1858 * handle partial DIO write. Adjust cur_iov if needed.
1860 if (likely(nr_segs == 1))
1861 buf = iov->iov_base + written;
1863 filemap_set_next_iovec(&cur_iov, &iov_base, written);
1864 buf = cur_iov->iov_base + iov_base;
1868 unsigned long index;
1869 unsigned long offset;
1872 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1873 index = pos >> PAGE_CACHE_SHIFT;
1874 bytes = PAGE_CACHE_SIZE - offset;
1876 /* Limit the size of the copy to the caller's write size */
1877 bytes = min(bytes, count);
1879 /* We only need to worry about prefaulting when writes are from
1880 * user-space. NFSd uses vfs_writev with several non-aligned
1881 * segments in the vector, and limiting to one segment a time is
1882 * a noticeable performance for re-write
1884 if (!segment_eq(get_fs(), KERNEL_DS)) {
1886 * Limit the size of the copy to that of the current
1887 * segment, because fault_in_pages_readable() doesn't
1888 * know how to walk segments.
1890 bytes = min(bytes, cur_iov->iov_len - iov_base);
1893 * Bring in the user page that we will copy from
1894 * _first_. Otherwise there's a nasty deadlock on
1895 * copying from the same page as we're writing to,
1896 * without it being marked up-to-date.
1898 fault_in_pages_readable(buf, bytes);
1900 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1906 if (unlikely(bytes == 0)) {
1909 goto zero_length_segment;
1912 status = a_ops->prepare_write(file, page, offset, offset+bytes);
1913 if (unlikely(status)) {
1914 loff_t isize = i_size_read(inode);
1916 if (status != AOP_TRUNCATED_PAGE)
1918 page_cache_release(page);
1919 if (status == AOP_TRUNCATED_PAGE)
1922 * prepare_write() may have instantiated a few blocks
1923 * outside i_size. Trim these off again.
1925 if (pos + bytes > isize)
1926 vmtruncate(inode, isize);
1929 if (likely(nr_segs == 1))
1930 copied = filemap_copy_from_user(page, offset,
1933 copied = filemap_copy_from_user_iovec(page, offset,
1934 cur_iov, iov_base, bytes);
1935 flush_dcache_page(page);
1936 status = a_ops->commit_write(file, page, offset, offset+bytes);
1937 if (status == AOP_TRUNCATED_PAGE) {
1938 page_cache_release(page);
1941 zero_length_segment:
1942 if (likely(copied >= 0)) {
1951 if (unlikely(nr_segs > 1)) {
1952 filemap_set_next_iovec(&cur_iov,
1955 buf = cur_iov->iov_base +
1962 if (unlikely(copied != bytes))
1966 mark_page_accessed(page);
1967 page_cache_release(page);
1970 balance_dirty_pages_ratelimited(mapping);
1976 page_cache_release(cached_page);
1979 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
1981 if (likely(status >= 0)) {
1982 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1983 if (!a_ops->writepage || !is_sync_kiocb(iocb))
1984 status = generic_osync_inode(inode, mapping,
1985 OSYNC_METADATA|OSYNC_DATA);
1990 * If we get here for O_DIRECT writes then we must have fallen through
1991 * to buffered writes (block instantiation inside i_size). So we sync
1992 * the file data here, to try to honour O_DIRECT expectations.
1994 if (unlikely(file->f_flags & O_DIRECT) && written)
1995 status = filemap_write_and_wait(mapping);
1997 pagevec_lru_add(&lru_pvec);
1998 return written ? written : status;
2000 EXPORT_SYMBOL(generic_file_buffered_write);
2003 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2004 unsigned long nr_segs, loff_t *ppos)
2006 struct file *file = iocb->ki_filp;
2007 struct address_space * mapping = file->f_mapping;
2008 size_t ocount; /* original count */
2009 size_t count; /* after file limit checks */
2010 struct inode *inode = mapping->host;
2016 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2023 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2025 /* We can write back this queue in page reclaim */
2026 current->backing_dev_info = mapping->backing_dev_info;
2029 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2036 err = remove_suid(file->f_path.dentry);
2040 file_update_time(file);
2042 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2043 if (unlikely(file->f_flags & O_DIRECT)) {
2045 ssize_t written_buffered;
2047 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2048 ppos, count, ocount);
2049 if (written < 0 || written == count)
2052 * direct-io write to a hole: fall through to buffered I/O
2053 * for completing the rest of the request.
2057 written_buffered = generic_file_buffered_write(iocb, iov,
2058 nr_segs, pos, ppos, count,
2061 * If generic_file_buffered_write() retuned a synchronous error
2062 * then we want to return the number of bytes which were
2063 * direct-written, or the error code if that was zero. Note
2064 * that this differs from normal direct-io semantics, which
2065 * will return -EFOO even if some bytes were written.
2067 if (written_buffered < 0) {
2068 err = written_buffered;
2073 * We need to ensure that the page cache pages are written to
2074 * disk and invalidated to preserve the expected O_DIRECT
2077 endbyte = pos + written_buffered - written - 1;
2078 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2079 SYNC_FILE_RANGE_WAIT_BEFORE|
2080 SYNC_FILE_RANGE_WRITE|
2081 SYNC_FILE_RANGE_WAIT_AFTER);
2083 written = written_buffered;
2084 invalidate_mapping_pages(mapping,
2085 pos >> PAGE_CACHE_SHIFT,
2086 endbyte >> PAGE_CACHE_SHIFT);
2089 * We don't know how much we wrote, so just return
2090 * the number of bytes which were direct-written
2094 written = generic_file_buffered_write(iocb, iov, nr_segs,
2095 pos, ppos, count, written);
2098 current->backing_dev_info = NULL;
2099 return written ? written : err;
2102 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2103 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2105 struct file *file = iocb->ki_filp;
2106 struct address_space *mapping = file->f_mapping;
2107 struct inode *inode = mapping->host;
2110 BUG_ON(iocb->ki_pos != pos);
2112 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2115 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2118 err = sync_page_range_nolock(inode, mapping, pos, ret);
2124 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2126 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2127 unsigned long nr_segs, loff_t pos)
2129 struct file *file = iocb->ki_filp;
2130 struct address_space *mapping = file->f_mapping;
2131 struct inode *inode = mapping->host;
2134 BUG_ON(iocb->ki_pos != pos);
2136 mutex_lock(&inode->i_mutex);
2137 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2139 mutex_unlock(&inode->i_mutex);
2141 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2144 err = sync_page_range(inode, mapping, pos, ret);
2150 EXPORT_SYMBOL(generic_file_aio_write);
2153 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2154 * went wrong during pagecache shootdown.
2157 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2158 loff_t offset, unsigned long nr_segs)
2160 struct file *file = iocb->ki_filp;
2161 struct address_space *mapping = file->f_mapping;
2164 pgoff_t end = 0; /* silence gcc */
2167 * If it's a write, unmap all mmappings of the file up-front. This
2168 * will cause any pte dirty bits to be propagated into the pageframes
2169 * for the subsequent filemap_write_and_wait().
2172 write_len = iov_length(iov, nr_segs);
2173 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2174 if (mapping_mapped(mapping))
2175 unmap_mapping_range(mapping, offset, write_len, 0);
2178 retval = filemap_write_and_wait(mapping);
2183 * After a write we want buffered reads to be sure to go to disk to get
2184 * the new data. We invalidate clean cached page from the region we're
2185 * about to write. We do this *before* the write so that we can return
2186 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2188 if (rw == WRITE && mapping->nrpages) {
2189 retval = invalidate_inode_pages2_range(mapping,
2190 offset >> PAGE_CACHE_SHIFT, end);
2195 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2200 * Finally, try again to invalidate clean pages which might have been
2201 * faulted in by get_user_pages() if the source of the write was an
2202 * mmap()ed region of the file we're writing. That's a pretty crazy
2203 * thing to do, so we don't support it 100%. If this invalidation
2204 * fails and we have -EIOCBQUEUED we ignore the failure.
2206 if (rw == WRITE && mapping->nrpages) {
2207 int err = invalidate_inode_pages2_range(mapping,
2208 offset >> PAGE_CACHE_SHIFT, end);
2209 if (err && retval >= 0)
2217 * try_to_release_page() - release old fs-specific metadata on a page
2219 * @page: the page which the kernel is trying to free
2220 * @gfp_mask: memory allocation flags (and I/O mode)
2222 * The address_space is to try to release any data against the page
2223 * (presumably at page->private). If the release was successful, return `1'.
2224 * Otherwise return zero.
2226 * The @gfp_mask argument specifies whether I/O may be performed to release
2227 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2229 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2231 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2233 struct address_space * const mapping = page->mapping;
2235 BUG_ON(!PageLocked(page));
2236 if (PageWriteback(page))
2239 if (mapping && mapping->a_ops->releasepage)
2240 return mapping->a_ops->releasepage(page, gfp_mask);
2241 return try_to_free_buffers(page);
2244 EXPORT_SYMBOL(try_to_release_page);