nfs41: sunrpc: Export the call prepare state for session reset
[linux-2.6] / block / blk-settings.c
1 /*
2  * Functions related to setting various queue properties from drivers
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h>      /* for max_pfn/max_low_pfn */
10
11 #include "blk.h"
12
13 unsigned long blk_max_low_pfn;
14 EXPORT_SYMBOL(blk_max_low_pfn);
15
16 unsigned long blk_max_pfn;
17
18 /**
19  * blk_queue_prep_rq - set a prepare_request function for queue
20  * @q:          queue
21  * @pfn:        prepare_request function
22  *
23  * It's possible for a queue to register a prepare_request callback which
24  * is invoked before the request is handed to the request_fn. The goal of
25  * the function is to prepare a request for I/O, it can be used to build a
26  * cdb from the request data for instance.
27  *
28  */
29 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
30 {
31         q->prep_rq_fn = pfn;
32 }
33 EXPORT_SYMBOL(blk_queue_prep_rq);
34
35 /**
36  * blk_queue_set_discard - set a discard_sectors function for queue
37  * @q:          queue
38  * @dfn:        prepare_discard function
39  *
40  * It's possible for a queue to register a discard callback which is used
41  * to transform a discard request into the appropriate type for the
42  * hardware. If none is registered, then discard requests are failed
43  * with %EOPNOTSUPP.
44  *
45  */
46 void blk_queue_set_discard(struct request_queue *q, prepare_discard_fn *dfn)
47 {
48         q->prepare_discard_fn = dfn;
49 }
50 EXPORT_SYMBOL(blk_queue_set_discard);
51
52 /**
53  * blk_queue_merge_bvec - set a merge_bvec function for queue
54  * @q:          queue
55  * @mbfn:       merge_bvec_fn
56  *
57  * Usually queues have static limitations on the max sectors or segments that
58  * we can put in a request. Stacking drivers may have some settings that
59  * are dynamic, and thus we have to query the queue whether it is ok to
60  * add a new bio_vec to a bio at a given offset or not. If the block device
61  * has such limitations, it needs to register a merge_bvec_fn to control
62  * the size of bio's sent to it. Note that a block device *must* allow a
63  * single page to be added to an empty bio. The block device driver may want
64  * to use the bio_split() function to deal with these bio's. By default
65  * no merge_bvec_fn is defined for a queue, and only the fixed limits are
66  * honored.
67  */
68 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
69 {
70         q->merge_bvec_fn = mbfn;
71 }
72 EXPORT_SYMBOL(blk_queue_merge_bvec);
73
74 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
75 {
76         q->softirq_done_fn = fn;
77 }
78 EXPORT_SYMBOL(blk_queue_softirq_done);
79
80 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
81 {
82         q->rq_timeout = timeout;
83 }
84 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
85
86 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
87 {
88         q->rq_timed_out_fn = fn;
89 }
90 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
91
92 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
93 {
94         q->lld_busy_fn = fn;
95 }
96 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
97
98 /**
99  * blk_queue_make_request - define an alternate make_request function for a device
100  * @q:  the request queue for the device to be affected
101  * @mfn: the alternate make_request function
102  *
103  * Description:
104  *    The normal way for &struct bios to be passed to a device
105  *    driver is for them to be collected into requests on a request
106  *    queue, and then to allow the device driver to select requests
107  *    off that queue when it is ready.  This works well for many block
108  *    devices. However some block devices (typically virtual devices
109  *    such as md or lvm) do not benefit from the processing on the
110  *    request queue, and are served best by having the requests passed
111  *    directly to them.  This can be achieved by providing a function
112  *    to blk_queue_make_request().
113  *
114  * Caveat:
115  *    The driver that does this *must* be able to deal appropriately
116  *    with buffers in "highmemory". This can be accomplished by either calling
117  *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
118  *    blk_queue_bounce() to create a buffer in normal memory.
119  **/
120 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
121 {
122         /*
123          * set defaults
124          */
125         q->nr_requests = BLKDEV_MAX_RQ;
126         blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
127         blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
128         blk_queue_segment_boundary(q, BLK_SEG_BOUNDARY_MASK);
129         blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
130
131         q->make_request_fn = mfn;
132         q->backing_dev_info.ra_pages =
133                         (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
134         q->backing_dev_info.state = 0;
135         q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
136         blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
137         blk_queue_hardsect_size(q, 512);
138         blk_queue_dma_alignment(q, 511);
139         blk_queue_congestion_threshold(q);
140         q->nr_batching = BLK_BATCH_REQ;
141
142         q->unplug_thresh = 4;           /* hmm */
143         q->unplug_delay = (3 * HZ) / 1000;      /* 3 milliseconds */
144         if (q->unplug_delay == 0)
145                 q->unplug_delay = 1;
146
147         q->unplug_timer.function = blk_unplug_timeout;
148         q->unplug_timer.data = (unsigned long)q;
149
150         /*
151          * by default assume old behaviour and bounce for any highmem page
152          */
153         blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
154 }
155 EXPORT_SYMBOL(blk_queue_make_request);
156
157 /**
158  * blk_queue_bounce_limit - set bounce buffer limit for queue
159  * @q: the request queue for the device
160  * @dma_mask: the maximum address the device can handle
161  *
162  * Description:
163  *    Different hardware can have different requirements as to what pages
164  *    it can do I/O directly to. A low level driver can call
165  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
166  *    buffers for doing I/O to pages residing above @dma_mask.
167  **/
168 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
169 {
170         unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
171         int dma = 0;
172
173         q->bounce_gfp = GFP_NOIO;
174 #if BITS_PER_LONG == 64
175         /*
176          * Assume anything <= 4GB can be handled by IOMMU.  Actually
177          * some IOMMUs can handle everything, but I don't know of a
178          * way to test this here.
179          */
180         if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
181                 dma = 1;
182         q->bounce_pfn = max_low_pfn;
183 #else
184         if (b_pfn < blk_max_low_pfn)
185                 dma = 1;
186         q->bounce_pfn = b_pfn;
187 #endif
188         if (dma) {
189                 init_emergency_isa_pool();
190                 q->bounce_gfp = GFP_NOIO | GFP_DMA;
191                 q->bounce_pfn = b_pfn;
192         }
193 }
194 EXPORT_SYMBOL(blk_queue_bounce_limit);
195
196 /**
197  * blk_queue_max_sectors - set max sectors for a request for this queue
198  * @q:  the request queue for the device
199  * @max_sectors:  max sectors in the usual 512b unit
200  *
201  * Description:
202  *    Enables a low level driver to set an upper limit on the size of
203  *    received requests.
204  **/
205 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
206 {
207         if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
208                 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
209                 printk(KERN_INFO "%s: set to minimum %d\n",
210                        __func__, max_sectors);
211         }
212
213         if (BLK_DEF_MAX_SECTORS > max_sectors)
214                 q->max_hw_sectors = q->max_sectors = max_sectors;
215         else {
216                 q->max_sectors = BLK_DEF_MAX_SECTORS;
217                 q->max_hw_sectors = max_sectors;
218         }
219 }
220 EXPORT_SYMBOL(blk_queue_max_sectors);
221
222 /**
223  * blk_queue_max_phys_segments - set max phys segments for a request for this queue
224  * @q:  the request queue for the device
225  * @max_segments:  max number of segments
226  *
227  * Description:
228  *    Enables a low level driver to set an upper limit on the number of
229  *    physical data segments in a request.  This would be the largest sized
230  *    scatter list the driver could handle.
231  **/
232 void blk_queue_max_phys_segments(struct request_queue *q,
233                                  unsigned short max_segments)
234 {
235         if (!max_segments) {
236                 max_segments = 1;
237                 printk(KERN_INFO "%s: set to minimum %d\n",
238                        __func__, max_segments);
239         }
240
241         q->max_phys_segments = max_segments;
242 }
243 EXPORT_SYMBOL(blk_queue_max_phys_segments);
244
245 /**
246  * blk_queue_max_hw_segments - set max hw segments for a request for this queue
247  * @q:  the request queue for the device
248  * @max_segments:  max number of segments
249  *
250  * Description:
251  *    Enables a low level driver to set an upper limit on the number of
252  *    hw data segments in a request.  This would be the largest number of
253  *    address/length pairs the host adapter can actually give at once
254  *    to the device.
255  **/
256 void blk_queue_max_hw_segments(struct request_queue *q,
257                                unsigned short max_segments)
258 {
259         if (!max_segments) {
260                 max_segments = 1;
261                 printk(KERN_INFO "%s: set to minimum %d\n",
262                        __func__, max_segments);
263         }
264
265         q->max_hw_segments = max_segments;
266 }
267 EXPORT_SYMBOL(blk_queue_max_hw_segments);
268
269 /**
270  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
271  * @q:  the request queue for the device
272  * @max_size:  max size of segment in bytes
273  *
274  * Description:
275  *    Enables a low level driver to set an upper limit on the size of a
276  *    coalesced segment
277  **/
278 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
279 {
280         if (max_size < PAGE_CACHE_SIZE) {
281                 max_size = PAGE_CACHE_SIZE;
282                 printk(KERN_INFO "%s: set to minimum %d\n",
283                        __func__, max_size);
284         }
285
286         q->max_segment_size = max_size;
287 }
288 EXPORT_SYMBOL(blk_queue_max_segment_size);
289
290 /**
291  * blk_queue_hardsect_size - set hardware sector size for the queue
292  * @q:  the request queue for the device
293  * @size:  the hardware sector size, in bytes
294  *
295  * Description:
296  *   This should typically be set to the lowest possible sector size
297  *   that the hardware can operate on (possible without reverting to
298  *   even internal read-modify-write operations). Usually the default
299  *   of 512 covers most hardware.
300  **/
301 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
302 {
303         q->hardsect_size = size;
304 }
305 EXPORT_SYMBOL(blk_queue_hardsect_size);
306
307 /*
308  * Returns the minimum that is _not_ zero, unless both are zero.
309  */
310 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
311
312 /**
313  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
314  * @t:  the stacking driver (top)
315  * @b:  the underlying device (bottom)
316  **/
317 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
318 {
319         /* zero is "infinity" */
320         t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
321         t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
322         t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, b->seg_boundary_mask);
323
324         t->max_phys_segments = min_not_zero(t->max_phys_segments, b->max_phys_segments);
325         t->max_hw_segments = min_not_zero(t->max_hw_segments, b->max_hw_segments);
326         t->max_segment_size = min_not_zero(t->max_segment_size, b->max_segment_size);
327         t->hardsect_size = max(t->hardsect_size, b->hardsect_size);
328         if (!t->queue_lock)
329                 WARN_ON_ONCE(1);
330         else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
331                 unsigned long flags;
332                 spin_lock_irqsave(t->queue_lock, flags);
333                 queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
334                 spin_unlock_irqrestore(t->queue_lock, flags);
335         }
336 }
337 EXPORT_SYMBOL(blk_queue_stack_limits);
338
339 /**
340  * blk_queue_dma_pad - set pad mask
341  * @q:     the request queue for the device
342  * @mask:  pad mask
343  *
344  * Set dma pad mask.
345  *
346  * Appending pad buffer to a request modifies the last entry of a
347  * scatter list such that it includes the pad buffer.
348  **/
349 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
350 {
351         q->dma_pad_mask = mask;
352 }
353 EXPORT_SYMBOL(blk_queue_dma_pad);
354
355 /**
356  * blk_queue_update_dma_pad - update pad mask
357  * @q:     the request queue for the device
358  * @mask:  pad mask
359  *
360  * Update dma pad mask.
361  *
362  * Appending pad buffer to a request modifies the last entry of a
363  * scatter list such that it includes the pad buffer.
364  **/
365 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
366 {
367         if (mask > q->dma_pad_mask)
368                 q->dma_pad_mask = mask;
369 }
370 EXPORT_SYMBOL(blk_queue_update_dma_pad);
371
372 /**
373  * blk_queue_dma_drain - Set up a drain buffer for excess dma.
374  * @q:  the request queue for the device
375  * @dma_drain_needed: fn which returns non-zero if drain is necessary
376  * @buf:        physically contiguous buffer
377  * @size:       size of the buffer in bytes
378  *
379  * Some devices have excess DMA problems and can't simply discard (or
380  * zero fill) the unwanted piece of the transfer.  They have to have a
381  * real area of memory to transfer it into.  The use case for this is
382  * ATAPI devices in DMA mode.  If the packet command causes a transfer
383  * bigger than the transfer size some HBAs will lock up if there
384  * aren't DMA elements to contain the excess transfer.  What this API
385  * does is adjust the queue so that the buf is always appended
386  * silently to the scatterlist.
387  *
388  * Note: This routine adjusts max_hw_segments to make room for
389  * appending the drain buffer.  If you call
390  * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after
391  * calling this routine, you must set the limit to one fewer than your
392  * device can support otherwise there won't be room for the drain
393  * buffer.
394  */
395 int blk_queue_dma_drain(struct request_queue *q,
396                                dma_drain_needed_fn *dma_drain_needed,
397                                void *buf, unsigned int size)
398 {
399         if (q->max_hw_segments < 2 || q->max_phys_segments < 2)
400                 return -EINVAL;
401         /* make room for appending the drain */
402         --q->max_hw_segments;
403         --q->max_phys_segments;
404         q->dma_drain_needed = dma_drain_needed;
405         q->dma_drain_buffer = buf;
406         q->dma_drain_size = size;
407
408         return 0;
409 }
410 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
411
412 /**
413  * blk_queue_segment_boundary - set boundary rules for segment merging
414  * @q:  the request queue for the device
415  * @mask:  the memory boundary mask
416  **/
417 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
418 {
419         if (mask < PAGE_CACHE_SIZE - 1) {
420                 mask = PAGE_CACHE_SIZE - 1;
421                 printk(KERN_INFO "%s: set to minimum %lx\n",
422                        __func__, mask);
423         }
424
425         q->seg_boundary_mask = mask;
426 }
427 EXPORT_SYMBOL(blk_queue_segment_boundary);
428
429 /**
430  * blk_queue_dma_alignment - set dma length and memory alignment
431  * @q:     the request queue for the device
432  * @mask:  alignment mask
433  *
434  * description:
435  *    set required memory and length alignment for direct dma transactions.
436  *    this is used when building direct io requests for the queue.
437  *
438  **/
439 void blk_queue_dma_alignment(struct request_queue *q, int mask)
440 {
441         q->dma_alignment = mask;
442 }
443 EXPORT_SYMBOL(blk_queue_dma_alignment);
444
445 /**
446  * blk_queue_update_dma_alignment - update dma length and memory alignment
447  * @q:     the request queue for the device
448  * @mask:  alignment mask
449  *
450  * description:
451  *    update required memory and length alignment for direct dma transactions.
452  *    If the requested alignment is larger than the current alignment, then
453  *    the current queue alignment is updated to the new value, otherwise it
454  *    is left alone.  The design of this is to allow multiple objects
455  *    (driver, device, transport etc) to set their respective
456  *    alignments without having them interfere.
457  *
458  **/
459 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
460 {
461         BUG_ON(mask > PAGE_SIZE);
462
463         if (mask > q->dma_alignment)
464                 q->dma_alignment = mask;
465 }
466 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
467
468 static int __init blk_settings_init(void)
469 {
470         blk_max_low_pfn = max_low_pfn - 1;
471         blk_max_pfn = max_pfn - 1;
472         return 0;
473 }
474 subsys_initcall(blk_settings_init);