[PATCH] ia64: task_thread_info()
[linux-2.6] / arch / ia64 / kernel / mca.c
1 /*
2  * File:        mca.c
3  * Purpose:     Generic MCA handling layer
4  *
5  * Updated for latest kernel
6  * Copyright (C) 2003 Hewlett-Packard Co
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *
9  * Copyright (C) 2002 Dell Inc.
10  * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11  *
12  * Copyright (C) 2002 Intel
13  * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14  *
15  * Copyright (C) 2001 Intel
16  * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17  *
18  * Copyright (C) 2000 Intel
19  * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20  *
21  * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22  * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23  *
24  * 03/04/15 D. Mosberger Added INIT backtrace support.
25  * 02/03/25 M. Domsch   GUID cleanups
26  *
27  * 02/01/04 J. Hall     Aligned MCA stack to 16 bytes, added platform vs. CPU
28  *                      error flag, set SAL default return values, changed
29  *                      error record structure to linked list, added init call
30  *                      to sal_get_state_info_size().
31  *
32  * 01/01/03 F. Lewis    Added setup of CMCI and CPEI IRQs, logging of corrected
33  *                      platform errors, completed code for logging of
34  *                      corrected & uncorrected machine check errors, and
35  *                      updated for conformance with Nov. 2000 revision of the
36  *                      SAL 3.0 spec.
37  * 00/03/29 C. Fleckenstein  Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38  *                           added min save state dump, added INIT handler.
39  *
40  * 2003-12-08 Keith Owens <kaos@sgi.com>
41  *            smp_call_function() must not be called from interrupt context (can
42  *            deadlock on tasklist_lock).  Use keventd to call smp_call_function().
43  *
44  * 2004-02-01 Keith Owens <kaos@sgi.com>
45  *            Avoid deadlock when using printk() for MCA and INIT records.
46  *            Delete all record printing code, moved to salinfo_decode in user space.
47  *            Mark variables and functions static where possible.
48  *            Delete dead variables and functions.
49  *            Reorder to remove the need for forward declarations and to consolidate
50  *            related code.
51  *
52  * 2005-08-12 Keith Owens <kaos@sgi.com>
53  *            Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
54  *
55  * 2005-10-07 Keith Owens <kaos@sgi.com>
56  *            Add notify_die() hooks.
57  */
58 #include <linux/config.h>
59 #include <linux/types.h>
60 #include <linux/init.h>
61 #include <linux/sched.h>
62 #include <linux/interrupt.h>
63 #include <linux/irq.h>
64 #include <linux/smp_lock.h>
65 #include <linux/bootmem.h>
66 #include <linux/acpi.h>
67 #include <linux/timer.h>
68 #include <linux/module.h>
69 #include <linux/kernel.h>
70 #include <linux/smp.h>
71 #include <linux/workqueue.h>
72
73 #include <asm/delay.h>
74 #include <asm/kdebug.h>
75 #include <asm/machvec.h>
76 #include <asm/meminit.h>
77 #include <asm/page.h>
78 #include <asm/ptrace.h>
79 #include <asm/system.h>
80 #include <asm/sal.h>
81 #include <asm/mca.h>
82
83 #include <asm/irq.h>
84 #include <asm/hw_irq.h>
85
86 #include "entry.h"
87
88 #if defined(IA64_MCA_DEBUG_INFO)
89 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
90 #else
91 # define IA64_MCA_DEBUG(fmt...)
92 #endif
93
94 /* Used by mca_asm.S */
95 u32                             ia64_mca_serialize;
96 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
97 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
98 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);      /* PTE to map PAL code */
99 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
100
101 unsigned long __per_cpu_mca[NR_CPUS];
102
103 /* In mca_asm.S */
104 extern void                     ia64_os_init_dispatch_monarch (void);
105 extern void                     ia64_os_init_dispatch_slave (void);
106
107 static int monarch_cpu = -1;
108
109 static ia64_mc_info_t           ia64_mc_info;
110
111 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
112 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
113 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
114 #define CPE_HISTORY_LENGTH    5
115 #define CMC_HISTORY_LENGTH    5
116
117 static struct timer_list cpe_poll_timer;
118 static struct timer_list cmc_poll_timer;
119 /*
120  * This variable tells whether we are currently in polling mode.
121  * Start with this in the wrong state so we won't play w/ timers
122  * before the system is ready.
123  */
124 static int cmc_polling_enabled = 1;
125
126 /*
127  * Clearing this variable prevents CPE polling from getting activated
128  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
129  * but encounters problems retrieving CPE logs.  This should only be
130  * necessary for debugging.
131  */
132 static int cpe_poll_enabled = 1;
133
134 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
135
136 static int mca_init;
137
138
139 static void inline
140 ia64_mca_spin(const char *func)
141 {
142         printk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
143         while (1)
144                 cpu_relax();
145 }
146 /*
147  * IA64_MCA log support
148  */
149 #define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
150 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
151
152 typedef struct ia64_state_log_s
153 {
154         spinlock_t      isl_lock;
155         int             isl_index;
156         unsigned long   isl_count;
157         ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
158 } ia64_state_log_t;
159
160 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
161
162 #define IA64_LOG_ALLOCATE(it, size) \
163         {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
164                 (ia64_err_rec_t *)alloc_bootmem(size); \
165         ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
166                 (ia64_err_rec_t *)alloc_bootmem(size);}
167 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
168 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
169 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
170 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
171 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
172 #define IA64_LOG_INDEX_INC(it) \
173     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
174     ia64_state_log[it].isl_count++;}
175 #define IA64_LOG_INDEX_DEC(it) \
176     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
177 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
178 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
179 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
180
181 /*
182  * ia64_log_init
183  *      Reset the OS ia64 log buffer
184  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
185  * Outputs      :       None
186  */
187 static void
188 ia64_log_init(int sal_info_type)
189 {
190         u64     max_size = 0;
191
192         IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
193         IA64_LOG_LOCK_INIT(sal_info_type);
194
195         // SAL will tell us the maximum size of any error record of this type
196         max_size = ia64_sal_get_state_info_size(sal_info_type);
197         if (!max_size)
198                 /* alloc_bootmem() doesn't like zero-sized allocations! */
199                 return;
200
201         // set up OS data structures to hold error info
202         IA64_LOG_ALLOCATE(sal_info_type, max_size);
203         memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
204         memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
205 }
206
207 /*
208  * ia64_log_get
209  *
210  *      Get the current MCA log from SAL and copy it into the OS log buffer.
211  *
212  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
213  *              irq_safe    whether you can use printk at this point
214  *  Outputs :   size        (total record length)
215  *              *buffer     (ptr to error record)
216  *
217  */
218 static u64
219 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
220 {
221         sal_log_record_header_t     *log_buffer;
222         u64                         total_len = 0;
223         int                         s;
224
225         IA64_LOG_LOCK(sal_info_type);
226
227         /* Get the process state information */
228         log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
229
230         total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
231
232         if (total_len) {
233                 IA64_LOG_INDEX_INC(sal_info_type);
234                 IA64_LOG_UNLOCK(sal_info_type);
235                 if (irq_safe) {
236                         IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
237                                        "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
238                 }
239                 *buffer = (u8 *) log_buffer;
240                 return total_len;
241         } else {
242                 IA64_LOG_UNLOCK(sal_info_type);
243                 return 0;
244         }
245 }
246
247 /*
248  *  ia64_mca_log_sal_error_record
249  *
250  *  This function retrieves a specified error record type from SAL
251  *  and wakes up any processes waiting for error records.
252  *
253  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
254  *              FIXME: remove MCA and irq_safe.
255  */
256 static void
257 ia64_mca_log_sal_error_record(int sal_info_type)
258 {
259         u8 *buffer;
260         sal_log_record_header_t *rh;
261         u64 size;
262         int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
263 #ifdef IA64_MCA_DEBUG_INFO
264         static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
265 #endif
266
267         size = ia64_log_get(sal_info_type, &buffer, irq_safe);
268         if (!size)
269                 return;
270
271         salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
272
273         if (irq_safe)
274                 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
275                         smp_processor_id(),
276                         sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
277
278         /* Clear logs from corrected errors in case there's no user-level logger */
279         rh = (sal_log_record_header_t *)buffer;
280         if (rh->severity == sal_log_severity_corrected)
281                 ia64_sal_clear_state_info(sal_info_type);
282 }
283
284 /*
285  * platform dependent error handling
286  */
287 #ifndef PLATFORM_MCA_HANDLERS
288
289 #ifdef CONFIG_ACPI
290
291 int cpe_vector = -1;
292
293 static irqreturn_t
294 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
295 {
296         static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
297         static int              index;
298         static DEFINE_SPINLOCK(cpe_history_lock);
299
300         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
301                        __FUNCTION__, cpe_irq, smp_processor_id());
302
303         /* SAL spec states this should run w/ interrupts enabled */
304         local_irq_enable();
305
306         /* Get the CPE error record and log it */
307         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
308
309         spin_lock(&cpe_history_lock);
310         if (!cpe_poll_enabled && cpe_vector >= 0) {
311
312                 int i, count = 1; /* we know 1 happened now */
313                 unsigned long now = jiffies;
314
315                 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
316                         if (now - cpe_history[i] <= HZ)
317                                 count++;
318                 }
319
320                 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
321                 if (count >= CPE_HISTORY_LENGTH) {
322
323                         cpe_poll_enabled = 1;
324                         spin_unlock(&cpe_history_lock);
325                         disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
326
327                         /*
328                          * Corrected errors will still be corrected, but
329                          * make sure there's a log somewhere that indicates
330                          * something is generating more than we can handle.
331                          */
332                         printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
333
334                         mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
335
336                         /* lock already released, get out now */
337                         return IRQ_HANDLED;
338                 } else {
339                         cpe_history[index++] = now;
340                         if (index == CPE_HISTORY_LENGTH)
341                                 index = 0;
342                 }
343         }
344         spin_unlock(&cpe_history_lock);
345         return IRQ_HANDLED;
346 }
347
348 #endif /* CONFIG_ACPI */
349
350 #ifdef CONFIG_ACPI
351 /*
352  * ia64_mca_register_cpev
353  *
354  *  Register the corrected platform error vector with SAL.
355  *
356  *  Inputs
357  *      cpev        Corrected Platform Error Vector number
358  *
359  *  Outputs
360  *      None
361  */
362 static void
363 ia64_mca_register_cpev (int cpev)
364 {
365         /* Register the CPE interrupt vector with SAL */
366         struct ia64_sal_retval isrv;
367
368         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
369         if (isrv.status) {
370                 printk(KERN_ERR "Failed to register Corrected Platform "
371                        "Error interrupt vector with SAL (status %ld)\n", isrv.status);
372                 return;
373         }
374
375         IA64_MCA_DEBUG("%s: corrected platform error "
376                        "vector %#x registered\n", __FUNCTION__, cpev);
377 }
378 #endif /* CONFIG_ACPI */
379
380 #endif /* PLATFORM_MCA_HANDLERS */
381
382 /*
383  * ia64_mca_cmc_vector_setup
384  *
385  *  Setup the corrected machine check vector register in the processor.
386  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
387  *  This function is invoked on a per-processor basis.
388  *
389  * Inputs
390  *      None
391  *
392  * Outputs
393  *      None
394  */
395 void
396 ia64_mca_cmc_vector_setup (void)
397 {
398         cmcv_reg_t      cmcv;
399
400         cmcv.cmcv_regval        = 0;
401         cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
402         cmcv.cmcv_vector        = IA64_CMC_VECTOR;
403         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
404
405         IA64_MCA_DEBUG("%s: CPU %d corrected "
406                        "machine check vector %#x registered.\n",
407                        __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
408
409         IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
410                        __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
411 }
412
413 /*
414  * ia64_mca_cmc_vector_disable
415  *
416  *  Mask the corrected machine check vector register in the processor.
417  *  This function is invoked on a per-processor basis.
418  *
419  * Inputs
420  *      dummy(unused)
421  *
422  * Outputs
423  *      None
424  */
425 static void
426 ia64_mca_cmc_vector_disable (void *dummy)
427 {
428         cmcv_reg_t      cmcv;
429
430         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
431
432         cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
433         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
434
435         IA64_MCA_DEBUG("%s: CPU %d corrected "
436                        "machine check vector %#x disabled.\n",
437                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
438 }
439
440 /*
441  * ia64_mca_cmc_vector_enable
442  *
443  *  Unmask the corrected machine check vector register in the processor.
444  *  This function is invoked on a per-processor basis.
445  *
446  * Inputs
447  *      dummy(unused)
448  *
449  * Outputs
450  *      None
451  */
452 static void
453 ia64_mca_cmc_vector_enable (void *dummy)
454 {
455         cmcv_reg_t      cmcv;
456
457         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
458
459         cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
460         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
461
462         IA64_MCA_DEBUG("%s: CPU %d corrected "
463                        "machine check vector %#x enabled.\n",
464                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
465 }
466
467 /*
468  * ia64_mca_cmc_vector_disable_keventd
469  *
470  * Called via keventd (smp_call_function() is not safe in interrupt context) to
471  * disable the cmc interrupt vector.
472  */
473 static void
474 ia64_mca_cmc_vector_disable_keventd(void *unused)
475 {
476         on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
477 }
478
479 /*
480  * ia64_mca_cmc_vector_enable_keventd
481  *
482  * Called via keventd (smp_call_function() is not safe in interrupt context) to
483  * enable the cmc interrupt vector.
484  */
485 static void
486 ia64_mca_cmc_vector_enable_keventd(void *unused)
487 {
488         on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
489 }
490
491 /*
492  * ia64_mca_wakeup
493  *
494  *      Send an inter-cpu interrupt to wake-up a particular cpu
495  *      and mark that cpu to be out of rendez.
496  *
497  *  Inputs  :   cpuid
498  *  Outputs :   None
499  */
500 static void
501 ia64_mca_wakeup(int cpu)
502 {
503         platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
504         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
505
506 }
507
508 /*
509  * ia64_mca_wakeup_all
510  *
511  *      Wakeup all the cpus which have rendez'ed previously.
512  *
513  *  Inputs  :   None
514  *  Outputs :   None
515  */
516 static void
517 ia64_mca_wakeup_all(void)
518 {
519         int cpu;
520
521         /* Clear the Rendez checkin flag for all cpus */
522         for_each_online_cpu(cpu) {
523                 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
524                         ia64_mca_wakeup(cpu);
525         }
526
527 }
528
529 /*
530  * ia64_mca_rendez_interrupt_handler
531  *
532  *      This is handler used to put slave processors into spinloop
533  *      while the monarch processor does the mca handling and later
534  *      wake each slave up once the monarch is done.
535  *
536  *  Inputs  :   None
537  *  Outputs :   None
538  */
539 static irqreturn_t
540 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *regs)
541 {
542         unsigned long flags;
543         int cpu = smp_processor_id();
544
545         /* Mask all interrupts */
546         local_irq_save(flags);
547         if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", regs, 0, 0, 0)
548                         == NOTIFY_STOP)
549                 ia64_mca_spin(__FUNCTION__);
550
551         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
552         /* Register with the SAL monarch that the slave has
553          * reached SAL
554          */
555         ia64_sal_mc_rendez();
556
557         if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", regs, 0, 0, 0)
558                         == NOTIFY_STOP)
559                 ia64_mca_spin(__FUNCTION__);
560
561         /* Wait for the monarch cpu to exit. */
562         while (monarch_cpu != -1)
563                cpu_relax();     /* spin until monarch leaves */
564
565         if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", regs, 0, 0, 0)
566                         == NOTIFY_STOP)
567                 ia64_mca_spin(__FUNCTION__);
568
569         /* Enable all interrupts */
570         local_irq_restore(flags);
571         return IRQ_HANDLED;
572 }
573
574 /*
575  * ia64_mca_wakeup_int_handler
576  *
577  *      The interrupt handler for processing the inter-cpu interrupt to the
578  *      slave cpu which was spinning in the rendez loop.
579  *      Since this spinning is done by turning off the interrupts and
580  *      polling on the wakeup-interrupt bit in the IRR, there is
581  *      nothing useful to be done in the handler.
582  *
583  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
584  *      arg             (Interrupt handler specific argument)
585  *      ptregs          (Exception frame at the time of the interrupt)
586  *  Outputs :   None
587  *
588  */
589 static irqreturn_t
590 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
591 {
592         return IRQ_HANDLED;
593 }
594
595 /* Function pointer for extra MCA recovery */
596 int (*ia64_mca_ucmc_extension)
597         (void*,struct ia64_sal_os_state*)
598         = NULL;
599
600 int
601 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
602 {
603         if (ia64_mca_ucmc_extension)
604                 return 1;
605
606         ia64_mca_ucmc_extension = fn;
607         return 0;
608 }
609
610 void
611 ia64_unreg_MCA_extension(void)
612 {
613         if (ia64_mca_ucmc_extension)
614                 ia64_mca_ucmc_extension = NULL;
615 }
616
617 EXPORT_SYMBOL(ia64_reg_MCA_extension);
618 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
619
620
621 static inline void
622 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
623 {
624         u64 fslot, tslot, nat;
625         *tr = *fr;
626         fslot = ((unsigned long)fr >> 3) & 63;
627         tslot = ((unsigned long)tr >> 3) & 63;
628         *tnat &= ~(1UL << tslot);
629         nat = (fnat >> fslot) & 1;
630         *tnat |= (nat << tslot);
631 }
632
633 /* On entry to this routine, we are running on the per cpu stack, see
634  * mca_asm.h.  The original stack has not been touched by this event.  Some of
635  * the original stack's registers will be in the RBS on this stack.  This stack
636  * also contains a partial pt_regs and switch_stack, the rest of the data is in
637  * PAL minstate.
638  *
639  * The first thing to do is modify the original stack to look like a blocked
640  * task so we can run backtrace on the original task.  Also mark the per cpu
641  * stack as current to ensure that we use the correct task state, it also means
642  * that we can do backtrace on the MCA/INIT handler code itself.
643  */
644
645 static task_t *
646 ia64_mca_modify_original_stack(struct pt_regs *regs,
647                 const struct switch_stack *sw,
648                 struct ia64_sal_os_state *sos,
649                 const char *type)
650 {
651         char *p, comm[sizeof(current->comm)];
652         ia64_va va;
653         extern char ia64_leave_kernel[];        /* Need asm address, not function descriptor */
654         const pal_min_state_area_t *ms = sos->pal_min_state;
655         task_t *previous_current;
656         struct pt_regs *old_regs;
657         struct switch_stack *old_sw;
658         unsigned size = sizeof(struct pt_regs) +
659                         sizeof(struct switch_stack) + 16;
660         u64 *old_bspstore, *old_bsp;
661         u64 *new_bspstore, *new_bsp;
662         u64 old_unat, old_rnat, new_rnat, nat;
663         u64 slots, loadrs = regs->loadrs;
664         u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
665         u64 ar_bspstore = regs->ar_bspstore;
666         u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
667         const u64 *bank;
668         const char *msg;
669         int cpu = smp_processor_id();
670
671         previous_current = curr_task(cpu);
672         set_curr_task(cpu, current);
673         if ((p = strchr(current->comm, ' ')))
674                 *p = '\0';
675
676         /* Best effort attempt to cope with MCA/INIT delivered while in
677          * physical mode.
678          */
679         regs->cr_ipsr = ms->pmsa_ipsr;
680         if (ia64_psr(regs)->dt == 0) {
681                 va.l = r12;
682                 if (va.f.reg == 0) {
683                         va.f.reg = 7;
684                         r12 = va.l;
685                 }
686                 va.l = r13;
687                 if (va.f.reg == 0) {
688                         va.f.reg = 7;
689                         r13 = va.l;
690                 }
691         }
692         if (ia64_psr(regs)->rt == 0) {
693                 va.l = ar_bspstore;
694                 if (va.f.reg == 0) {
695                         va.f.reg = 7;
696                         ar_bspstore = va.l;
697                 }
698                 va.l = ar_bsp;
699                 if (va.f.reg == 0) {
700                         va.f.reg = 7;
701                         ar_bsp = va.l;
702                 }
703         }
704
705         /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
706          * have been copied to the old stack, the old stack may fail the
707          * validation tests below.  So ia64_old_stack() must restore the dirty
708          * registers from the new stack.  The old and new bspstore probably
709          * have different alignments, so loadrs calculated on the old bsp
710          * cannot be used to restore from the new bsp.  Calculate a suitable
711          * loadrs for the new stack and save it in the new pt_regs, where
712          * ia64_old_stack() can get it.
713          */
714         old_bspstore = (u64 *)ar_bspstore;
715         old_bsp = (u64 *)ar_bsp;
716         slots = ia64_rse_num_regs(old_bspstore, old_bsp);
717         new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
718         new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
719         regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
720
721         /* Verify the previous stack state before we change it */
722         if (user_mode(regs)) {
723                 msg = "occurred in user space";
724                 goto no_mod;
725         }
726         if (r13 != sos->prev_IA64_KR_CURRENT) {
727                 msg = "inconsistent previous current and r13";
728                 goto no_mod;
729         }
730         if ((r12 - r13) >= KERNEL_STACK_SIZE) {
731                 msg = "inconsistent r12 and r13";
732                 goto no_mod;
733         }
734         if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
735                 msg = "inconsistent ar.bspstore and r13";
736                 goto no_mod;
737         }
738         va.p = old_bspstore;
739         if (va.f.reg < 5) {
740                 msg = "old_bspstore is in the wrong region";
741                 goto no_mod;
742         }
743         if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
744                 msg = "inconsistent ar.bsp and r13";
745                 goto no_mod;
746         }
747         size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
748         if (ar_bspstore + size > r12) {
749                 msg = "no room for blocked state";
750                 goto no_mod;
751         }
752
753         /* Change the comm field on the MCA/INT task to include the pid that
754          * was interrupted, it makes for easier debugging.  If that pid was 0
755          * (swapper or nested MCA/INIT) then use the start of the previous comm
756          * field suffixed with its cpu.
757          */
758         if (previous_current->pid)
759                 snprintf(comm, sizeof(comm), "%s %d",
760                         current->comm, previous_current->pid);
761         else {
762                 int l;
763                 if ((p = strchr(previous_current->comm, ' ')))
764                         l = p - previous_current->comm;
765                 else
766                         l = strlen(previous_current->comm);
767                 snprintf(comm, sizeof(comm), "%s %*s %d",
768                         current->comm, l, previous_current->comm,
769                         task_thread_info(previous_current)->cpu);
770         }
771         memcpy(current->comm, comm, sizeof(current->comm));
772
773         /* Make the original task look blocked.  First stack a struct pt_regs,
774          * describing the state at the time of interrupt.  mca_asm.S built a
775          * partial pt_regs, copy it and fill in the blanks using minstate.
776          */
777         p = (char *)r12 - sizeof(*regs);
778         old_regs = (struct pt_regs *)p;
779         memcpy(old_regs, regs, sizeof(*regs));
780         /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
781          * pmsa_{xip,xpsr,xfs}
782          */
783         if (ia64_psr(regs)->ic) {
784                 old_regs->cr_iip = ms->pmsa_iip;
785                 old_regs->cr_ipsr = ms->pmsa_ipsr;
786                 old_regs->cr_ifs = ms->pmsa_ifs;
787         } else {
788                 old_regs->cr_iip = ms->pmsa_xip;
789                 old_regs->cr_ipsr = ms->pmsa_xpsr;
790                 old_regs->cr_ifs = ms->pmsa_xfs;
791         }
792         old_regs->pr = ms->pmsa_pr;
793         old_regs->b0 = ms->pmsa_br0;
794         old_regs->loadrs = loadrs;
795         old_regs->ar_rsc = ms->pmsa_rsc;
796         old_unat = old_regs->ar_unat;
797         copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
798         copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
799         copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
800         copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
801         copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
802         copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
803         copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
804         copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
805         copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
806         copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
807         copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
808         if (ia64_psr(old_regs)->bn)
809                 bank = ms->pmsa_bank1_gr;
810         else
811                 bank = ms->pmsa_bank0_gr;
812         copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
813         copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
814         copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
815         copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
816         copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
817         copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
818         copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
819         copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
820         copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
821         copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
822         copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
823         copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
824         copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
825         copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
826         copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
827         copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
828
829         /* Next stack a struct switch_stack.  mca_asm.S built a partial
830          * switch_stack, copy it and fill in the blanks using pt_regs and
831          * minstate.
832          *
833          * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
834          * ar.pfs is set to 0.
835          *
836          * unwind.c::unw_unwind() does special processing for interrupt frames.
837          * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
838          * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
839          * that this is documented, of course.  Set PRED_NON_SYSCALL in the
840          * switch_stack on the original stack so it will unwind correctly when
841          * unwind.c reads pt_regs.
842          *
843          * thread.ksp is updated to point to the synthesized switch_stack.
844          */
845         p -= sizeof(struct switch_stack);
846         old_sw = (struct switch_stack *)p;
847         memcpy(old_sw, sw, sizeof(*sw));
848         old_sw->caller_unat = old_unat;
849         old_sw->ar_fpsr = old_regs->ar_fpsr;
850         copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
851         copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
852         copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
853         copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
854         old_sw->b0 = (u64)ia64_leave_kernel;
855         old_sw->b1 = ms->pmsa_br1;
856         old_sw->ar_pfs = 0;
857         old_sw->ar_unat = old_unat;
858         old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
859         previous_current->thread.ksp = (u64)p - 16;
860
861         /* Finally copy the original stack's registers back to its RBS.
862          * Registers from ar.bspstore through ar.bsp at the time of the event
863          * are in the current RBS, copy them back to the original stack.  The
864          * copy must be done register by register because the original bspstore
865          * and the current one have different alignments, so the saved RNAT
866          * data occurs at different places.
867          *
868          * mca_asm does cover, so the old_bsp already includes all registers at
869          * the time of MCA/INIT.  It also does flushrs, so all registers before
870          * this function have been written to backing store on the MCA/INIT
871          * stack.
872          */
873         new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
874         old_rnat = regs->ar_rnat;
875         while (slots--) {
876                 if (ia64_rse_is_rnat_slot(new_bspstore)) {
877                         new_rnat = ia64_get_rnat(new_bspstore++);
878                 }
879                 if (ia64_rse_is_rnat_slot(old_bspstore)) {
880                         *old_bspstore++ = old_rnat;
881                         old_rnat = 0;
882                 }
883                 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
884                 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
885                 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
886                 *old_bspstore++ = *new_bspstore++;
887         }
888         old_sw->ar_bspstore = (unsigned long)old_bspstore;
889         old_sw->ar_rnat = old_rnat;
890
891         sos->prev_task = previous_current;
892         return previous_current;
893
894 no_mod:
895         printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
896                         smp_processor_id(), type, msg);
897         return previous_current;
898 }
899
900 /* The monarch/slave interaction is based on monarch_cpu and requires that all
901  * slaves have entered rendezvous before the monarch leaves.  If any cpu has
902  * not entered rendezvous yet then wait a bit.  The assumption is that any
903  * slave that has not rendezvoused after a reasonable time is never going to do
904  * so.  In this context, slave includes cpus that respond to the MCA rendezvous
905  * interrupt, as well as cpus that receive the INIT slave event.
906  */
907
908 static void
909 ia64_wait_for_slaves(int monarch)
910 {
911         int c, wait = 0;
912         for_each_online_cpu(c) {
913                 if (c == monarch)
914                         continue;
915                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
916                         udelay(1000);           /* short wait first */
917                         wait = 1;
918                         break;
919                 }
920         }
921         if (!wait)
922                 return;
923         for_each_online_cpu(c) {
924                 if (c == monarch)
925                         continue;
926                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
927                         udelay(5*1000000);      /* wait 5 seconds for slaves (arbitrary) */
928                         break;
929                 }
930         }
931 }
932
933 /*
934  * ia64_mca_handler
935  *
936  *      This is uncorrectable machine check handler called from OS_MCA
937  *      dispatch code which is in turn called from SAL_CHECK().
938  *      This is the place where the core of OS MCA handling is done.
939  *      Right now the logs are extracted and displayed in a well-defined
940  *      format. This handler code is supposed to be run only on the
941  *      monarch processor. Once the monarch is done with MCA handling
942  *      further MCA logging is enabled by clearing logs.
943  *      Monarch also has the duty of sending wakeup-IPIs to pull the
944  *      slave processors out of rendezvous spinloop.
945  */
946 void
947 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
948                  struct ia64_sal_os_state *sos)
949 {
950         pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
951                 &sos->proc_state_param;
952         int recover, cpu = smp_processor_id();
953         task_t *previous_current;
954
955         oops_in_progress = 1;   /* FIXME: make printk NMI/MCA/INIT safe */
956         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
957         monarch_cpu = cpu;
958         if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, 0, 0, 0)
959                         == NOTIFY_STOP)
960                 ia64_mca_spin(__FUNCTION__);
961         ia64_wait_for_slaves(cpu);
962
963         /* Wakeup all the processors which are spinning in the rendezvous loop.
964          * They will leave SAL, then spin in the OS with interrupts disabled
965          * until this monarch cpu leaves the MCA handler.  That gets control
966          * back to the OS so we can backtrace the other cpus, backtrace when
967          * spinning in SAL does not work.
968          */
969         ia64_mca_wakeup_all();
970         if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, 0, 0, 0)
971                         == NOTIFY_STOP)
972                 ia64_mca_spin(__FUNCTION__);
973
974         /* Get the MCA error record and log it */
975         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
976
977         /* TLB error is only exist in this SAL error record */
978         recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
979         /* other error recovery */
980            || (ia64_mca_ucmc_extension
981                 && ia64_mca_ucmc_extension(
982                         IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
983                         sos));
984
985         if (recover) {
986                 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
987                 rh->severity = sal_log_severity_corrected;
988                 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
989                 sos->os_status = IA64_MCA_CORRECTED;
990         }
991         if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, 0, 0, recover)
992                         == NOTIFY_STOP)
993                 ia64_mca_spin(__FUNCTION__);
994
995         set_curr_task(cpu, previous_current);
996         monarch_cpu = -1;
997 }
998
999 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
1000 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
1001
1002 /*
1003  * ia64_mca_cmc_int_handler
1004  *
1005  *  This is corrected machine check interrupt handler.
1006  *      Right now the logs are extracted and displayed in a well-defined
1007  *      format.
1008  *
1009  * Inputs
1010  *      interrupt number
1011  *      client data arg ptr
1012  *      saved registers ptr
1013  *
1014  * Outputs
1015  *      None
1016  */
1017 static irqreturn_t
1018 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
1019 {
1020         static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
1021         static int              index;
1022         static DEFINE_SPINLOCK(cmc_history_lock);
1023
1024         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1025                        __FUNCTION__, cmc_irq, smp_processor_id());
1026
1027         /* SAL spec states this should run w/ interrupts enabled */
1028         local_irq_enable();
1029
1030         /* Get the CMC error record and log it */
1031         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1032
1033         spin_lock(&cmc_history_lock);
1034         if (!cmc_polling_enabled) {
1035                 int i, count = 1; /* we know 1 happened now */
1036                 unsigned long now = jiffies;
1037
1038                 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1039                         if (now - cmc_history[i] <= HZ)
1040                                 count++;
1041                 }
1042
1043                 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1044                 if (count >= CMC_HISTORY_LENGTH) {
1045
1046                         cmc_polling_enabled = 1;
1047                         spin_unlock(&cmc_history_lock);
1048                         /* If we're being hit with CMC interrupts, we won't
1049                          * ever execute the schedule_work() below.  Need to
1050                          * disable CMC interrupts on this processor now.
1051                          */
1052                         ia64_mca_cmc_vector_disable(NULL);
1053                         schedule_work(&cmc_disable_work);
1054
1055                         /*
1056                          * Corrected errors will still be corrected, but
1057                          * make sure there's a log somewhere that indicates
1058                          * something is generating more than we can handle.
1059                          */
1060                         printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1061
1062                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1063
1064                         /* lock already released, get out now */
1065                         return IRQ_HANDLED;
1066                 } else {
1067                         cmc_history[index++] = now;
1068                         if (index == CMC_HISTORY_LENGTH)
1069                                 index = 0;
1070                 }
1071         }
1072         spin_unlock(&cmc_history_lock);
1073         return IRQ_HANDLED;
1074 }
1075
1076 /*
1077  *  ia64_mca_cmc_int_caller
1078  *
1079  *      Triggered by sw interrupt from CMC polling routine.  Calls
1080  *      real interrupt handler and either triggers a sw interrupt
1081  *      on the next cpu or does cleanup at the end.
1082  *
1083  * Inputs
1084  *      interrupt number
1085  *      client data arg ptr
1086  *      saved registers ptr
1087  * Outputs
1088  *      handled
1089  */
1090 static irqreturn_t
1091 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
1092 {
1093         static int start_count = -1;
1094         unsigned int cpuid;
1095
1096         cpuid = smp_processor_id();
1097
1098         /* If first cpu, update count */
1099         if (start_count == -1)
1100                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1101
1102         ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
1103
1104         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1105
1106         if (cpuid < NR_CPUS) {
1107                 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1108         } else {
1109                 /* If no log record, switch out of polling mode */
1110                 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1111
1112                         printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1113                         schedule_work(&cmc_enable_work);
1114                         cmc_polling_enabled = 0;
1115
1116                 } else {
1117
1118                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1119                 }
1120
1121                 start_count = -1;
1122         }
1123
1124         return IRQ_HANDLED;
1125 }
1126
1127 /*
1128  *  ia64_mca_cmc_poll
1129  *
1130  *      Poll for Corrected Machine Checks (CMCs)
1131  *
1132  * Inputs   :   dummy(unused)
1133  * Outputs  :   None
1134  *
1135  */
1136 static void
1137 ia64_mca_cmc_poll (unsigned long dummy)
1138 {
1139         /* Trigger a CMC interrupt cascade  */
1140         platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1141 }
1142
1143 /*
1144  *  ia64_mca_cpe_int_caller
1145  *
1146  *      Triggered by sw interrupt from CPE polling routine.  Calls
1147  *      real interrupt handler and either triggers a sw interrupt
1148  *      on the next cpu or does cleanup at the end.
1149  *
1150  * Inputs
1151  *      interrupt number
1152  *      client data arg ptr
1153  *      saved registers ptr
1154  * Outputs
1155  *      handled
1156  */
1157 #ifdef CONFIG_ACPI
1158
1159 static irqreturn_t
1160 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
1161 {
1162         static int start_count = -1;
1163         static int poll_time = MIN_CPE_POLL_INTERVAL;
1164         unsigned int cpuid;
1165
1166         cpuid = smp_processor_id();
1167
1168         /* If first cpu, update count */
1169         if (start_count == -1)
1170                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1171
1172         ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
1173
1174         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1175
1176         if (cpuid < NR_CPUS) {
1177                 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1178         } else {
1179                 /*
1180                  * If a log was recorded, increase our polling frequency,
1181                  * otherwise, backoff or return to interrupt mode.
1182                  */
1183                 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1184                         poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1185                 } else if (cpe_vector < 0) {
1186                         poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1187                 } else {
1188                         poll_time = MIN_CPE_POLL_INTERVAL;
1189
1190                         printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1191                         enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1192                         cpe_poll_enabled = 0;
1193                 }
1194
1195                 if (cpe_poll_enabled)
1196                         mod_timer(&cpe_poll_timer, jiffies + poll_time);
1197                 start_count = -1;
1198         }
1199
1200         return IRQ_HANDLED;
1201 }
1202
1203 /*
1204  *  ia64_mca_cpe_poll
1205  *
1206  *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1207  *      on first cpu, from there it will trickle through all the cpus.
1208  *
1209  * Inputs   :   dummy(unused)
1210  * Outputs  :   None
1211  *
1212  */
1213 static void
1214 ia64_mca_cpe_poll (unsigned long dummy)
1215 {
1216         /* Trigger a CPE interrupt cascade  */
1217         platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1218 }
1219
1220 #endif /* CONFIG_ACPI */
1221
1222 static int
1223 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1224 {
1225         int c;
1226         struct task_struct *g, *t;
1227         if (val != DIE_INIT_MONARCH_PROCESS)
1228                 return NOTIFY_DONE;
1229         printk(KERN_ERR "Processes interrupted by INIT -");
1230         for_each_online_cpu(c) {
1231                 struct ia64_sal_os_state *s;
1232                 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1233                 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1234                 g = s->prev_task;
1235                 if (g) {
1236                         if (g->pid)
1237                                 printk(" %d", g->pid);
1238                         else
1239                                 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1240                 }
1241         }
1242         printk("\n\n");
1243         if (read_trylock(&tasklist_lock)) {
1244                 do_each_thread (g, t) {
1245                         printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1246                         show_stack(t, NULL);
1247                 } while_each_thread (g, t);
1248                 read_unlock(&tasklist_lock);
1249         }
1250         return NOTIFY_DONE;
1251 }
1252
1253 /*
1254  * C portion of the OS INIT handler
1255  *
1256  * Called from ia64_os_init_dispatch
1257  *
1258  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1259  * this event.  This code is used for both monarch and slave INIT events, see
1260  * sos->monarch.
1261  *
1262  * All INIT events switch to the INIT stack and change the previous process to
1263  * blocked status.  If one of the INIT events is the monarch then we are
1264  * probably processing the nmi button/command.  Use the monarch cpu to dump all
1265  * the processes.  The slave INIT events all spin until the monarch cpu
1266  * returns.  We can also get INIT slave events for MCA, in which case the MCA
1267  * process is the monarch.
1268  */
1269
1270 void
1271 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1272                   struct ia64_sal_os_state *sos)
1273 {
1274         static atomic_t slaves;
1275         static atomic_t monarchs;
1276         task_t *previous_current;
1277         int cpu = smp_processor_id();
1278
1279         oops_in_progress = 1;   /* FIXME: make printk NMI/MCA/INIT safe */
1280         console_loglevel = 15;  /* make sure printks make it to console */
1281
1282         printk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1283                 sos->proc_state_param, cpu, sos->monarch);
1284         salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1285
1286         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1287         sos->os_status = IA64_INIT_RESUME;
1288
1289         /* FIXME: Workaround for broken proms that drive all INIT events as
1290          * slaves.  The last slave that enters is promoted to be a monarch.
1291          * Remove this code in September 2006, that gives platforms a year to
1292          * fix their proms and get their customers updated.
1293          */
1294         if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1295                 printk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1296                        __FUNCTION__, cpu);
1297                 atomic_dec(&slaves);
1298                 sos->monarch = 1;
1299         }
1300
1301         /* FIXME: Workaround for broken proms that drive all INIT events as
1302          * monarchs.  Second and subsequent monarchs are demoted to slaves.
1303          * Remove this code in September 2006, that gives platforms a year to
1304          * fix their proms and get their customers updated.
1305          */
1306         if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1307                 printk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1308                                __FUNCTION__, cpu);
1309                 atomic_dec(&monarchs);
1310                 sos->monarch = 0;
1311         }
1312
1313         if (!sos->monarch) {
1314                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1315                 while (monarch_cpu == -1)
1316                        cpu_relax();     /* spin until monarch enters */
1317                 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, 0, 0, 0)
1318                                 == NOTIFY_STOP)
1319                         ia64_mca_spin(__FUNCTION__);
1320                 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, 0, 0, 0)
1321                                 == NOTIFY_STOP)
1322                         ia64_mca_spin(__FUNCTION__);
1323                 while (monarch_cpu != -1)
1324                        cpu_relax();     /* spin until monarch leaves */
1325                 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, 0, 0, 0)
1326                                 == NOTIFY_STOP)
1327                         ia64_mca_spin(__FUNCTION__);
1328                 printk("Slave on cpu %d returning to normal service.\n", cpu);
1329                 set_curr_task(cpu, previous_current);
1330                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1331                 atomic_dec(&slaves);
1332                 return;
1333         }
1334
1335         monarch_cpu = cpu;
1336         if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, 0, 0, 0)
1337                         == NOTIFY_STOP)
1338                 ia64_mca_spin(__FUNCTION__);
1339
1340         /*
1341          * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1342          * generated via the BMC's command-line interface, but since the console is on the
1343          * same serial line, the user will need some time to switch out of the BMC before
1344          * the dump begins.
1345          */
1346         printk("Delaying for 5 seconds...\n");
1347         udelay(5*1000000);
1348         ia64_wait_for_slaves(cpu);
1349         /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1350          * to default_monarch_init_process() above and just print all the
1351          * tasks.
1352          */
1353         if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, 0, 0, 0)
1354                         == NOTIFY_STOP)
1355                 ia64_mca_spin(__FUNCTION__);
1356         if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, 0, 0, 0)
1357                         == NOTIFY_STOP)
1358                 ia64_mca_spin(__FUNCTION__);
1359         printk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1360         atomic_dec(&monarchs);
1361         set_curr_task(cpu, previous_current);
1362         monarch_cpu = -1;
1363         return;
1364 }
1365
1366 static int __init
1367 ia64_mca_disable_cpe_polling(char *str)
1368 {
1369         cpe_poll_enabled = 0;
1370         return 1;
1371 }
1372
1373 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1374
1375 static struct irqaction cmci_irqaction = {
1376         .handler =      ia64_mca_cmc_int_handler,
1377         .flags =        SA_INTERRUPT,
1378         .name =         "cmc_hndlr"
1379 };
1380
1381 static struct irqaction cmcp_irqaction = {
1382         .handler =      ia64_mca_cmc_int_caller,
1383         .flags =        SA_INTERRUPT,
1384         .name =         "cmc_poll"
1385 };
1386
1387 static struct irqaction mca_rdzv_irqaction = {
1388         .handler =      ia64_mca_rendez_int_handler,
1389         .flags =        SA_INTERRUPT,
1390         .name =         "mca_rdzv"
1391 };
1392
1393 static struct irqaction mca_wkup_irqaction = {
1394         .handler =      ia64_mca_wakeup_int_handler,
1395         .flags =        SA_INTERRUPT,
1396         .name =         "mca_wkup"
1397 };
1398
1399 #ifdef CONFIG_ACPI
1400 static struct irqaction mca_cpe_irqaction = {
1401         .handler =      ia64_mca_cpe_int_handler,
1402         .flags =        SA_INTERRUPT,
1403         .name =         "cpe_hndlr"
1404 };
1405
1406 static struct irqaction mca_cpep_irqaction = {
1407         .handler =      ia64_mca_cpe_int_caller,
1408         .flags =        SA_INTERRUPT,
1409         .name =         "cpe_poll"
1410 };
1411 #endif /* CONFIG_ACPI */
1412
1413 /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1414  * these stacks can never sleep, they cannot return from the kernel to user
1415  * space, they do not appear in a normal ps listing.  So there is no need to
1416  * format most of the fields.
1417  */
1418
1419 static void
1420 format_mca_init_stack(void *mca_data, unsigned long offset,
1421                 const char *type, int cpu)
1422 {
1423         struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1424         struct thread_info *ti;
1425         memset(p, 0, KERNEL_STACK_SIZE);
1426         ti = task_thread_info(p);
1427         ti->flags = _TIF_MCA_INIT;
1428         ti->preempt_count = 1;
1429         ti->task = p;
1430         ti->cpu = cpu;
1431         p->thread_info = ti;
1432         p->state = TASK_UNINTERRUPTIBLE;
1433         __set_bit(cpu, &p->cpus_allowed);
1434         INIT_LIST_HEAD(&p->tasks);
1435         p->parent = p->real_parent = p->group_leader = p;
1436         INIT_LIST_HEAD(&p->children);
1437         INIT_LIST_HEAD(&p->sibling);
1438         strncpy(p->comm, type, sizeof(p->comm)-1);
1439 }
1440
1441 /* Do per-CPU MCA-related initialization.  */
1442
1443 void __devinit
1444 ia64_mca_cpu_init(void *cpu_data)
1445 {
1446         void *pal_vaddr;
1447
1448         if (smp_processor_id() == 0) {
1449                 void *mca_data;
1450                 int cpu;
1451
1452                 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1453                                          * NR_CPUS + KERNEL_STACK_SIZE);
1454                 mca_data = (void *)(((unsigned long)mca_data +
1455                                         KERNEL_STACK_SIZE - 1) &
1456                                 (-KERNEL_STACK_SIZE));
1457                 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1458                         format_mca_init_stack(mca_data,
1459                                         offsetof(struct ia64_mca_cpu, mca_stack),
1460                                         "MCA", cpu);
1461                         format_mca_init_stack(mca_data,
1462                                         offsetof(struct ia64_mca_cpu, init_stack),
1463                                         "INIT", cpu);
1464                         __per_cpu_mca[cpu] = __pa(mca_data);
1465                         mca_data += sizeof(struct ia64_mca_cpu);
1466                 }
1467         }
1468
1469         /*
1470          * The MCA info structure was allocated earlier and its
1471          * physical address saved in __per_cpu_mca[cpu].  Copy that
1472          * address * to ia64_mca_data so we can access it as a per-CPU
1473          * variable.
1474          */
1475         __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1476
1477         /*
1478          * Stash away a copy of the PTE needed to map the per-CPU page.
1479          * We may need it during MCA recovery.
1480          */
1481         __get_cpu_var(ia64_mca_per_cpu_pte) =
1482                 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1483
1484         /*
1485          * Also, stash away a copy of the PAL address and the PTE
1486          * needed to map it.
1487          */
1488         pal_vaddr = efi_get_pal_addr();
1489         if (!pal_vaddr)
1490                 return;
1491         __get_cpu_var(ia64_mca_pal_base) =
1492                 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1493         __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1494                                                               PAGE_KERNEL));
1495 }
1496
1497 /*
1498  * ia64_mca_init
1499  *
1500  *  Do all the system level mca specific initialization.
1501  *
1502  *      1. Register spinloop and wakeup request interrupt vectors
1503  *
1504  *      2. Register OS_MCA handler entry point
1505  *
1506  *      3. Register OS_INIT handler entry point
1507  *
1508  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1509  *
1510  *  Note that this initialization is done very early before some kernel
1511  *  services are available.
1512  *
1513  *  Inputs  :   None
1514  *
1515  *  Outputs :   None
1516  */
1517 void __init
1518 ia64_mca_init(void)
1519 {
1520         ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1521         ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1522         ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1523         int i;
1524         s64 rc;
1525         struct ia64_sal_retval isrv;
1526         u64 timeout = IA64_MCA_RENDEZ_TIMEOUT;  /* platform specific */
1527         static struct notifier_block default_init_monarch_nb = {
1528                 .notifier_call = default_monarch_init_process,
1529                 .priority = 0/* we need to notified last */
1530         };
1531
1532         IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1533
1534         /* Clear the Rendez checkin flag for all cpus */
1535         for(i = 0 ; i < NR_CPUS; i++)
1536                 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1537
1538         /*
1539          * Register the rendezvous spinloop and wakeup mechanism with SAL
1540          */
1541
1542         /* Register the rendezvous interrupt vector with SAL */
1543         while (1) {
1544                 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1545                                               SAL_MC_PARAM_MECHANISM_INT,
1546                                               IA64_MCA_RENDEZ_VECTOR,
1547                                               timeout,
1548                                               SAL_MC_PARAM_RZ_ALWAYS);
1549                 rc = isrv.status;
1550                 if (rc == 0)
1551                         break;
1552                 if (rc == -2) {
1553                         printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1554                                 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1555                         timeout = isrv.v0;
1556                         continue;
1557                 }
1558                 printk(KERN_ERR "Failed to register rendezvous interrupt "
1559                        "with SAL (status %ld)\n", rc);
1560                 return;
1561         }
1562
1563         /* Register the wakeup interrupt vector with SAL */
1564         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1565                                       SAL_MC_PARAM_MECHANISM_INT,
1566                                       IA64_MCA_WAKEUP_VECTOR,
1567                                       0, 0);
1568         rc = isrv.status;
1569         if (rc) {
1570                 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1571                        "(status %ld)\n", rc);
1572                 return;
1573         }
1574
1575         IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1576
1577         ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1578         /*
1579          * XXX - disable SAL checksum by setting size to 0; should be
1580          *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1581          */
1582         ia64_mc_info.imi_mca_handler_size       = 0;
1583
1584         /* Register the os mca handler with SAL */
1585         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1586                                        ia64_mc_info.imi_mca_handler,
1587                                        ia64_tpa(mca_hldlr_ptr->gp),
1588                                        ia64_mc_info.imi_mca_handler_size,
1589                                        0, 0, 0)))
1590         {
1591                 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1592                        "(status %ld)\n", rc);
1593                 return;
1594         }
1595
1596         IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1597                        ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1598
1599         /*
1600          * XXX - disable SAL checksum by setting size to 0, should be
1601          * size of the actual init handler in mca_asm.S.
1602          */
1603         ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(init_hldlr_ptr_monarch->fp);
1604         ia64_mc_info.imi_monarch_init_handler_size      = 0;
1605         ia64_mc_info.imi_slave_init_handler             = ia64_tpa(init_hldlr_ptr_slave->fp);
1606         ia64_mc_info.imi_slave_init_handler_size        = 0;
1607
1608         IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1609                        ia64_mc_info.imi_monarch_init_handler);
1610
1611         /* Register the os init handler with SAL */
1612         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1613                                        ia64_mc_info.imi_monarch_init_handler,
1614                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1615                                        ia64_mc_info.imi_monarch_init_handler_size,
1616                                        ia64_mc_info.imi_slave_init_handler,
1617                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1618                                        ia64_mc_info.imi_slave_init_handler_size)))
1619         {
1620                 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1621                        "(status %ld)\n", rc);
1622                 return;
1623         }
1624         if (register_die_notifier(&default_init_monarch_nb)) {
1625                 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1626                 return;
1627         }
1628
1629         IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1630
1631         /*
1632          *  Configure the CMCI/P vector and handler. Interrupts for CMC are
1633          *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1634          */
1635         register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1636         register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1637         ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
1638
1639         /* Setup the MCA rendezvous interrupt vector */
1640         register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1641
1642         /* Setup the MCA wakeup interrupt vector */
1643         register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1644
1645 #ifdef CONFIG_ACPI
1646         /* Setup the CPEI/P handler */
1647         register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1648 #endif
1649
1650         /* Initialize the areas set aside by the OS to buffer the
1651          * platform/processor error states for MCA/INIT/CMC
1652          * handling.
1653          */
1654         ia64_log_init(SAL_INFO_TYPE_MCA);
1655         ia64_log_init(SAL_INFO_TYPE_INIT);
1656         ia64_log_init(SAL_INFO_TYPE_CMC);
1657         ia64_log_init(SAL_INFO_TYPE_CPE);
1658
1659         mca_init = 1;
1660         printk(KERN_INFO "MCA related initialization done\n");
1661 }
1662
1663 /*
1664  * ia64_mca_late_init
1665  *
1666  *      Opportunity to setup things that require initialization later
1667  *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
1668  *      platform doesn't support an interrupt driven mechanism.
1669  *
1670  *  Inputs  :   None
1671  *  Outputs :   Status
1672  */
1673 static int __init
1674 ia64_mca_late_init(void)
1675 {
1676         if (!mca_init)
1677                 return 0;
1678
1679         /* Setup the CMCI/P vector and handler */
1680         init_timer(&cmc_poll_timer);
1681         cmc_poll_timer.function = ia64_mca_cmc_poll;
1682
1683         /* Unmask/enable the vector */
1684         cmc_polling_enabled = 0;
1685         schedule_work(&cmc_enable_work);
1686
1687         IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1688
1689 #ifdef CONFIG_ACPI
1690         /* Setup the CPEI/P vector and handler */
1691         cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1692         init_timer(&cpe_poll_timer);
1693         cpe_poll_timer.function = ia64_mca_cpe_poll;
1694
1695         {
1696                 irq_desc_t *desc;
1697                 unsigned int irq;
1698
1699                 if (cpe_vector >= 0) {
1700                         /* If platform supports CPEI, enable the irq. */
1701                         cpe_poll_enabled = 0;
1702                         for (irq = 0; irq < NR_IRQS; ++irq)
1703                                 if (irq_to_vector(irq) == cpe_vector) {
1704                                         desc = irq_descp(irq);
1705                                         desc->status |= IRQ_PER_CPU;
1706                                         setup_irq(irq, &mca_cpe_irqaction);
1707                                 }
1708                         ia64_mca_register_cpev(cpe_vector);
1709                         IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1710                 } else {
1711                         /* If platform doesn't support CPEI, get the timer going. */
1712                         if (cpe_poll_enabled) {
1713                                 ia64_mca_cpe_poll(0UL);
1714                                 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1715                         }
1716                 }
1717         }
1718 #endif
1719
1720         return 0;
1721 }
1722
1723 device_initcall(ia64_mca_late_init);