2 * Virtual Memory Map support
4 * (C) 2007 sgi. Christoph Lameter <clameter@sgi.com>.
6 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
7 * virt_to_page, page_address() to be implemented as a base offset
8 * calculation without memory access.
10 * However, virtual mappings need a page table and TLBs. Many Linux
11 * architectures already map their physical space using 1-1 mappings
12 * via TLBs. For those arches the virtual memmory map is essentially
13 * for free if we use the same page size as the 1-1 mappings. In that
14 * case the overhead consists of a few additional pages that are
15 * allocated to create a view of memory for vmemmap.
17 * The architecture is expected to provide a vmemmap_populate() function
18 * to instantiate the mapping.
21 #include <linux/mmzone.h>
22 #include <linux/bootmem.h>
23 #include <linux/highmem.h>
24 #include <linux/module.h>
25 #include <linux/spinlock.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sched.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
33 * Allocate a block of memory to be used to back the virtual memory map
34 * or to back the page tables that are used to create the mapping.
35 * Uses the main allocators if they are available, else bootmem.
37 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
39 /* If the main allocator is up use that, fallback to bootmem. */
40 if (slab_is_available()) {
41 struct page *page = alloc_pages_node(node,
42 GFP_KERNEL | __GFP_ZERO, get_order(size));
44 return page_address(page);
47 return __alloc_bootmem_node(NODE_DATA(node), size, size,
48 __pa(MAX_DMA_ADDRESS));
51 void __meminit vmemmap_verify(pte_t *pte, int node,
52 unsigned long start, unsigned long end)
54 unsigned long pfn = pte_pfn(*pte);
55 int actual_node = early_pfn_to_nid(pfn);
57 if (actual_node != node)
58 printk(KERN_WARNING "[%lx-%lx] potential offnode "
59 "page_structs\n", start, end - 1);
62 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
64 pte_t *pte = pte_offset_kernel(pmd, addr);
67 void *p = vmemmap_alloc_block(PAGE_SIZE, node);
70 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
71 set_pte_at(&init_mm, addr, pte, entry);
76 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
78 pmd_t *pmd = pmd_offset(pud, addr);
80 void *p = vmemmap_alloc_block(PAGE_SIZE, node);
83 pmd_populate_kernel(&init_mm, pmd, p);
88 pud_t * __meminit vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node)
90 pud_t *pud = pud_offset(pgd, addr);
92 void *p = vmemmap_alloc_block(PAGE_SIZE, node);
95 pud_populate(&init_mm, pud, p);
100 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
102 pgd_t *pgd = pgd_offset_k(addr);
103 if (pgd_none(*pgd)) {
104 void *p = vmemmap_alloc_block(PAGE_SIZE, node);
107 pgd_populate(&init_mm, pgd, p);
112 int __meminit vmemmap_populate_basepages(struct page *start_page,
113 unsigned long size, int node)
115 unsigned long addr = (unsigned long)start_page;
116 unsigned long end = (unsigned long)(start_page + size);
122 for (; addr < end; addr += PAGE_SIZE) {
123 pgd = vmemmap_pgd_populate(addr, node);
126 pud = vmemmap_pud_populate(pgd, addr, node);
129 pmd = vmemmap_pmd_populate(pud, addr, node);
132 pte = vmemmap_pte_populate(pmd, addr, node);
135 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
141 struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid)
143 struct page *map = pfn_to_page(pnum * PAGES_PER_SECTION);
144 int error = vmemmap_populate(map, PAGES_PER_SECTION, nid);