1 #ifndef _ASM_X86_BITOPS_H
2 #define _ASM_X86_BITOPS_H
5 * Copyright 1992, Linus Torvalds.
8 #ifndef _LINUX_BITOPS_H
9 #error only <linux/bitops.h> can be included directly
12 #include <linux/compiler.h>
13 #include <asm/alternative.h>
16 * These have to be done with inline assembly: that way the bit-setting
17 * is guaranteed to be atomic. All bit operations return 0 if the bit
18 * was cleared before the operation and != 0 if it was not.
20 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
23 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
24 /* Technically wrong, but this avoids compilation errors on some gcc
26 #define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
28 #define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
31 #define ADDR BITOP_ADDR(addr)
34 * We do the locked ops that don't return the old value as
35 * a mask operation on a byte.
37 #define IS_IMMEDIATE(nr) (__builtin_constant_p(nr))
38 #define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3))
39 #define CONST_MASK(nr) (1 << ((nr) & 7))
42 * set_bit - Atomically set a bit in memory
44 * @addr: the address to start counting from
46 * This function is atomic and may not be reordered. See __set_bit()
47 * if you do not require the atomic guarantees.
49 * Note: there are no guarantees that this function will not be reordered
50 * on non x86 architectures, so if you are writing portable code,
51 * make sure not to rely on its reordering guarantees.
53 * Note that @nr may be almost arbitrarily large; this function is not
54 * restricted to acting on a single-word quantity.
56 static inline void set_bit(unsigned int nr, volatile unsigned long *addr)
58 if (IS_IMMEDIATE(nr)) {
59 asm volatile(LOCK_PREFIX "orb %1,%0"
60 : CONST_MASK_ADDR(nr, addr)
61 : "iq" ((u8)CONST_MASK(nr))
64 asm volatile(LOCK_PREFIX "bts %1,%0"
65 : BITOP_ADDR(addr) : "Ir" (nr) : "memory");
70 * __set_bit - Set a bit in memory
72 * @addr: the address to start counting from
74 * Unlike set_bit(), this function is non-atomic and may be reordered.
75 * If it's called on the same region of memory simultaneously, the effect
76 * may be that only one operation succeeds.
78 static inline void __set_bit(int nr, volatile unsigned long *addr)
80 asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
84 * clear_bit - Clears a bit in memory
86 * @addr: Address to start counting from
88 * clear_bit() is atomic and may not be reordered. However, it does
89 * not contain a memory barrier, so if it is used for locking purposes,
90 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
91 * in order to ensure changes are visible on other processors.
93 static inline void clear_bit(int nr, volatile unsigned long *addr)
95 if (IS_IMMEDIATE(nr)) {
96 asm volatile(LOCK_PREFIX "andb %1,%0"
97 : CONST_MASK_ADDR(nr, addr)
98 : "iq" ((u8)~CONST_MASK(nr)));
100 asm volatile(LOCK_PREFIX "btr %1,%0"
107 * clear_bit_unlock - Clears a bit in memory
109 * @addr: Address to start counting from
111 * clear_bit() is atomic and implies release semantics before the memory
112 * operation. It can be used for an unlock.
114 static inline void clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
120 static inline void __clear_bit(int nr, volatile unsigned long *addr)
122 asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
126 * __clear_bit_unlock - Clears a bit in memory
128 * @addr: Address to start counting from
130 * __clear_bit() is non-atomic and implies release semantics before the memory
131 * operation. It can be used for an unlock if no other CPUs can concurrently
132 * modify other bits in the word.
134 * No memory barrier is required here, because x86 cannot reorder stores past
135 * older loads. Same principle as spin_unlock.
137 static inline void __clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
140 __clear_bit(nr, addr);
143 #define smp_mb__before_clear_bit() barrier()
144 #define smp_mb__after_clear_bit() barrier()
147 * __change_bit - Toggle a bit in memory
148 * @nr: the bit to change
149 * @addr: the address to start counting from
151 * Unlike change_bit(), this function is non-atomic and may be reordered.
152 * If it's called on the same region of memory simultaneously, the effect
153 * may be that only one operation succeeds.
155 static inline void __change_bit(int nr, volatile unsigned long *addr)
157 asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
161 * change_bit - Toggle a bit in memory
163 * @addr: Address to start counting from
165 * change_bit() is atomic and may not be reordered.
166 * Note that @nr may be almost arbitrarily large; this function is not
167 * restricted to acting on a single-word quantity.
169 static inline void change_bit(int nr, volatile unsigned long *addr)
171 if (IS_IMMEDIATE(nr)) {
172 asm volatile(LOCK_PREFIX "xorb %1,%0"
173 : CONST_MASK_ADDR(nr, addr)
174 : "iq" ((u8)CONST_MASK(nr)));
176 asm volatile(LOCK_PREFIX "btc %1,%0"
183 * test_and_set_bit - Set a bit and return its old value
185 * @addr: Address to count from
187 * This operation is atomic and cannot be reordered.
188 * It also implies a memory barrier.
190 static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
194 asm volatile(LOCK_PREFIX "bts %2,%1\n\t"
195 "sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
201 * test_and_set_bit_lock - Set a bit and return its old value for lock
203 * @addr: Address to count from
205 * This is the same as test_and_set_bit on x86.
207 static inline int test_and_set_bit_lock(int nr, volatile unsigned long *addr)
209 return test_and_set_bit(nr, addr);
213 * __test_and_set_bit - Set a bit and return its old value
215 * @addr: Address to count from
217 * This operation is non-atomic and can be reordered.
218 * If two examples of this operation race, one can appear to succeed
219 * but actually fail. You must protect multiple accesses with a lock.
221 static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
227 : "=r" (oldbit), ADDR
233 * test_and_clear_bit - Clear a bit and return its old value
235 * @addr: Address to count from
237 * This operation is atomic and cannot be reordered.
238 * It also implies a memory barrier.
240 static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
244 asm volatile(LOCK_PREFIX "btr %2,%1\n\t"
246 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
252 * __test_and_clear_bit - Clear a bit and return its old value
254 * @addr: Address to count from
256 * This operation is non-atomic and can be reordered.
257 * If two examples of this operation race, one can appear to succeed
258 * but actually fail. You must protect multiple accesses with a lock.
260 static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
264 asm volatile("btr %2,%1\n\t"
266 : "=r" (oldbit), ADDR
271 /* WARNING: non atomic and it can be reordered! */
272 static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
276 asm volatile("btc %2,%1\n\t"
278 : "=r" (oldbit), ADDR
279 : "Ir" (nr) : "memory");
285 * test_and_change_bit - Change a bit and return its old value
287 * @addr: Address to count from
289 * This operation is atomic and cannot be reordered.
290 * It also implies a memory barrier.
292 static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
296 asm volatile(LOCK_PREFIX "btc %2,%1\n\t"
298 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
303 static inline int constant_test_bit(int nr, const volatile unsigned long *addr)
305 return ((1UL << (nr % BITS_PER_LONG)) &
306 (((unsigned long *)addr)[nr / BITS_PER_LONG])) != 0;
309 static inline int variable_test_bit(int nr, volatile const unsigned long *addr)
313 asm volatile("bt %2,%1\n\t"
316 : "m" (*(unsigned long *)addr), "Ir" (nr));
321 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
323 * test_bit - Determine whether a bit is set
324 * @nr: bit number to test
325 * @addr: Address to start counting from
327 static int test_bit(int nr, const volatile unsigned long *addr);
330 #define test_bit(nr, addr) \
331 (__builtin_constant_p((nr)) \
332 ? constant_test_bit((nr), (addr)) \
333 : variable_test_bit((nr), (addr)))
336 * __ffs - find first set bit in word
337 * @word: The word to search
339 * Undefined if no bit exists, so code should check against 0 first.
341 static inline unsigned long __ffs(unsigned long word)
350 * ffz - find first zero bit in word
351 * @word: The word to search
353 * Undefined if no zero exists, so code should check against ~0UL first.
355 static inline unsigned long ffz(unsigned long word)
364 * __fls: find last set bit in word
365 * @word: The word to search
367 * Undefined if no set bit exists, so code should check against 0 first.
369 static inline unsigned long __fls(unsigned long word)
379 * ffs - find first set bit in word
380 * @x: the word to search
382 * This is defined the same way as the libc and compiler builtin ffs
383 * routines, therefore differs in spirit from the other bitops.
385 * ffs(value) returns 0 if value is 0 or the position of the first
386 * set bit if value is nonzero. The first (least significant) bit
389 static inline int ffs(int x)
392 #ifdef CONFIG_X86_CMOV
395 : "=r" (r) : "rm" (x), "r" (-1));
400 "1:" : "=r" (r) : "rm" (x));
406 * fls - find last set bit in word
407 * @x: the word to search
409 * This is defined in a similar way as the libc and compiler builtin
410 * ffs, but returns the position of the most significant set bit.
412 * fls(value) returns 0 if value is 0 or the position of the last
413 * set bit if value is nonzero. The last (most significant) bit is
416 static inline int fls(int x)
419 #ifdef CONFIG_X86_CMOV
422 : "=&r" (r) : "rm" (x), "rm" (-1));
427 "1:" : "=r" (r) : "rm" (x));
431 #endif /* __KERNEL__ */
437 #include <asm-generic/bitops/sched.h>
439 #define ARCH_HAS_FAST_MULTIPLIER 1
441 #include <asm-generic/bitops/hweight.h>
443 #endif /* __KERNEL__ */
445 #include <asm-generic/bitops/fls64.h>
449 #include <asm-generic/bitops/ext2-non-atomic.h>
451 #define ext2_set_bit_atomic(lock, nr, addr) \
452 test_and_set_bit((nr), (unsigned long *)(addr))
453 #define ext2_clear_bit_atomic(lock, nr, addr) \
454 test_and_clear_bit((nr), (unsigned long *)(addr))
456 #include <asm-generic/bitops/minix.h>
458 #endif /* __KERNEL__ */
459 #endif /* _ASM_X86_BITOPS_H */