Merge branch 'upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzik...
[linux-2.6] / mm / highmem.c
1 /*
2  * High memory handling common code and variables.
3  *
4  * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
5  *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
6  *
7  *
8  * Redesigned the x86 32-bit VM architecture to deal with
9  * 64-bit physical space. With current x86 CPUs this
10  * means up to 64 Gigabytes physical RAM.
11  *
12  * Rewrote high memory support to move the page cache into
13  * high memory. Implemented permanent (schedulable) kmaps
14  * based on Linus' idea.
15  *
16  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
17  */
18
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/swap.h>
22 #include <linux/bio.h>
23 #include <linux/pagemap.h>
24 #include <linux/mempool.h>
25 #include <linux/blkdev.h>
26 #include <linux/init.h>
27 #include <linux/hash.h>
28 #include <linux/highmem.h>
29 #include <linux/blktrace_api.h>
30 #include <asm/tlbflush.h>
31
32 /*
33  * Virtual_count is not a pure "count".
34  *  0 means that it is not mapped, and has not been mapped
35  *    since a TLB flush - it is usable.
36  *  1 means that there are no users, but it has been mapped
37  *    since the last TLB flush - so we can't use it.
38  *  n means that there are (n-1) current users of it.
39  */
40 #ifdef CONFIG_HIGHMEM
41
42 unsigned long totalhigh_pages __read_mostly;
43
44 unsigned int nr_free_highpages (void)
45 {
46         pg_data_t *pgdat;
47         unsigned int pages = 0;
48
49         for_each_online_pgdat(pgdat) {
50                 pages += zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
51                         NR_FREE_PAGES);
52                 if (zone_movable_is_highmem())
53                         pages += zone_page_state(
54                                         &pgdat->node_zones[ZONE_MOVABLE],
55                                         NR_FREE_PAGES);
56         }
57
58         return pages;
59 }
60
61 static int pkmap_count[LAST_PKMAP];
62 static unsigned int last_pkmap_nr;
63 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
64
65 pte_t * pkmap_page_table;
66
67 static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
68
69 static void flush_all_zero_pkmaps(void)
70 {
71         int i;
72
73         flush_cache_kmaps();
74
75         for (i = 0; i < LAST_PKMAP; i++) {
76                 struct page *page;
77
78                 /*
79                  * zero means we don't have anything to do,
80                  * >1 means that it is still in use. Only
81                  * a count of 1 means that it is free but
82                  * needs to be unmapped
83                  */
84                 if (pkmap_count[i] != 1)
85                         continue;
86                 pkmap_count[i] = 0;
87
88                 /* sanity check */
89                 BUG_ON(pte_none(pkmap_page_table[i]));
90
91                 /*
92                  * Don't need an atomic fetch-and-clear op here;
93                  * no-one has the page mapped, and cannot get at
94                  * its virtual address (and hence PTE) without first
95                  * getting the kmap_lock (which is held here).
96                  * So no dangers, even with speculative execution.
97                  */
98                 page = pte_page(pkmap_page_table[i]);
99                 pte_clear(&init_mm, (unsigned long)page_address(page),
100                           &pkmap_page_table[i]);
101
102                 set_page_address(page, NULL);
103         }
104         flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
105 }
106
107 /* Flush all unused kmap mappings in order to remove stray
108    mappings. */
109 void kmap_flush_unused(void)
110 {
111         spin_lock(&kmap_lock);
112         flush_all_zero_pkmaps();
113         spin_unlock(&kmap_lock);
114 }
115
116 static inline unsigned long map_new_virtual(struct page *page)
117 {
118         unsigned long vaddr;
119         int count;
120
121 start:
122         count = LAST_PKMAP;
123         /* Find an empty entry */
124         for (;;) {
125                 last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
126                 if (!last_pkmap_nr) {
127                         flush_all_zero_pkmaps();
128                         count = LAST_PKMAP;
129                 }
130                 if (!pkmap_count[last_pkmap_nr])
131                         break;  /* Found a usable entry */
132                 if (--count)
133                         continue;
134
135                 /*
136                  * Sleep for somebody else to unmap their entries
137                  */
138                 {
139                         DECLARE_WAITQUEUE(wait, current);
140
141                         __set_current_state(TASK_UNINTERRUPTIBLE);
142                         add_wait_queue(&pkmap_map_wait, &wait);
143                         spin_unlock(&kmap_lock);
144                         schedule();
145                         remove_wait_queue(&pkmap_map_wait, &wait);
146                         spin_lock(&kmap_lock);
147
148                         /* Somebody else might have mapped it while we slept */
149                         if (page_address(page))
150                                 return (unsigned long)page_address(page);
151
152                         /* Re-start */
153                         goto start;
154                 }
155         }
156         vaddr = PKMAP_ADDR(last_pkmap_nr);
157         set_pte_at(&init_mm, vaddr,
158                    &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
159
160         pkmap_count[last_pkmap_nr] = 1;
161         set_page_address(page, (void *)vaddr);
162
163         return vaddr;
164 }
165
166 void fastcall *kmap_high(struct page *page)
167 {
168         unsigned long vaddr;
169
170         /*
171          * For highmem pages, we can't trust "virtual" until
172          * after we have the lock.
173          *
174          * We cannot call this from interrupts, as it may block
175          */
176         spin_lock(&kmap_lock);
177         vaddr = (unsigned long)page_address(page);
178         if (!vaddr)
179                 vaddr = map_new_virtual(page);
180         pkmap_count[PKMAP_NR(vaddr)]++;
181         BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
182         spin_unlock(&kmap_lock);
183         return (void*) vaddr;
184 }
185
186 EXPORT_SYMBOL(kmap_high);
187
188 void fastcall kunmap_high(struct page *page)
189 {
190         unsigned long vaddr;
191         unsigned long nr;
192         int need_wakeup;
193
194         spin_lock(&kmap_lock);
195         vaddr = (unsigned long)page_address(page);
196         BUG_ON(!vaddr);
197         nr = PKMAP_NR(vaddr);
198
199         /*
200          * A count must never go down to zero
201          * without a TLB flush!
202          */
203         need_wakeup = 0;
204         switch (--pkmap_count[nr]) {
205         case 0:
206                 BUG();
207         case 1:
208                 /*
209                  * Avoid an unnecessary wake_up() function call.
210                  * The common case is pkmap_count[] == 1, but
211                  * no waiters.
212                  * The tasks queued in the wait-queue are guarded
213                  * by both the lock in the wait-queue-head and by
214                  * the kmap_lock.  As the kmap_lock is held here,
215                  * no need for the wait-queue-head's lock.  Simply
216                  * test if the queue is empty.
217                  */
218                 need_wakeup = waitqueue_active(&pkmap_map_wait);
219         }
220         spin_unlock(&kmap_lock);
221
222         /* do wake-up, if needed, race-free outside of the spin lock */
223         if (need_wakeup)
224                 wake_up(&pkmap_map_wait);
225 }
226
227 EXPORT_SYMBOL(kunmap_high);
228 #endif
229
230 #if defined(HASHED_PAGE_VIRTUAL)
231
232 #define PA_HASH_ORDER   7
233
234 /*
235  * Describes one page->virtual association
236  */
237 struct page_address_map {
238         struct page *page;
239         void *virtual;
240         struct list_head list;
241 };
242
243 /*
244  * page_address_map freelist, allocated from page_address_maps.
245  */
246 static struct list_head page_address_pool;      /* freelist */
247 static spinlock_t pool_lock;                    /* protects page_address_pool */
248
249 /*
250  * Hash table bucket
251  */
252 static struct page_address_slot {
253         struct list_head lh;                    /* List of page_address_maps */
254         spinlock_t lock;                        /* Protect this bucket's list */
255 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
256
257 static struct page_address_slot *page_slot(struct page *page)
258 {
259         return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
260 }
261
262 void *page_address(struct page *page)
263 {
264         unsigned long flags;
265         void *ret;
266         struct page_address_slot *pas;
267
268         if (!PageHighMem(page))
269                 return lowmem_page_address(page);
270
271         pas = page_slot(page);
272         ret = NULL;
273         spin_lock_irqsave(&pas->lock, flags);
274         if (!list_empty(&pas->lh)) {
275                 struct page_address_map *pam;
276
277                 list_for_each_entry(pam, &pas->lh, list) {
278                         if (pam->page == page) {
279                                 ret = pam->virtual;
280                                 goto done;
281                         }
282                 }
283         }
284 done:
285         spin_unlock_irqrestore(&pas->lock, flags);
286         return ret;
287 }
288
289 EXPORT_SYMBOL(page_address);
290
291 void set_page_address(struct page *page, void *virtual)
292 {
293         unsigned long flags;
294         struct page_address_slot *pas;
295         struct page_address_map *pam;
296
297         BUG_ON(!PageHighMem(page));
298
299         pas = page_slot(page);
300         if (virtual) {          /* Add */
301                 BUG_ON(list_empty(&page_address_pool));
302
303                 spin_lock_irqsave(&pool_lock, flags);
304                 pam = list_entry(page_address_pool.next,
305                                 struct page_address_map, list);
306                 list_del(&pam->list);
307                 spin_unlock_irqrestore(&pool_lock, flags);
308
309                 pam->page = page;
310                 pam->virtual = virtual;
311
312                 spin_lock_irqsave(&pas->lock, flags);
313                 list_add_tail(&pam->list, &pas->lh);
314                 spin_unlock_irqrestore(&pas->lock, flags);
315         } else {                /* Remove */
316                 spin_lock_irqsave(&pas->lock, flags);
317                 list_for_each_entry(pam, &pas->lh, list) {
318                         if (pam->page == page) {
319                                 list_del(&pam->list);
320                                 spin_unlock_irqrestore(&pas->lock, flags);
321                                 spin_lock_irqsave(&pool_lock, flags);
322                                 list_add_tail(&pam->list, &page_address_pool);
323                                 spin_unlock_irqrestore(&pool_lock, flags);
324                                 goto done;
325                         }
326                 }
327                 spin_unlock_irqrestore(&pas->lock, flags);
328         }
329 done:
330         return;
331 }
332
333 static struct page_address_map page_address_maps[LAST_PKMAP];
334
335 void __init page_address_init(void)
336 {
337         int i;
338
339         INIT_LIST_HEAD(&page_address_pool);
340         for (i = 0; i < ARRAY_SIZE(page_address_maps); i++)
341                 list_add(&page_address_maps[i].list, &page_address_pool);
342         for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
343                 INIT_LIST_HEAD(&page_address_htable[i].lh);
344                 spin_lock_init(&page_address_htable[i].lock);
345         }
346         spin_lock_init(&pool_lock);
347 }
348
349 #endif  /* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */