Merge master.kernel.org:/home/rmk/linux-2.6-arm
[linux-2.6] / drivers / media / dvb / frontends / tda1004x.c
1   /*
2      Driver for Philips tda1004xh OFDM Demodulator
3
4      (c) 2003, 2004 Andrew de Quincey & Robert Schlabbach
5
6      This program is free software; you can redistribute it and/or modify
7      it under the terms of the GNU General Public License as published by
8      the Free Software Foundation; either version 2 of the License, or
9      (at your option) any later version.
10
11      This program is distributed in the hope that it will be useful,
12      but WITHOUT ANY WARRANTY; without even the implied warranty of
13      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
15      GNU General Public License for more details.
16
17      You should have received a copy of the GNU General Public License
18      along with this program; if not, write to the Free Software
19      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20
21    */
22 /*
23  * This driver needs external firmware. Please use the commands
24  * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10045",
25  * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10046" to
26  * download/extract them, and then copy them to /usr/lib/hotplug/firmware.
27  */
28 #define TDA10045_DEFAULT_FIRMWARE "dvb-fe-tda10045.fw"
29 #define TDA10046_DEFAULT_FIRMWARE "dvb-fe-tda10046.fw"
30
31 #include <linux/init.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/device.h>
35 #include "dvb_frontend.h"
36 #include "tda1004x.h"
37
38 enum tda1004x_demod {
39         TDA1004X_DEMOD_TDA10045,
40         TDA1004X_DEMOD_TDA10046,
41 };
42
43 struct tda1004x_state {
44         struct i2c_adapter* i2c;
45         struct dvb_frontend_ops ops;
46         const struct tda1004x_config* config;
47         struct dvb_frontend frontend;
48
49         /* private demod data */
50         u8 initialised;
51         enum tda1004x_demod demod_type;
52 };
53
54 static int debug;
55 #define dprintk(args...) \
56         do { \
57                 if (debug) printk(KERN_DEBUG "tda1004x: " args); \
58         } while (0)
59
60 #define TDA1004X_CHIPID          0x00
61 #define TDA1004X_AUTO            0x01
62 #define TDA1004X_IN_CONF1        0x02
63 #define TDA1004X_IN_CONF2        0x03
64 #define TDA1004X_OUT_CONF1       0x04
65 #define TDA1004X_OUT_CONF2       0x05
66 #define TDA1004X_STATUS_CD       0x06
67 #define TDA1004X_CONFC4          0x07
68 #define TDA1004X_DSSPARE2        0x0C
69 #define TDA10045H_CODE_IN        0x0D
70 #define TDA10045H_FWPAGE         0x0E
71 #define TDA1004X_SCAN_CPT        0x10
72 #define TDA1004X_DSP_CMD         0x11
73 #define TDA1004X_DSP_ARG         0x12
74 #define TDA1004X_DSP_DATA1       0x13
75 #define TDA1004X_DSP_DATA2       0x14
76 #define TDA1004X_CONFADC1        0x15
77 #define TDA1004X_CONFC1          0x16
78 #define TDA10045H_S_AGC          0x1a
79 #define TDA10046H_AGC_TUN_LEVEL  0x1a
80 #define TDA1004X_SNR             0x1c
81 #define TDA1004X_CONF_TS1        0x1e
82 #define TDA1004X_CONF_TS2        0x1f
83 #define TDA1004X_CBER_RESET      0x20
84 #define TDA1004X_CBER_MSB        0x21
85 #define TDA1004X_CBER_LSB        0x22
86 #define TDA1004X_CVBER_LUT       0x23
87 #define TDA1004X_VBER_MSB        0x24
88 #define TDA1004X_VBER_MID        0x25
89 #define TDA1004X_VBER_LSB        0x26
90 #define TDA1004X_UNCOR           0x27
91
92 #define TDA10045H_CONFPLL_P      0x2D
93 #define TDA10045H_CONFPLL_M_MSB  0x2E
94 #define TDA10045H_CONFPLL_M_LSB  0x2F
95 #define TDA10045H_CONFPLL_N      0x30
96
97 #define TDA10046H_CONFPLL1       0x2D
98 #define TDA10046H_CONFPLL2       0x2F
99 #define TDA10046H_CONFPLL3       0x30
100 #define TDA10046H_TIME_WREF1     0x31
101 #define TDA10046H_TIME_WREF2     0x32
102 #define TDA10046H_TIME_WREF3     0x33
103 #define TDA10046H_TIME_WREF4     0x34
104 #define TDA10046H_TIME_WREF5     0x35
105
106 #define TDA10045H_UNSURW_MSB     0x31
107 #define TDA10045H_UNSURW_LSB     0x32
108 #define TDA10045H_WREF_MSB       0x33
109 #define TDA10045H_WREF_MID       0x34
110 #define TDA10045H_WREF_LSB       0x35
111 #define TDA10045H_MUXOUT         0x36
112 #define TDA1004X_CONFADC2        0x37
113
114 #define TDA10045H_IOFFSET        0x38
115
116 #define TDA10046H_CONF_TRISTATE1 0x3B
117 #define TDA10046H_CONF_TRISTATE2 0x3C
118 #define TDA10046H_CONF_POLARITY  0x3D
119 #define TDA10046H_FREQ_OFFSET    0x3E
120 #define TDA10046H_GPIO_OUT_SEL   0x41
121 #define TDA10046H_GPIO_SELECT    0x42
122 #define TDA10046H_AGC_CONF       0x43
123 #define TDA10046H_AGC_THR        0x44
124 #define TDA10046H_AGC_RENORM     0x45
125 #define TDA10046H_AGC_GAINS      0x46
126 #define TDA10046H_AGC_TUN_MIN    0x47
127 #define TDA10046H_AGC_TUN_MAX    0x48
128 #define TDA10046H_AGC_IF_MIN     0x49
129 #define TDA10046H_AGC_IF_MAX     0x4A
130
131 #define TDA10046H_FREQ_PHY2_MSB  0x4D
132 #define TDA10046H_FREQ_PHY2_LSB  0x4E
133
134 #define TDA10046H_CVBER_CTRL     0x4F
135 #define TDA10046H_AGC_IF_LEVEL   0x52
136 #define TDA10046H_CODE_CPT       0x57
137 #define TDA10046H_CODE_IN        0x58
138
139
140 static int tda1004x_write_byteI(struct tda1004x_state *state, int reg, int data)
141 {
142         int ret;
143         u8 buf[] = { reg, data };
144         struct i2c_msg msg = { .flags = 0, .buf = buf, .len = 2 };
145
146         dprintk("%s: reg=0x%x, data=0x%x\n", __FUNCTION__, reg, data);
147
148         msg.addr = state->config->demod_address;
149         ret = i2c_transfer(state->i2c, &msg, 1);
150
151         if (ret != 1)
152                 dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
153                         __FUNCTION__, reg, data, ret);
154
155         dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
156                 reg, data, ret);
157         return (ret != 1) ? -1 : 0;
158 }
159
160 static int tda1004x_read_byte(struct tda1004x_state *state, int reg)
161 {
162         int ret;
163         u8 b0[] = { reg };
164         u8 b1[] = { 0 };
165         struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 },
166                                 { .flags = I2C_M_RD, .buf = b1, .len = 1 }};
167
168         dprintk("%s: reg=0x%x\n", __FUNCTION__, reg);
169
170         msg[0].addr = state->config->demod_address;
171         msg[1].addr = state->config->demod_address;
172         ret = i2c_transfer(state->i2c, msg, 2);
173
174         if (ret != 2) {
175                 dprintk("%s: error reg=0x%x, ret=%i\n", __FUNCTION__, reg,
176                         ret);
177                 return -1;
178         }
179
180         dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
181                 reg, b1[0], ret);
182         return b1[0];
183 }
184
185 static int tda1004x_write_mask(struct tda1004x_state *state, int reg, int mask, int data)
186 {
187         int val;
188         dprintk("%s: reg=0x%x, mask=0x%x, data=0x%x\n", __FUNCTION__, reg,
189                 mask, data);
190
191         // read a byte and check
192         val = tda1004x_read_byte(state, reg);
193         if (val < 0)
194                 return val;
195
196         // mask if off
197         val = val & ~mask;
198         val |= data & 0xff;
199
200         // write it out again
201         return tda1004x_write_byteI(state, reg, val);
202 }
203
204 static int tda1004x_write_buf(struct tda1004x_state *state, int reg, unsigned char *buf, int len)
205 {
206         int i;
207         int result;
208
209         dprintk("%s: reg=0x%x, len=0x%x\n", __FUNCTION__, reg, len);
210
211         result = 0;
212         for (i = 0; i < len; i++) {
213                 result = tda1004x_write_byteI(state, reg + i, buf[i]);
214                 if (result != 0)
215                         break;
216         }
217
218         return result;
219 }
220
221 static int tda1004x_enable_tuner_i2c(struct tda1004x_state *state)
222 {
223         int result;
224         dprintk("%s\n", __FUNCTION__);
225
226         result = tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 2);
227         msleep(1);
228         return result;
229 }
230
231 static int tda1004x_disable_tuner_i2c(struct tda1004x_state *state)
232 {
233         dprintk("%s\n", __FUNCTION__);
234
235         return tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 0);
236 }
237
238 static int tda10045h_set_bandwidth(struct tda1004x_state *state,
239                                    fe_bandwidth_t bandwidth)
240 {
241         static u8 bandwidth_6mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x60, 0x1e, 0xa7, 0x45, 0x4f };
242         static u8 bandwidth_7mhz[] = { 0x02, 0x00, 0x37, 0x00, 0x4a, 0x2f, 0x6d, 0x76, 0xdb };
243         static u8 bandwidth_8mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x48, 0x17, 0x89, 0xc7, 0x14 };
244
245         switch (bandwidth) {
246         case BANDWIDTH_6_MHZ:
247                 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_6mhz, sizeof(bandwidth_6mhz));
248                 break;
249
250         case BANDWIDTH_7_MHZ:
251                 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_7mhz, sizeof(bandwidth_7mhz));
252                 break;
253
254         case BANDWIDTH_8_MHZ:
255                 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_8mhz, sizeof(bandwidth_8mhz));
256                 break;
257
258         default:
259                 return -EINVAL;
260         }
261
262         tda1004x_write_byteI(state, TDA10045H_IOFFSET, 0);
263
264         return 0;
265 }
266
267 static int tda10046h_set_bandwidth(struct tda1004x_state *state,
268                                    fe_bandwidth_t bandwidth)
269 {
270         static u8 bandwidth_6mhz[] = { 0x80, 0x15, 0xfe, 0xab, 0x8e };
271         static u8 bandwidth_7mhz[] = { 0x6e, 0x02, 0x53, 0xc8, 0x25 };
272         static u8 bandwidth_8mhz[] = { 0x60, 0x12, 0xa8, 0xe4, 0xbd };
273
274         switch (bandwidth) {
275         case BANDWIDTH_6_MHZ:
276                 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz, sizeof(bandwidth_6mhz));
277                 if (state->config->if_freq == TDA10046_FREQ_045) {
278                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x09);
279                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x4f);
280                 }
281                 break;
282
283         case BANDWIDTH_7_MHZ:
284                 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz, sizeof(bandwidth_7mhz));
285                 if (state->config->if_freq == TDA10046_FREQ_045) {
286                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0a);
287                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x79);
288                 }
289                 break;
290
291         case BANDWIDTH_8_MHZ:
292                 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz, sizeof(bandwidth_8mhz));
293                 if (state->config->if_freq == TDA10046_FREQ_045) {
294                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0b);
295                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xa3);
296                 }
297                 break;
298
299         default:
300                 return -EINVAL;
301         }
302
303         return 0;
304 }
305
306 static int tda1004x_do_upload(struct tda1004x_state *state,
307                               unsigned char *mem, unsigned int len,
308                               u8 dspCodeCounterReg, u8 dspCodeInReg)
309 {
310         u8 buf[65];
311         struct i2c_msg fw_msg = { .flags = 0, .buf = buf, .len = 0 };
312         int tx_size;
313         int pos = 0;
314
315         /* clear code counter */
316         tda1004x_write_byteI(state, dspCodeCounterReg, 0);
317         fw_msg.addr = state->config->demod_address;
318
319         buf[0] = dspCodeInReg;
320         while (pos != len) {
321                 // work out how much to send this time
322                 tx_size = len - pos;
323                 if (tx_size > 0x10)
324                         tx_size = 0x10;
325
326                 // send the chunk
327                 memcpy(buf + 1, mem + pos, tx_size);
328                 fw_msg.len = tx_size + 1;
329                 if (i2c_transfer(state->i2c, &fw_msg, 1) != 1) {
330                         printk(KERN_ERR "tda1004x: Error during firmware upload\n");
331                         return -EIO;
332                 }
333                 pos += tx_size;
334
335                 dprintk("%s: fw_pos=0x%x\n", __FUNCTION__, pos);
336         }
337         // give the DSP a chance to settle 03/10/05 Hac
338         msleep(100);
339
340         return 0;
341 }
342
343 static int tda1004x_check_upload_ok(struct tda1004x_state *state)
344 {
345         u8 data1, data2;
346         unsigned long timeout;
347
348         if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
349                 timeout = jiffies + 2 * HZ;
350                 while(!(tda1004x_read_byte(state, TDA1004X_STATUS_CD) & 0x20)) {
351                         if (time_after(jiffies, timeout)) {
352                                 printk(KERN_ERR "tda1004x: timeout waiting for DSP ready\n");
353                                 break;
354                         }
355                         msleep(1);
356                 }
357         } else
358                 msleep(100);
359
360         // check upload was OK
361         tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0); // we want to read from the DSP
362         tda1004x_write_byteI(state, TDA1004X_DSP_CMD, 0x67);
363
364         data1 = tda1004x_read_byte(state, TDA1004X_DSP_DATA1);
365         data2 = tda1004x_read_byte(state, TDA1004X_DSP_DATA2);
366         if (data1 != 0x67 || data2 < 0x20 || data2 > 0x2e) {
367                 printk(KERN_INFO "tda1004x: found firmware revision %x -- invalid\n", data2);
368                 return -EIO;
369         }
370         printk(KERN_INFO "tda1004x: found firmware revision %x -- ok\n", data2);
371         return 0;
372 }
373
374 static int tda10045_fwupload(struct dvb_frontend* fe)
375 {
376         struct tda1004x_state* state = fe->demodulator_priv;
377         int ret;
378         const struct firmware *fw;
379
380         /* don't re-upload unless necessary */
381         if (tda1004x_check_upload_ok(state) == 0)
382                 return 0;
383
384         /* request the firmware, this will block until someone uploads it */
385         printk(KERN_INFO "tda1004x: waiting for firmware upload (%s)...\n", TDA10045_DEFAULT_FIRMWARE);
386         ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
387         if (ret) {
388                 printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
389                 return ret;
390         }
391
392         /* reset chip */
393         tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0);
394         tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
395         tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
396         msleep(10);
397
398         /* set parameters */
399         tda10045h_set_bandwidth(state, BANDWIDTH_8_MHZ);
400
401         ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10045H_FWPAGE, TDA10045H_CODE_IN);
402         release_firmware(fw);
403         if (ret)
404                 return ret;
405         printk(KERN_INFO "tda1004x: firmware upload complete\n");
406
407         /* wait for DSP to initialise */
408         /* DSPREADY doesn't seem to work on the TDA10045H */
409         msleep(100);
410
411         return tda1004x_check_upload_ok(state);
412 }
413
414 static void tda10046_init_plls(struct dvb_frontend* fe)
415 {
416         struct tda1004x_state* state = fe->demodulator_priv;
417
418         tda1004x_write_byteI(state, TDA10046H_CONFPLL1, 0xf0);
419         tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 10); // PLL M = 10
420         if (state->config->xtal_freq == TDA10046_XTAL_4M ) {
421                 dprintk("%s: setting up PLLs for a 4 MHz Xtal\n", __FUNCTION__);
422                 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 0); // PLL P = N = 0
423         } else {
424                 dprintk("%s: setting up PLLs for a 16 MHz Xtal\n", __FUNCTION__);
425                 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 3); // PLL P = 0, N = 3
426         }
427         tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 99);
428         switch (state->config->if_freq) {
429         case TDA10046_FREQ_3617:
430                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd4);
431                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x2c);
432                 break;
433         case TDA10046_FREQ_3613:
434                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd4);
435                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x13);
436                 break;
437         case TDA10046_FREQ_045:
438                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0b);
439                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xa3);
440                 break;
441         case TDA10046_FREQ_052:
442                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
443                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x06);
444                 break;
445         }
446         tda10046h_set_bandwidth(state, BANDWIDTH_8_MHZ); // default bandwidth 8 MHz
447 }
448
449 static int tda10046_fwupload(struct dvb_frontend* fe)
450 {
451         struct tda1004x_state* state = fe->demodulator_priv;
452         int ret;
453         const struct firmware *fw;
454
455         /* reset + wake up chip */
456         tda1004x_write_byteI(state, TDA1004X_CONFC4, 0);
457         tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 1, 0);
458         /* let the clocks recover from sleep */
459         msleep(5);
460
461         /* don't re-upload unless necessary */
462         if (tda1004x_check_upload_ok(state) == 0)
463                 return 0;
464
465         /* set parameters */
466         tda10046_init_plls(fe);
467
468         if (state->config->request_firmware != NULL) {
469                 /* request the firmware, this will block until someone uploads it */
470                 printk(KERN_INFO "tda1004x: waiting for firmware upload...\n");
471                 ret = state->config->request_firmware(fe, &fw, TDA10046_DEFAULT_FIRMWARE);
472                 if (ret) {
473                         printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
474                         return ret;
475                 }
476                 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); // going to boot from HOST
477                 ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10046H_CODE_CPT, TDA10046H_CODE_IN);
478                 release_firmware(fw);
479                 if (ret)
480                         return ret;
481         } else {
482                 /* boot from firmware eeprom */
483                 /* Hac Note: we might need to do some GPIO Magic here */
484                 printk(KERN_INFO "tda1004x: booting from eeprom\n");
485                 tda1004x_write_mask(state, TDA1004X_CONFC4, 4, 4);
486                 msleep(300);
487         }
488         return tda1004x_check_upload_ok(state);
489 }
490
491 static int tda1004x_encode_fec(int fec)
492 {
493         // convert known FEC values
494         switch (fec) {
495         case FEC_1_2:
496                 return 0;
497         case FEC_2_3:
498                 return 1;
499         case FEC_3_4:
500                 return 2;
501         case FEC_5_6:
502                 return 3;
503         case FEC_7_8:
504                 return 4;
505         }
506
507         // unsupported
508         return -EINVAL;
509 }
510
511 static int tda1004x_decode_fec(int tdafec)
512 {
513         // convert known FEC values
514         switch (tdafec) {
515         case 0:
516                 return FEC_1_2;
517         case 1:
518                 return FEC_2_3;
519         case 2:
520                 return FEC_3_4;
521         case 3:
522                 return FEC_5_6;
523         case 4:
524                 return FEC_7_8;
525         }
526
527         // unsupported
528         return -1;
529 }
530
531 int tda1004x_write_byte(struct dvb_frontend* fe, int reg, int data)
532 {
533         struct tda1004x_state* state = fe->demodulator_priv;
534
535         return tda1004x_write_byteI(state, reg, data);
536 }
537
538 static int tda10045_init(struct dvb_frontend* fe)
539 {
540         struct tda1004x_state* state = fe->demodulator_priv;
541
542         dprintk("%s\n", __FUNCTION__);
543
544         if (state->initialised)
545                 return 0;
546
547         if (tda10045_fwupload(fe)) {
548                 printk("tda1004x: firmware upload failed\n");
549                 return -EIO;
550         }
551
552         tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0); // wake up the ADC
553
554         // Init the PLL
555         if (state->config->pll_init) {
556                 tda1004x_enable_tuner_i2c(state);
557                 state->config->pll_init(fe);
558                 tda1004x_disable_tuner_i2c(state);
559         }
560
561         // tda setup
562         tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
563         tda1004x_write_mask(state, TDA1004X_AUTO, 8, 0); // select HP stream
564         tda1004x_write_mask(state, TDA1004X_CONFC1, 0x40, 0); // set polarity of VAGC signal
565         tda1004x_write_mask(state, TDA1004X_CONFC1, 0x80, 0x80); // enable pulse killer
566         tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10); // enable auto offset
567         tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0x0); // no frequency offset
568         tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 0); // setup MPEG2 TS interface
569         tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0); // setup MPEG2 TS interface
570         tda1004x_write_mask(state, TDA1004X_VBER_MSB, 0xe0, 0xa0); // 10^6 VBER measurement bits
571         tda1004x_write_mask(state, TDA1004X_CONFC1, 0x10, 0); // VAGC polarity
572         tda1004x_write_byteI(state, TDA1004X_CONFADC1, 0x2e);
573
574         tda1004x_write_mask(state, 0x1f, 0x01, state->config->invert_oclk);
575
576         state->initialised = 1;
577         return 0;
578 }
579
580 static int tda10046_init(struct dvb_frontend* fe)
581 {
582         struct tda1004x_state* state = fe->demodulator_priv;
583         dprintk("%s\n", __FUNCTION__);
584
585         if (state->initialised)
586                 return 0;
587
588         if (tda10046_fwupload(fe)) {
589                 printk("tda1004x: firmware upload failed\n");
590                         return -EIO;
591         }
592
593         // Init the tuner PLL
594         if (state->config->pll_init) {
595                 tda1004x_enable_tuner_i2c(state);
596                 state->config->pll_init(fe);
597                 tda1004x_disable_tuner_i2c(state);
598         }
599
600         // tda setup
601         tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
602         tda1004x_write_byteI(state, TDA1004X_AUTO, 7); // select HP stream
603         tda1004x_write_byteI(state, TDA1004X_CONFC1, 8); // disable pulse killer
604
605         tda10046_init_plls(fe);
606         switch (state->config->agc_config) {
607         case TDA10046_AGC_DEFAULT:
608                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x00); // AGC setup
609                 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities
610                 break;
611         case TDA10046_AGC_IFO_AUTO_NEG:
612                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
613                 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities
614                 break;
615         case TDA10046_AGC_IFO_AUTO_POS:
616                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
617                 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x00); // set AGC polarities
618                 break;
619         case TDA10046_AGC_TDA827X:
620                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02);   // AGC setup
621                 tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70);    // AGC Threshold
622                 tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x0E); // Gain Renormalize
623                 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities
624                 break;
625         }
626         tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0x61); // Turn both AGC outputs on
627         tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MIN, 0);    // }
628         tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MAX, 0xff); // } AGC min/max values
629         tda1004x_write_byteI(state, TDA10046H_AGC_IF_MIN, 0);     // }
630         tda1004x_write_byteI(state, TDA10046H_AGC_IF_MAX, 0xff);  // }
631         tda1004x_write_byteI(state, TDA10046H_AGC_GAINS, 1); // IF gain 2, TUN gain 1
632         tda1004x_write_byteI(state, TDA10046H_CVBER_CTRL, 0x1a); // 10^6 VBER measurement bits
633         tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 7); // MPEG2 interface config
634         tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0xc0); // MPEG2 interface config
635         tda1004x_write_mask(state, 0x3a, 0x80, state->config->invert_oclk << 7);
636
637         tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE2, 0xe1); // tristate setup
638         tda1004x_write_byteI(state, TDA10046H_GPIO_OUT_SEL, 0xcc); // GPIO output config
639         tda1004x_write_byteI(state, TDA10046H_GPIO_SELECT, 8); // GPIO select
640
641         state->initialised = 1;
642         return 0;
643 }
644
645 static int tda1004x_set_fe(struct dvb_frontend* fe,
646                            struct dvb_frontend_parameters *fe_params)
647 {
648         struct tda1004x_state* state = fe->demodulator_priv;
649         int tmp;
650         int inversion;
651
652         dprintk("%s\n", __FUNCTION__);
653
654         if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
655                 // setup auto offset
656                 tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10);
657                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x80, 0);
658                 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0);
659
660                 // disable agc_conf[2]
661                 tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 0);
662         }
663
664         // set frequency
665         tda1004x_enable_tuner_i2c(state);
666         state->config->pll_set(fe, fe_params);
667         tda1004x_disable_tuner_i2c(state);
668
669         // Hardcoded to use auto as much as possible on the TDA10045 as it
670         // is very unreliable if AUTO mode is _not_ used.
671         if (state->demod_type == TDA1004X_DEMOD_TDA10045) {
672                 fe_params->u.ofdm.code_rate_HP = FEC_AUTO;
673                 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_AUTO;
674                 fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_AUTO;
675         }
676
677         // Set standard params.. or put them to auto
678         if ((fe_params->u.ofdm.code_rate_HP == FEC_AUTO) ||
679             (fe_params->u.ofdm.code_rate_LP == FEC_AUTO) ||
680             (fe_params->u.ofdm.constellation == QAM_AUTO) ||
681             (fe_params->u.ofdm.hierarchy_information == HIERARCHY_AUTO)) {
682                 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 1);        // enable auto
683                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x03, 0); // turn off constellation bits
684                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0); // turn off hierarchy bits
685                 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x3f, 0); // turn off FEC bits
686         } else {
687                 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 0);        // disable auto
688
689                 // set HP FEC
690                 tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_HP);
691                 if (tmp < 0)
692                         return tmp;
693                 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 7, tmp);
694
695                 // set LP FEC
696                 tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_LP);
697                 if (tmp < 0)
698                         return tmp;
699                 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x38, tmp << 3);
700
701                 // set constellation
702                 switch (fe_params->u.ofdm.constellation) {
703                 case QPSK:
704                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 0);
705                         break;
706
707                 case QAM_16:
708                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 1);
709                         break;
710
711                 case QAM_64:
712                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 2);
713                         break;
714
715                 default:
716                         return -EINVAL;
717                 }
718
719                 // set hierarchy
720                 switch (fe_params->u.ofdm.hierarchy_information) {
721                 case HIERARCHY_NONE:
722                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0 << 5);
723                         break;
724
725                 case HIERARCHY_1:
726                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 1 << 5);
727                         break;
728
729                 case HIERARCHY_2:
730                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 2 << 5);
731                         break;
732
733                 case HIERARCHY_4:
734                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 3 << 5);
735                         break;
736
737                 default:
738                         return -EINVAL;
739                 }
740         }
741
742         // set bandwidth
743         switch (state->demod_type) {
744         case TDA1004X_DEMOD_TDA10045:
745                 tda10045h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
746                 break;
747
748         case TDA1004X_DEMOD_TDA10046:
749                 tda10046h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
750                 break;
751         }
752
753         // set inversion
754         inversion = fe_params->inversion;
755         if (state->config->invert)
756                 inversion = inversion ? INVERSION_OFF : INVERSION_ON;
757         switch (inversion) {
758         case INVERSION_OFF:
759                 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0);
760                 break;
761
762         case INVERSION_ON:
763                 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0x20);
764                 break;
765
766         default:
767                 return -EINVAL;
768         }
769
770         // set guard interval
771         switch (fe_params->u.ofdm.guard_interval) {
772         case GUARD_INTERVAL_1_32:
773                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
774                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
775                 break;
776
777         case GUARD_INTERVAL_1_16:
778                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
779                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 1 << 2);
780                 break;
781
782         case GUARD_INTERVAL_1_8:
783                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
784                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 2 << 2);
785                 break;
786
787         case GUARD_INTERVAL_1_4:
788                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
789                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 3 << 2);
790                 break;
791
792         case GUARD_INTERVAL_AUTO:
793                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 2);
794                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
795                 break;
796
797         default:
798                 return -EINVAL;
799         }
800
801         // set transmission mode
802         switch (fe_params->u.ofdm.transmission_mode) {
803         case TRANSMISSION_MODE_2K:
804                 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
805                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0 << 4);
806                 break;
807
808         case TRANSMISSION_MODE_8K:
809                 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
810                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 1 << 4);
811                 break;
812
813         case TRANSMISSION_MODE_AUTO:
814                 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 4);
815                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0);
816                 break;
817
818         default:
819                 return -EINVAL;
820         }
821
822         // start the lock
823         switch (state->demod_type) {
824         case TDA1004X_DEMOD_TDA10045:
825                 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
826                 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
827                 break;
828
829         case TDA1004X_DEMOD_TDA10046:
830                 tda1004x_write_mask(state, TDA1004X_AUTO, 0x40, 0x40);
831                 break;
832         }
833
834         msleep(10);
835
836         return 0;
837 }
838
839 static int tda1004x_get_fe(struct dvb_frontend* fe, struct dvb_frontend_parameters *fe_params)
840 {
841         struct tda1004x_state* state = fe->demodulator_priv;
842         dprintk("%s\n", __FUNCTION__);
843
844         // inversion status
845         fe_params->inversion = INVERSION_OFF;
846         if (tda1004x_read_byte(state, TDA1004X_CONFC1) & 0x20)
847                 fe_params->inversion = INVERSION_ON;
848         if (state->config->invert)
849                 fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON;
850
851         // bandwidth
852         switch (state->demod_type) {
853         case TDA1004X_DEMOD_TDA10045:
854                 switch (tda1004x_read_byte(state, TDA10045H_WREF_LSB)) {
855                 case 0x14:
856                         fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
857                         break;
858                 case 0xdb:
859                         fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
860                         break;
861                 case 0x4f:
862                         fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
863                         break;
864                 }
865                 break;
866
867         case TDA1004X_DEMOD_TDA10046:
868                 switch (tda1004x_read_byte(state, TDA10046H_TIME_WREF1)) {
869                 case 0x60:
870                         fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
871                         break;
872                 case 0x6e:
873                         fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
874                         break;
875                 case 0x80:
876                         fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
877                         break;
878                 }
879                 break;
880         }
881
882         // FEC
883         fe_params->u.ofdm.code_rate_HP =
884             tda1004x_decode_fec(tda1004x_read_byte(state, TDA1004X_OUT_CONF2) & 7);
885         fe_params->u.ofdm.code_rate_LP =
886             tda1004x_decode_fec((tda1004x_read_byte(state, TDA1004X_OUT_CONF2) >> 3) & 7);
887
888         // constellation
889         switch (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 3) {
890         case 0:
891                 fe_params->u.ofdm.constellation = QPSK;
892                 break;
893         case 1:
894                 fe_params->u.ofdm.constellation = QAM_16;
895                 break;
896         case 2:
897                 fe_params->u.ofdm.constellation = QAM_64;
898                 break;
899         }
900
901         // transmission mode
902         fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
903         if (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x10)
904                 fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
905
906         // guard interval
907         switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x0c) >> 2) {
908         case 0:
909                 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
910                 break;
911         case 1:
912                 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
913                 break;
914         case 2:
915                 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
916                 break;
917         case 3:
918                 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
919                 break;
920         }
921
922         // hierarchy
923         switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x60) >> 5) {
924         case 0:
925                 fe_params->u.ofdm.hierarchy_information = HIERARCHY_NONE;
926                 break;
927         case 1:
928                 fe_params->u.ofdm.hierarchy_information = HIERARCHY_1;
929                 break;
930         case 2:
931                 fe_params->u.ofdm.hierarchy_information = HIERARCHY_2;
932                 break;
933         case 3:
934                 fe_params->u.ofdm.hierarchy_information = HIERARCHY_4;
935                 break;
936         }
937
938         return 0;
939 }
940
941 static int tda1004x_read_status(struct dvb_frontend* fe, fe_status_t * fe_status)
942 {
943         struct tda1004x_state* state = fe->demodulator_priv;
944         int status;
945         int cber;
946         int vber;
947
948         dprintk("%s\n", __FUNCTION__);
949
950         // read status
951         status = tda1004x_read_byte(state, TDA1004X_STATUS_CD);
952         if (status == -1)
953                 return -EIO;
954
955         // decode
956         *fe_status = 0;
957         if (status & 4)
958                 *fe_status |= FE_HAS_SIGNAL;
959         if (status & 2)
960                 *fe_status |= FE_HAS_CARRIER;
961         if (status & 8)
962                 *fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
963
964         // if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi
965         // is getting anything valid
966         if (!(*fe_status & FE_HAS_VITERBI)) {
967                 // read the CBER
968                 cber = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
969                 if (cber == -1)
970                         return -EIO;
971                 status = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
972                 if (status == -1)
973                         return -EIO;
974                 cber |= (status << 8);
975                 tda1004x_read_byte(state, TDA1004X_CBER_RESET);
976
977                 if (cber != 65535)
978                         *fe_status |= FE_HAS_VITERBI;
979         }
980
981         // if we DO have some valid VITERBI output, but don't already have SYNC
982         // bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid.
983         if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) {
984                 // read the VBER
985                 vber = tda1004x_read_byte(state, TDA1004X_VBER_LSB);
986                 if (vber == -1)
987                         return -EIO;
988                 status = tda1004x_read_byte(state, TDA1004X_VBER_MID);
989                 if (status == -1)
990                         return -EIO;
991                 vber |= (status << 8);
992                 status = tda1004x_read_byte(state, TDA1004X_VBER_MSB);
993                 if (status == -1)
994                         return -EIO;
995                 vber |= ((status << 16) & 0x0f);
996                 tda1004x_read_byte(state, TDA1004X_CVBER_LUT);
997
998                 // if RS has passed some valid TS packets, then we must be
999                 // getting some SYNC bytes
1000                 if (vber < 16632)
1001                         *fe_status |= FE_HAS_SYNC;
1002         }
1003
1004         // success
1005         dprintk("%s: fe_status=0x%x\n", __FUNCTION__, *fe_status);
1006         return 0;
1007 }
1008
1009 static int tda1004x_read_signal_strength(struct dvb_frontend* fe, u16 * signal)
1010 {
1011         struct tda1004x_state* state = fe->demodulator_priv;
1012         int tmp;
1013         int reg = 0;
1014
1015         dprintk("%s\n", __FUNCTION__);
1016
1017         // determine the register to use
1018         switch (state->demod_type) {
1019         case TDA1004X_DEMOD_TDA10045:
1020                 reg = TDA10045H_S_AGC;
1021                 break;
1022
1023         case TDA1004X_DEMOD_TDA10046:
1024                 reg = TDA10046H_AGC_IF_LEVEL;
1025                 break;
1026         }
1027
1028         // read it
1029         tmp = tda1004x_read_byte(state, reg);
1030         if (tmp < 0)
1031                 return -EIO;
1032
1033         *signal = (tmp << 8) | tmp;
1034         dprintk("%s: signal=0x%x\n", __FUNCTION__, *signal);
1035         return 0;
1036 }
1037
1038 static int tda1004x_read_snr(struct dvb_frontend* fe, u16 * snr)
1039 {
1040         struct tda1004x_state* state = fe->demodulator_priv;
1041         int tmp;
1042
1043         dprintk("%s\n", __FUNCTION__);
1044
1045         // read it
1046         tmp = tda1004x_read_byte(state, TDA1004X_SNR);
1047         if (tmp < 0)
1048                 return -EIO;
1049         tmp = 255 - tmp;
1050
1051         *snr = ((tmp << 8) | tmp);
1052         dprintk("%s: snr=0x%x\n", __FUNCTION__, *snr);
1053         return 0;
1054 }
1055
1056 static int tda1004x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
1057 {
1058         struct tda1004x_state* state = fe->demodulator_priv;
1059         int tmp;
1060         int tmp2;
1061         int counter;
1062
1063         dprintk("%s\n", __FUNCTION__);
1064
1065         // read the UCBLOCKS and reset
1066         counter = 0;
1067         tmp = tda1004x_read_byte(state, TDA1004X_UNCOR);
1068         if (tmp < 0)
1069                 return -EIO;
1070         tmp &= 0x7f;
1071         while (counter++ < 5) {
1072                 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1073                 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1074                 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1075
1076                 tmp2 = tda1004x_read_byte(state, TDA1004X_UNCOR);
1077                 if (tmp2 < 0)
1078                         return -EIO;
1079                 tmp2 &= 0x7f;
1080                 if ((tmp2 < tmp) || (tmp2 == 0))
1081                         break;
1082         }
1083
1084         if (tmp != 0x7f)
1085                 *ucblocks = tmp;
1086         else
1087                 *ucblocks = 0xffffffff;
1088
1089         dprintk("%s: ucblocks=0x%x\n", __FUNCTION__, *ucblocks);
1090         return 0;
1091 }
1092
1093 static int tda1004x_read_ber(struct dvb_frontend* fe, u32* ber)
1094 {
1095         struct tda1004x_state* state = fe->demodulator_priv;
1096         int tmp;
1097
1098         dprintk("%s\n", __FUNCTION__);
1099
1100         // read it in
1101         tmp = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1102         if (tmp < 0)
1103                 return -EIO;
1104         *ber = tmp << 1;
1105         tmp = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1106         if (tmp < 0)
1107                 return -EIO;
1108         *ber |= (tmp << 9);
1109         tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1110
1111         dprintk("%s: ber=0x%x\n", __FUNCTION__, *ber);
1112         return 0;
1113 }
1114
1115 static int tda1004x_sleep(struct dvb_frontend* fe)
1116 {
1117         struct tda1004x_state* state = fe->demodulator_priv;
1118
1119         switch (state->demod_type) {
1120         case TDA1004X_DEMOD_TDA10045:
1121                 tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0x10);
1122                 break;
1123
1124         case TDA1004X_DEMOD_TDA10046:
1125                 if (state->config->pll_sleep != NULL) {
1126                         tda1004x_enable_tuner_i2c(state);
1127                         state->config->pll_sleep(fe);
1128                         tda1004x_disable_tuner_i2c(state);
1129                 }
1130                 tda1004x_write_mask(state, TDA1004X_CONFC4, 1, 1);
1131                 break;
1132         }
1133         state->initialised = 0;
1134
1135         return 0;
1136 }
1137
1138 static int tda1004x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
1139 {
1140         fesettings->min_delay_ms = 800;
1141         /* Drift compensation makes no sense for DVB-T */
1142         fesettings->step_size = 0;
1143         fesettings->max_drift = 0;
1144         return 0;
1145 }
1146
1147 static void tda1004x_release(struct dvb_frontend* fe)
1148 {
1149         struct tda1004x_state *state = fe->demodulator_priv;
1150         kfree(state);
1151 }
1152
1153 static struct dvb_frontend_ops tda10045_ops = {
1154         .info = {
1155                 .name = "Philips TDA10045H DVB-T",
1156                 .type = FE_OFDM,
1157                 .frequency_min = 51000000,
1158                 .frequency_max = 858000000,
1159                 .frequency_stepsize = 166667,
1160                 .caps =
1161                     FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1162                     FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1163                     FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1164                     FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1165         },
1166
1167         .release = tda1004x_release,
1168
1169         .init = tda10045_init,
1170         .sleep = tda1004x_sleep,
1171
1172         .set_frontend = tda1004x_set_fe,
1173         .get_frontend = tda1004x_get_fe,
1174         .get_tune_settings = tda1004x_get_tune_settings,
1175
1176         .read_status = tda1004x_read_status,
1177         .read_ber = tda1004x_read_ber,
1178         .read_signal_strength = tda1004x_read_signal_strength,
1179         .read_snr = tda1004x_read_snr,
1180         .read_ucblocks = tda1004x_read_ucblocks,
1181 };
1182
1183 struct dvb_frontend* tda10045_attach(const struct tda1004x_config* config,
1184                                      struct i2c_adapter* i2c)
1185 {
1186         struct tda1004x_state *state;
1187
1188         /* allocate memory for the internal state */
1189         state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1190         if (!state)
1191                 return NULL;
1192
1193         /* setup the state */
1194         state->config = config;
1195         state->i2c = i2c;
1196         memcpy(&state->ops, &tda10045_ops, sizeof(struct dvb_frontend_ops));
1197         state->initialised = 0;
1198         state->demod_type = TDA1004X_DEMOD_TDA10045;
1199
1200         /* check if the demod is there */
1201         if (tda1004x_read_byte(state, TDA1004X_CHIPID) != 0x25) {
1202                 kfree(state);
1203                 return NULL;
1204         }
1205
1206         /* create dvb_frontend */
1207         state->frontend.ops = &state->ops;
1208         state->frontend.demodulator_priv = state;
1209         return &state->frontend;
1210 }
1211
1212 static struct dvb_frontend_ops tda10046_ops = {
1213         .info = {
1214                 .name = "Philips TDA10046H DVB-T",
1215                 .type = FE_OFDM,
1216                 .frequency_min = 51000000,
1217                 .frequency_max = 858000000,
1218                 .frequency_stepsize = 166667,
1219                 .caps =
1220                     FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1221                     FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1222                     FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1223                     FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1224         },
1225
1226         .release = tda1004x_release,
1227
1228         .init = tda10046_init,
1229         .sleep = tda1004x_sleep,
1230
1231         .set_frontend = tda1004x_set_fe,
1232         .get_frontend = tda1004x_get_fe,
1233         .get_tune_settings = tda1004x_get_tune_settings,
1234
1235         .read_status = tda1004x_read_status,
1236         .read_ber = tda1004x_read_ber,
1237         .read_signal_strength = tda1004x_read_signal_strength,
1238         .read_snr = tda1004x_read_snr,
1239         .read_ucblocks = tda1004x_read_ucblocks,
1240 };
1241
1242 struct dvb_frontend* tda10046_attach(const struct tda1004x_config* config,
1243                                      struct i2c_adapter* i2c)
1244 {
1245         struct tda1004x_state *state;
1246
1247         /* allocate memory for the internal state */
1248         state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1249         if (!state)
1250                 return NULL;
1251
1252         /* setup the state */
1253         state->config = config;
1254         state->i2c = i2c;
1255         memcpy(&state->ops, &tda10046_ops, sizeof(struct dvb_frontend_ops));
1256         state->initialised = 0;
1257         state->demod_type = TDA1004X_DEMOD_TDA10046;
1258
1259         /* check if the demod is there */
1260         if (tda1004x_read_byte(state, TDA1004X_CHIPID) != 0x46) {
1261                 kfree(state);
1262                 return NULL;
1263         }
1264
1265         /* create dvb_frontend */
1266         state->frontend.ops = &state->ops;
1267         state->frontend.demodulator_priv = state;
1268         return &state->frontend;
1269 }
1270
1271 module_param(debug, int, 0644);
1272 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
1273
1274 MODULE_DESCRIPTION("Philips TDA10045H & TDA10046H DVB-T Demodulator");
1275 MODULE_AUTHOR("Andrew de Quincey & Robert Schlabbach");
1276 MODULE_LICENSE("GPL");
1277
1278 EXPORT_SYMBOL(tda10045_attach);
1279 EXPORT_SYMBOL(tda10046_attach);
1280 EXPORT_SYMBOL(tda1004x_write_byte);