1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/smp_lock.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/uaccess.h>
38 #include <asm/timer.h>
39 #include <asm/starfire.h>
42 extern int linux_num_cpus;
43 extern void calibrate_delay(void);
45 /* Please don't make this stuff initdata!!! --DaveM */
46 static unsigned char boot_cpu_id;
48 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
49 cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
50 static cpumask_t smp_commenced_mask;
51 static cpumask_t cpu_callout_map;
53 void smp_info(struct seq_file *m)
57 seq_printf(m, "State:\n");
58 for (i = 0; i < NR_CPUS; i++) {
61 "CPU%d:\t\tonline\n", i);
65 void smp_bogo(struct seq_file *m)
69 for (i = 0; i < NR_CPUS; i++)
72 "Cpu%dBogo\t: %lu.%02lu\n"
73 "Cpu%dClkTck\t: %016lx\n",
74 i, cpu_data(i).udelay_val / (500000/HZ),
75 (cpu_data(i).udelay_val / (5000/HZ)) % 100,
76 i, cpu_data(i).clock_tick);
79 void __init smp_store_cpu_info(int id)
83 /* multiplier and counter set by
84 smp_setup_percpu_timer() */
85 cpu_data(id).udelay_val = loops_per_jiffy;
87 cpu_find_by_mid(id, &cpu_node);
88 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
89 "clock-frequency", 0);
91 cpu_data(id).pgcache_size = 0;
92 cpu_data(id).pte_cache[0] = NULL;
93 cpu_data(id).pte_cache[1] = NULL;
94 cpu_data(id).pgd_cache = NULL;
95 cpu_data(id).idle_volume = 1;
97 cpu_data(id).dcache_size = prom_getintdefault(cpu_node, "dcache-size",
99 cpu_data(id).dcache_line_size =
100 prom_getintdefault(cpu_node, "dcache-line-size", 32);
101 cpu_data(id).icache_size = prom_getintdefault(cpu_node, "icache-size",
103 cpu_data(id).icache_line_size =
104 prom_getintdefault(cpu_node, "icache-line-size", 32);
105 cpu_data(id).ecache_size = prom_getintdefault(cpu_node, "ecache-size",
107 cpu_data(id).ecache_line_size =
108 prom_getintdefault(cpu_node, "ecache-line-size", 64);
109 printk("CPU[%d]: Caches "
110 "D[sz(%d):line_sz(%d)] "
111 "I[sz(%d):line_sz(%d)] "
112 "E[sz(%d):line_sz(%d)]\n",
114 cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
115 cpu_data(id).icache_size, cpu_data(id).icache_line_size,
116 cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
119 static void smp_setup_percpu_timer(void);
121 static volatile unsigned long callin_flag = 0;
123 extern void inherit_locked_prom_mappings(int save_p);
125 static inline void cpu_setup_percpu_base(unsigned long cpu_id)
127 __asm__ __volatile__("mov %0, %%g5\n\t"
128 "stxa %0, [%1] %2\n\t"
131 : "r" (__per_cpu_offset(cpu_id)),
132 "r" (TSB_REG), "i" (ASI_IMMU));
135 void __init smp_callin(void)
137 int cpuid = hard_smp_processor_id();
139 inherit_locked_prom_mappings(0);
143 cpu_setup_percpu_base(cpuid);
145 smp_setup_percpu_timer();
147 if (cheetah_pcache_forced_on)
148 cheetah_enable_pcache();
153 smp_store_cpu_info(cpuid);
155 __asm__ __volatile__("membar #Sync\n\t"
156 "flush %%g6" : : : "memory");
158 /* Clear this or we will die instantly when we
159 * schedule back to this idler...
161 current_thread_info()->new_child = 0;
163 /* Attach to the address space of init_task. */
164 atomic_inc(&init_mm.mm_count);
165 current->active_mm = &init_mm;
167 while (!cpu_isset(cpuid, smp_commenced_mask))
170 cpu_set(cpuid, cpu_online_map);
172 /* idle thread is expected to have preempt disabled */
178 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
179 panic("SMP bolixed\n");
182 static unsigned long current_tick_offset __read_mostly;
184 /* This tick register synchronization scheme is taken entirely from
185 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
187 * The only change I've made is to rework it so that the master
188 * initiates the synchonization instead of the slave. -DaveM
192 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
194 #define NUM_ROUNDS 64 /* magic value */
195 #define NUM_ITERS 5 /* likewise */
197 static DEFINE_SPINLOCK(itc_sync_lock);
198 static unsigned long go[SLAVE + 1];
200 #define DEBUG_TICK_SYNC 0
202 static inline long get_delta (long *rt, long *master)
204 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
205 unsigned long tcenter, t0, t1, tm;
208 for (i = 0; i < NUM_ITERS; i++) {
209 t0 = tick_ops->get_tick();
212 while (!(tm = go[SLAVE]))
216 t1 = tick_ops->get_tick();
218 if (t1 - t0 < best_t1 - best_t0)
219 best_t0 = t0, best_t1 = t1, best_tm = tm;
222 *rt = best_t1 - best_t0;
223 *master = best_tm - best_t0;
225 /* average best_t0 and best_t1 without overflow: */
226 tcenter = (best_t0/2 + best_t1/2);
227 if (best_t0 % 2 + best_t1 % 2 == 2)
229 return tcenter - best_tm;
232 void smp_synchronize_tick_client(void)
234 long i, delta, adj, adjust_latency = 0, done = 0;
235 unsigned long flags, rt, master_time_stamp, bound;
238 long rt; /* roundtrip time */
239 long master; /* master's timestamp */
240 long diff; /* difference between midpoint and master's timestamp */
241 long lat; /* estimate of itc adjustment latency */
250 local_irq_save(flags);
252 for (i = 0; i < NUM_ROUNDS; i++) {
253 delta = get_delta(&rt, &master_time_stamp);
255 done = 1; /* let's lock on to this... */
261 adjust_latency += -delta;
262 adj = -delta + adjust_latency/4;
266 tick_ops->add_tick(adj, current_tick_offset);
270 t[i].master = master_time_stamp;
272 t[i].lat = adjust_latency/4;
276 local_irq_restore(flags);
279 for (i = 0; i < NUM_ROUNDS; i++)
280 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
281 t[i].rt, t[i].master, t[i].diff, t[i].lat);
284 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
285 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
288 static void smp_start_sync_tick_client(int cpu);
290 static void smp_synchronize_one_tick(int cpu)
292 unsigned long flags, i;
296 smp_start_sync_tick_client(cpu);
298 /* wait for client to be ready */
302 /* now let the client proceed into his loop */
306 spin_lock_irqsave(&itc_sync_lock, flags);
308 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
313 go[SLAVE] = tick_ops->get_tick();
317 spin_unlock_irqrestore(&itc_sync_lock, flags);
320 extern unsigned long sparc64_cpu_startup;
322 /* The OBP cpu startup callback truncates the 3rd arg cookie to
323 * 32-bits (I think) so to be safe we have it read the pointer
324 * contained here so we work on >4GB machines. -DaveM
326 static struct thread_info *cpu_new_thread = NULL;
328 static int __devinit smp_boot_one_cpu(unsigned int cpu)
330 unsigned long entry =
331 (unsigned long)(&sparc64_cpu_startup);
332 unsigned long cookie =
333 (unsigned long)(&cpu_new_thread);
334 struct task_struct *p;
335 int timeout, ret, cpu_node;
339 cpu_new_thread = p->thread_info;
340 cpu_set(cpu, cpu_callout_map);
342 cpu_find_by_mid(cpu, &cpu_node);
343 prom_startcpu(cpu_node, entry, cookie);
345 for (timeout = 0; timeout < 5000000; timeout++) {
353 printk("Processor %d is stuck.\n", cpu);
354 cpu_clear(cpu, cpu_callout_map);
357 cpu_new_thread = NULL;
362 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
367 if (this_is_starfire) {
368 /* map to real upaid */
369 cpu = (((cpu & 0x3c) << 1) |
370 ((cpu & 0x40) >> 4) |
374 target = (cpu << 14) | 0x70;
376 /* Ok, this is the real Spitfire Errata #54.
377 * One must read back from a UDB internal register
378 * after writes to the UDB interrupt dispatch, but
379 * before the membar Sync for that write.
380 * So we use the high UDB control register (ASI 0x7f,
381 * ADDR 0x20) for the dummy read. -DaveM
384 __asm__ __volatile__(
385 "wrpr %1, %2, %%pstate\n\t"
386 "stxa %4, [%0] %3\n\t"
387 "stxa %5, [%0+%8] %3\n\t"
389 "stxa %6, [%0+%8] %3\n\t"
391 "stxa %%g0, [%7] %3\n\t"
394 "ldxa [%%g1] 0x7f, %%g0\n\t"
397 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
398 "r" (data0), "r" (data1), "r" (data2), "r" (target),
399 "r" (0x10), "0" (tmp)
402 /* NOTE: PSTATE_IE is still clear. */
405 __asm__ __volatile__("ldxa [%%g0] %1, %0"
407 : "i" (ASI_INTR_DISPATCH_STAT));
409 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
416 } while (result & 0x1);
417 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
420 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
421 smp_processor_id(), result);
428 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
433 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
434 for_each_cpu_mask(i, mask)
435 spitfire_xcall_helper(data0, data1, data2, pstate, i);
438 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
439 * packet, but we have no use for that. However we do take advantage of
440 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
442 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
445 int nack_busy_id, is_jalapeno;
447 if (cpus_empty(mask))
450 /* Unfortunately, someone at Sun had the brilliant idea to make the
451 * busy/nack fields hard-coded by ITID number for this Ultra-III
452 * derivative processor.
454 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
455 is_jalapeno = ((ver >> 32) == 0x003e0016);
457 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
460 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
461 : : "r" (pstate), "i" (PSTATE_IE));
463 /* Setup the dispatch data registers. */
464 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
465 "stxa %1, [%4] %6\n\t"
466 "stxa %2, [%5] %6\n\t"
469 : "r" (data0), "r" (data1), "r" (data2),
470 "r" (0x40), "r" (0x50), "r" (0x60),
477 for_each_cpu_mask(i, mask) {
478 u64 target = (i << 14) | 0x70;
481 target |= (nack_busy_id << 24);
482 __asm__ __volatile__(
483 "stxa %%g0, [%0] %1\n\t"
486 : "r" (target), "i" (ASI_INTR_W));
491 /* Now, poll for completion. */
496 stuck = 100000 * nack_busy_id;
498 __asm__ __volatile__("ldxa [%%g0] %1, %0"
499 : "=r" (dispatch_stat)
500 : "i" (ASI_INTR_DISPATCH_STAT));
501 if (dispatch_stat == 0UL) {
502 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
508 } while (dispatch_stat & 0x5555555555555555UL);
510 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
513 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
514 /* Busy bits will not clear, continue instead
515 * of freezing up on this cpu.
517 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
518 smp_processor_id(), dispatch_stat);
520 int i, this_busy_nack = 0;
522 /* Delay some random time with interrupts enabled
523 * to prevent deadlock.
525 udelay(2 * nack_busy_id);
527 /* Clear out the mask bits for cpus which did not
530 for_each_cpu_mask(i, mask) {
534 check_mask = (0x2UL << (2*i));
536 check_mask = (0x2UL <<
538 if ((dispatch_stat & check_mask) == 0)
548 /* Send cross call to all processors mentioned in MASK
551 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
553 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
554 int this_cpu = get_cpu();
556 cpus_and(mask, mask, cpu_online_map);
557 cpu_clear(this_cpu, mask);
559 if (tlb_type == spitfire)
560 spitfire_xcall_deliver(data0, data1, data2, mask);
562 cheetah_xcall_deliver(data0, data1, data2, mask);
563 /* NOTE: Caller runs local copy on master. */
568 extern unsigned long xcall_sync_tick;
570 static void smp_start_sync_tick_client(int cpu)
572 cpumask_t mask = cpumask_of_cpu(cpu);
574 smp_cross_call_masked(&xcall_sync_tick,
578 /* Send cross call to all processors except self. */
579 #define smp_cross_call(func, ctx, data1, data2) \
580 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
582 struct call_data_struct {
583 void (*func) (void *info);
589 static DEFINE_SPINLOCK(call_lock);
590 static struct call_data_struct *call_data;
592 extern unsigned long xcall_call_function;
595 * You must not call this function with disabled interrupts or from a
596 * hardware interrupt handler or from a bottom half handler.
598 int smp_call_function(void (*func)(void *info), void *info,
599 int nonatomic, int wait)
601 struct call_data_struct data;
602 int cpus = num_online_cpus() - 1;
608 /* Can deadlock when called with interrupts disabled */
609 WARN_ON(irqs_disabled());
613 atomic_set(&data.finished, 0);
616 spin_lock(&call_lock);
620 smp_cross_call(&xcall_call_function, 0, 0, 0);
623 * Wait for other cpus to complete function or at
624 * least snap the call data.
627 while (atomic_read(&data.finished) != cpus) {
634 spin_unlock(&call_lock);
639 spin_unlock(&call_lock);
640 printk("XCALL: Remote cpus not responding, ncpus=%ld finished=%ld\n",
641 (long) num_online_cpus() - 1L,
642 (long) atomic_read(&data.finished));
646 void smp_call_function_client(int irq, struct pt_regs *regs)
648 void (*func) (void *info) = call_data->func;
649 void *info = call_data->info;
651 clear_softint(1 << irq);
652 if (call_data->wait) {
653 /* let initiator proceed only after completion */
655 atomic_inc(&call_data->finished);
657 /* let initiator proceed after getting data */
658 atomic_inc(&call_data->finished);
663 extern unsigned long xcall_flush_tlb_mm;
664 extern unsigned long xcall_flush_tlb_pending;
665 extern unsigned long xcall_flush_tlb_kernel_range;
666 extern unsigned long xcall_flush_tlb_all_spitfire;
667 extern unsigned long xcall_flush_tlb_all_cheetah;
668 extern unsigned long xcall_report_regs;
669 extern unsigned long xcall_receive_signal;
671 #ifdef DCACHE_ALIASING_POSSIBLE
672 extern unsigned long xcall_flush_dcache_page_cheetah;
674 extern unsigned long xcall_flush_dcache_page_spitfire;
676 #ifdef CONFIG_DEBUG_DCFLUSH
677 extern atomic_t dcpage_flushes;
678 extern atomic_t dcpage_flushes_xcall;
681 static __inline__ void __local_flush_dcache_page(struct page *page)
683 #ifdef DCACHE_ALIASING_POSSIBLE
684 __flush_dcache_page(page_address(page),
685 ((tlb_type == spitfire) &&
686 page_mapping(page) != NULL));
688 if (page_mapping(page) != NULL &&
689 tlb_type == spitfire)
690 __flush_icache_page(__pa(page_address(page)));
694 void smp_flush_dcache_page_impl(struct page *page, int cpu)
696 cpumask_t mask = cpumask_of_cpu(cpu);
697 int this_cpu = get_cpu();
699 #ifdef CONFIG_DEBUG_DCFLUSH
700 atomic_inc(&dcpage_flushes);
702 if (cpu == this_cpu) {
703 __local_flush_dcache_page(page);
704 } else if (cpu_online(cpu)) {
705 void *pg_addr = page_address(page);
708 if (tlb_type == spitfire) {
710 ((u64)&xcall_flush_dcache_page_spitfire);
711 if (page_mapping(page) != NULL)
712 data0 |= ((u64)1 << 32);
713 spitfire_xcall_deliver(data0,
718 #ifdef DCACHE_ALIASING_POSSIBLE
720 ((u64)&xcall_flush_dcache_page_cheetah);
721 cheetah_xcall_deliver(data0,
726 #ifdef CONFIG_DEBUG_DCFLUSH
727 atomic_inc(&dcpage_flushes_xcall);
734 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
736 void *pg_addr = page_address(page);
737 cpumask_t mask = cpu_online_map;
739 int this_cpu = get_cpu();
741 cpu_clear(this_cpu, mask);
743 #ifdef CONFIG_DEBUG_DCFLUSH
744 atomic_inc(&dcpage_flushes);
746 if (cpus_empty(mask))
748 if (tlb_type == spitfire) {
749 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
750 if (page_mapping(page) != NULL)
751 data0 |= ((u64)1 << 32);
752 spitfire_xcall_deliver(data0,
757 #ifdef DCACHE_ALIASING_POSSIBLE
758 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
759 cheetah_xcall_deliver(data0,
764 #ifdef CONFIG_DEBUG_DCFLUSH
765 atomic_inc(&dcpage_flushes_xcall);
768 __local_flush_dcache_page(page);
773 void smp_receive_signal(int cpu)
775 cpumask_t mask = cpumask_of_cpu(cpu);
777 if (cpu_online(cpu)) {
778 u64 data0 = (((u64)&xcall_receive_signal) & 0xffffffff);
780 if (tlb_type == spitfire)
781 spitfire_xcall_deliver(data0, 0, 0, mask);
783 cheetah_xcall_deliver(data0, 0, 0, mask);
787 void smp_receive_signal_client(int irq, struct pt_regs *regs)
789 /* Just return, rtrap takes care of the rest. */
790 clear_softint(1 << irq);
793 void smp_report_regs(void)
795 smp_cross_call(&xcall_report_regs, 0, 0, 0);
798 void smp_flush_tlb_all(void)
800 if (tlb_type == spitfire)
801 smp_cross_call(&xcall_flush_tlb_all_spitfire, 0, 0, 0);
803 smp_cross_call(&xcall_flush_tlb_all_cheetah, 0, 0, 0);
807 /* We know that the window frames of the user have been flushed
808 * to the stack before we get here because all callers of us
809 * are flush_tlb_*() routines, and these run after flush_cache_*()
810 * which performs the flushw.
812 * The SMP TLB coherency scheme we use works as follows:
814 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
815 * space has (potentially) executed on, this is the heuristic
816 * we use to avoid doing cross calls.
818 * Also, for flushing from kswapd and also for clones, we
819 * use cpu_vm_mask as the list of cpus to make run the TLB.
821 * 2) TLB context numbers are shared globally across all processors
822 * in the system, this allows us to play several games to avoid
825 * One invariant is that when a cpu switches to a process, and
826 * that processes tsk->active_mm->cpu_vm_mask does not have the
827 * current cpu's bit set, that tlb context is flushed locally.
829 * If the address space is non-shared (ie. mm->count == 1) we avoid
830 * cross calls when we want to flush the currently running process's
831 * tlb state. This is done by clearing all cpu bits except the current
832 * processor's in current->active_mm->cpu_vm_mask and performing the
833 * flush locally only. This will force any subsequent cpus which run
834 * this task to flush the context from the local tlb if the process
835 * migrates to another cpu (again).
837 * 3) For shared address spaces (threads) and swapping we bite the
838 * bullet for most cases and perform the cross call (but only to
839 * the cpus listed in cpu_vm_mask).
841 * The performance gain from "optimizing" away the cross call for threads is
842 * questionable (in theory the big win for threads is the massive sharing of
843 * address space state across processors).
846 /* This currently is only used by the hugetlb arch pre-fault
847 * hook on UltraSPARC-III+ and later when changing the pagesize
848 * bits of the context register for an address space.
850 void smp_flush_tlb_mm(struct mm_struct *mm)
852 u32 ctx = CTX_HWBITS(mm->context);
855 if (atomic_read(&mm->mm_users) == 1) {
856 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
857 goto local_flush_and_out;
860 smp_cross_call_masked(&xcall_flush_tlb_mm,
865 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
870 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
872 u32 ctx = CTX_HWBITS(mm->context);
875 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
876 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
878 smp_cross_call_masked(&xcall_flush_tlb_pending,
879 ctx, nr, (unsigned long) vaddrs,
882 __flush_tlb_pending(ctx, nr, vaddrs);
887 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
890 end = PAGE_ALIGN(end);
892 smp_cross_call(&xcall_flush_tlb_kernel_range,
895 __flush_tlb_kernel_range(start, end);
900 /* #define CAPTURE_DEBUG */
901 extern unsigned long xcall_capture;
903 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
904 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
905 static unsigned long penguins_are_doing_time;
907 void smp_capture(void)
909 int result = atomic_add_ret(1, &smp_capture_depth);
912 int ncpus = num_online_cpus();
915 printk("CPU[%d]: Sending penguins to jail...",
918 penguins_are_doing_time = 1;
919 membar_storestore_loadstore();
920 atomic_inc(&smp_capture_registry);
921 smp_cross_call(&xcall_capture, 0, 0, 0);
922 while (atomic_read(&smp_capture_registry) != ncpus)
930 void smp_release(void)
932 if (atomic_dec_and_test(&smp_capture_depth)) {
934 printk("CPU[%d]: Giving pardon to "
935 "imprisoned penguins\n",
938 penguins_are_doing_time = 0;
939 membar_storeload_storestore();
940 atomic_dec(&smp_capture_registry);
944 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
945 * can service tlb flush xcalls...
947 extern void prom_world(int);
948 extern void save_alternate_globals(unsigned long *);
949 extern void restore_alternate_globals(unsigned long *);
950 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
952 unsigned long global_save[24];
954 clear_softint(1 << irq);
958 __asm__ __volatile__("flushw");
959 save_alternate_globals(global_save);
961 atomic_inc(&smp_capture_registry);
962 membar_storeload_storestore();
963 while (penguins_are_doing_time)
965 restore_alternate_globals(global_save);
966 atomic_dec(&smp_capture_registry);
972 #define prof_multiplier(__cpu) cpu_data(__cpu).multiplier
973 #define prof_counter(__cpu) cpu_data(__cpu).counter
975 void smp_percpu_timer_interrupt(struct pt_regs *regs)
977 unsigned long compare, tick, pstate;
978 int cpu = smp_processor_id();
979 int user = user_mode(regs);
982 * Check for level 14 softint.
985 unsigned long tick_mask = tick_ops->softint_mask;
987 if (!(get_softint() & tick_mask)) {
988 extern void handler_irq(int, struct pt_regs *);
990 handler_irq(14, regs);
993 clear_softint(tick_mask);
997 profile_tick(CPU_PROFILING, regs);
998 if (!--prof_counter(cpu)) {
1001 if (cpu == boot_cpu_id) {
1002 kstat_this_cpu.irqs[0]++;
1003 timer_tick_interrupt(regs);
1006 update_process_times(user);
1010 prof_counter(cpu) = prof_multiplier(cpu);
1013 /* Guarantee that the following sequences execute
1016 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1017 "wrpr %0, %1, %%pstate"
1021 compare = tick_ops->add_compare(current_tick_offset);
1022 tick = tick_ops->get_tick();
1024 /* Restore PSTATE_IE. */
1025 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1028 } while (time_after_eq(tick, compare));
1031 static void __init smp_setup_percpu_timer(void)
1033 int cpu = smp_processor_id();
1034 unsigned long pstate;
1036 prof_counter(cpu) = prof_multiplier(cpu) = 1;
1038 /* Guarantee that the following sequences execute
1041 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1042 "wrpr %0, %1, %%pstate"
1046 tick_ops->init_tick(current_tick_offset);
1048 /* Restore PSTATE_IE. */
1049 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1054 void __init smp_tick_init(void)
1056 boot_cpu_id = hard_smp_processor_id();
1057 current_tick_offset = timer_tick_offset;
1059 cpu_set(boot_cpu_id, cpu_online_map);
1060 prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1063 /* /proc/profile writes can call this, don't __init it please. */
1064 static DEFINE_SPINLOCK(prof_setup_lock);
1066 int setup_profiling_timer(unsigned int multiplier)
1068 unsigned long flags;
1071 if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1074 spin_lock_irqsave(&prof_setup_lock, flags);
1075 for (i = 0; i < NR_CPUS; i++)
1076 prof_multiplier(i) = multiplier;
1077 current_tick_offset = (timer_tick_offset / multiplier);
1078 spin_unlock_irqrestore(&prof_setup_lock, flags);
1083 void __init smp_prepare_cpus(unsigned int max_cpus)
1088 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1090 cpu_set(mid, phys_cpu_present_map);
1094 if (num_possible_cpus() > max_cpus) {
1096 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1097 if (mid != boot_cpu_id) {
1098 cpu_clear(mid, phys_cpu_present_map);
1099 if (num_possible_cpus() <= max_cpus)
1106 smp_store_cpu_info(boot_cpu_id);
1109 void __devinit smp_prepare_boot_cpu(void)
1111 if (hard_smp_processor_id() >= NR_CPUS) {
1112 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
1116 current_thread_info()->cpu = hard_smp_processor_id();
1118 cpu_set(smp_processor_id(), cpu_online_map);
1119 cpu_set(smp_processor_id(), phys_cpu_present_map);
1122 int __devinit __cpu_up(unsigned int cpu)
1124 int ret = smp_boot_one_cpu(cpu);
1127 cpu_set(cpu, smp_commenced_mask);
1128 while (!cpu_isset(cpu, cpu_online_map))
1130 if (!cpu_isset(cpu, cpu_online_map)) {
1133 smp_synchronize_one_tick(cpu);
1139 void __init smp_cpus_done(unsigned int max_cpus)
1141 unsigned long bogosum = 0;
1144 for (i = 0; i < NR_CPUS; i++) {
1146 bogosum += cpu_data(i).udelay_val;
1148 printk("Total of %ld processors activated "
1149 "(%lu.%02lu BogoMIPS).\n",
1150 (long) num_online_cpus(),
1151 bogosum/(500000/HZ),
1152 (bogosum/(5000/HZ))%100);
1155 void smp_send_reschedule(int cpu)
1157 smp_receive_signal(cpu);
1160 /* This is a nop because we capture all other cpus
1161 * anyways when making the PROM active.
1163 void smp_send_stop(void)
1167 unsigned long __per_cpu_base __read_mostly;
1168 unsigned long __per_cpu_shift __read_mostly;
1170 EXPORT_SYMBOL(__per_cpu_base);
1171 EXPORT_SYMBOL(__per_cpu_shift);
1173 void __init setup_per_cpu_areas(void)
1175 unsigned long goal, size, i;
1177 /* Created by linker magic */
1178 extern char __per_cpu_start[], __per_cpu_end[];
1180 /* Copy section for each CPU (we discard the original) */
1181 goal = ALIGN(__per_cpu_end - __per_cpu_start, PAGE_SIZE);
1183 #ifdef CONFIG_MODULES
1184 if (goal < PERCPU_ENOUGH_ROOM)
1185 goal = PERCPU_ENOUGH_ROOM;
1187 __per_cpu_shift = 0;
1188 for (size = 1UL; size < goal; size <<= 1UL)
1191 /* Make sure the resulting __per_cpu_base value
1192 * will fit in the 43-bit sign extended IMMU
1195 ptr = __alloc_bootmem(size * NR_CPUS, PAGE_SIZE,
1196 (unsigned long) __per_cpu_start);
1198 __per_cpu_base = ptr - __per_cpu_start;
1200 if ((__per_cpu_shift < PAGE_SHIFT) ||
1201 (__per_cpu_base & ~PAGE_MASK) ||
1202 (__per_cpu_base != (((long) __per_cpu_base << 20) >> 20))) {
1203 prom_printf("PER_CPU: Invalid layout, "
1204 "ptr[%p] shift[%lx] base[%lx]\n",
1205 ptr, __per_cpu_shift, __per_cpu_base);
1209 for (i = 0; i < NR_CPUS; i++, ptr += size)
1210 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1212 /* Finally, load in the boot cpu's base value.
1213 * We abuse the IMMU TSB register for trap handler
1214 * entry and exit loading of %g5. That is why it
1215 * has to be page aligned.
1217 cpu_setup_percpu_base(hard_smp_processor_id());