nvidiafb: Add proper support for Geforce 7600 chipset
[linux-2.6] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23  *  enough at me, Linus for the original (flawed) idea, Matthew
24  *  Kirkwood for proof-of-concept implementation.
25  *
26  *  "The futexes are also cursed."
27  *  "But they come in a choice of three flavours!"
28  *
29  *  This program is free software; you can redistribute it and/or modify
30  *  it under the terms of the GNU General Public License as published by
31  *  the Free Software Foundation; either version 2 of the License, or
32  *  (at your option) any later version.
33  *
34  *  This program is distributed in the hope that it will be useful,
35  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
36  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
37  *  GNU General Public License for more details.
38  *
39  *  You should have received a copy of the GNU General Public License
40  *  along with this program; if not, write to the Free Software
41  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
42  */
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <asm/futex.h>
56
57 #include "rtmutex_common.h"
58
59 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
60
61 /*
62  * Priority Inheritance state:
63  */
64 struct futex_pi_state {
65         /*
66          * list of 'owned' pi_state instances - these have to be
67          * cleaned up in do_exit() if the task exits prematurely:
68          */
69         struct list_head list;
70
71         /*
72          * The PI object:
73          */
74         struct rt_mutex pi_mutex;
75
76         struct task_struct *owner;
77         atomic_t refcount;
78
79         union futex_key key;
80 };
81
82 /*
83  * We use this hashed waitqueue instead of a normal wait_queue_t, so
84  * we can wake only the relevant ones (hashed queues may be shared).
85  *
86  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
87  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
88  * The order of wakup is always to make the first condition true, then
89  * wake up q->waiters, then make the second condition true.
90  */
91 struct futex_q {
92         struct plist_node list;
93         wait_queue_head_t waiters;
94
95         /* Which hash list lock to use: */
96         spinlock_t *lock_ptr;
97
98         /* Key which the futex is hashed on: */
99         union futex_key key;
100
101         /* For fd, sigio sent using these: */
102         int fd;
103         struct file *filp;
104
105         /* Optional priority inheritance state: */
106         struct futex_pi_state *pi_state;
107         struct task_struct *task;
108 };
109
110 /*
111  * Split the global futex_lock into every hash list lock.
112  */
113 struct futex_hash_bucket {
114         spinlock_t lock;
115         struct plist_head chain;
116 };
117
118 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
119
120 /* Futex-fs vfsmount entry: */
121 static struct vfsmount *futex_mnt;
122
123 /*
124  * Take mm->mmap_sem, when futex is shared
125  */
126 static inline void futex_lock_mm(struct rw_semaphore *fshared)
127 {
128         if (fshared)
129                 down_read(fshared);
130 }
131
132 /*
133  * Release mm->mmap_sem, when the futex is shared
134  */
135 static inline void futex_unlock_mm(struct rw_semaphore *fshared)
136 {
137         if (fshared)
138                 up_read(fshared);
139 }
140
141 /*
142  * We hash on the keys returned from get_futex_key (see below).
143  */
144 static struct futex_hash_bucket *hash_futex(union futex_key *key)
145 {
146         u32 hash = jhash2((u32*)&key->both.word,
147                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
148                           key->both.offset);
149         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
150 }
151
152 /*
153  * Return 1 if two futex_keys are equal, 0 otherwise.
154  */
155 static inline int match_futex(union futex_key *key1, union futex_key *key2)
156 {
157         return (key1->both.word == key2->both.word
158                 && key1->both.ptr == key2->both.ptr
159                 && key1->both.offset == key2->both.offset);
160 }
161
162 /**
163  * get_futex_key - Get parameters which are the keys for a futex.
164  * @uaddr: virtual address of the futex
165  * @shared: NULL for a PROCESS_PRIVATE futex,
166  *      &current->mm->mmap_sem for a PROCESS_SHARED futex
167  * @key: address where result is stored.
168  *
169  * Returns a negative error code or 0
170  * The key words are stored in *key on success.
171  *
172  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
173  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
174  * We can usually work out the index without swapping in the page.
175  *
176  * fshared is NULL for PROCESS_PRIVATE futexes
177  * For other futexes, it points to &current->mm->mmap_sem and
178  * caller must have taken the reader lock. but NOT any spinlocks.
179  */
180 int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
181                   union futex_key *key)
182 {
183         unsigned long address = (unsigned long)uaddr;
184         struct mm_struct *mm = current->mm;
185         struct vm_area_struct *vma;
186         struct page *page;
187         int err;
188
189         /*
190          * The futex address must be "naturally" aligned.
191          */
192         key->both.offset = address % PAGE_SIZE;
193         if (unlikely((address % sizeof(u32)) != 0))
194                 return -EINVAL;
195         address -= key->both.offset;
196
197         /*
198          * PROCESS_PRIVATE futexes are fast.
199          * As the mm cannot disappear under us and the 'key' only needs
200          * virtual address, we dont even have to find the underlying vma.
201          * Note : We do have to check 'uaddr' is a valid user address,
202          *        but access_ok() should be faster than find_vma()
203          */
204         if (!fshared) {
205                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
206                         return -EFAULT;
207                 key->private.mm = mm;
208                 key->private.address = address;
209                 return 0;
210         }
211         /*
212          * The futex is hashed differently depending on whether
213          * it's in a shared or private mapping.  So check vma first.
214          */
215         vma = find_extend_vma(mm, address);
216         if (unlikely(!vma))
217                 return -EFAULT;
218
219         /*
220          * Permissions.
221          */
222         if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
223                 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
224
225         /*
226          * Private mappings are handled in a simple way.
227          *
228          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
229          * it's a read-only handle, it's expected that futexes attach to
230          * the object not the particular process.  Therefore we use
231          * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
232          * mappings of _writable_ handles.
233          */
234         if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
235                 key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
236                 key->private.mm = mm;
237                 key->private.address = address;
238                 return 0;
239         }
240
241         /*
242          * Linear file mappings are also simple.
243          */
244         key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
245         key->both.offset |= FUT_OFF_INODE; /* inode-based key. */
246         if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
247                 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
248                                      + vma->vm_pgoff);
249                 return 0;
250         }
251
252         /*
253          * We could walk the page table to read the non-linear
254          * pte, and get the page index without fetching the page
255          * from swap.  But that's a lot of code to duplicate here
256          * for a rare case, so we simply fetch the page.
257          */
258         err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
259         if (err >= 0) {
260                 key->shared.pgoff =
261                         page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
262                 put_page(page);
263                 return 0;
264         }
265         return err;
266 }
267 EXPORT_SYMBOL_GPL(get_futex_key);
268
269 /*
270  * Take a reference to the resource addressed by a key.
271  * Can be called while holding spinlocks.
272  *
273  */
274 inline void get_futex_key_refs(union futex_key *key)
275 {
276         if (key->both.ptr == 0)
277                 return;
278         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
279                 case FUT_OFF_INODE:
280                         atomic_inc(&key->shared.inode->i_count);
281                         break;
282                 case FUT_OFF_MMSHARED:
283                         atomic_inc(&key->private.mm->mm_count);
284                         break;
285         }
286 }
287 EXPORT_SYMBOL_GPL(get_futex_key_refs);
288
289 /*
290  * Drop a reference to the resource addressed by a key.
291  * The hash bucket spinlock must not be held.
292  */
293 void drop_futex_key_refs(union futex_key *key)
294 {
295         if (key->both.ptr == 0)
296                 return;
297         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
298                 case FUT_OFF_INODE:
299                         iput(key->shared.inode);
300                         break;
301                 case FUT_OFF_MMSHARED:
302                         mmdrop(key->private.mm);
303                         break;
304         }
305 }
306 EXPORT_SYMBOL_GPL(drop_futex_key_refs);
307
308 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
309 {
310         u32 curval;
311
312         pagefault_disable();
313         curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
314         pagefault_enable();
315
316         return curval;
317 }
318
319 static int get_futex_value_locked(u32 *dest, u32 __user *from)
320 {
321         int ret;
322
323         pagefault_disable();
324         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
325         pagefault_enable();
326
327         return ret ? -EFAULT : 0;
328 }
329
330 /*
331  * Fault handling.
332  * if fshared is non NULL, current->mm->mmap_sem is already held
333  */
334 static int futex_handle_fault(unsigned long address,
335                               struct rw_semaphore *fshared, int attempt)
336 {
337         struct vm_area_struct * vma;
338         struct mm_struct *mm = current->mm;
339         int ret = -EFAULT;
340
341         if (attempt > 2)
342                 return ret;
343
344         if (!fshared)
345                 down_read(&mm->mmap_sem);
346         vma = find_vma(mm, address);
347         if (vma && address >= vma->vm_start &&
348             (vma->vm_flags & VM_WRITE)) {
349                 switch (handle_mm_fault(mm, vma, address, 1)) {
350                 case VM_FAULT_MINOR:
351                         ret = 0;
352                         current->min_flt++;
353                         break;
354                 case VM_FAULT_MAJOR:
355                         ret = 0;
356                         current->maj_flt++;
357                         break;
358                 }
359         }
360         if (!fshared)
361                 up_read(&mm->mmap_sem);
362         return ret;
363 }
364
365 /*
366  * PI code:
367  */
368 static int refill_pi_state_cache(void)
369 {
370         struct futex_pi_state *pi_state;
371
372         if (likely(current->pi_state_cache))
373                 return 0;
374
375         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
376
377         if (!pi_state)
378                 return -ENOMEM;
379
380         INIT_LIST_HEAD(&pi_state->list);
381         /* pi_mutex gets initialized later */
382         pi_state->owner = NULL;
383         atomic_set(&pi_state->refcount, 1);
384
385         current->pi_state_cache = pi_state;
386
387         return 0;
388 }
389
390 static struct futex_pi_state * alloc_pi_state(void)
391 {
392         struct futex_pi_state *pi_state = current->pi_state_cache;
393
394         WARN_ON(!pi_state);
395         current->pi_state_cache = NULL;
396
397         return pi_state;
398 }
399
400 static void free_pi_state(struct futex_pi_state *pi_state)
401 {
402         if (!atomic_dec_and_test(&pi_state->refcount))
403                 return;
404
405         /*
406          * If pi_state->owner is NULL, the owner is most probably dying
407          * and has cleaned up the pi_state already
408          */
409         if (pi_state->owner) {
410                 spin_lock_irq(&pi_state->owner->pi_lock);
411                 list_del_init(&pi_state->list);
412                 spin_unlock_irq(&pi_state->owner->pi_lock);
413
414                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
415         }
416
417         if (current->pi_state_cache)
418                 kfree(pi_state);
419         else {
420                 /*
421                  * pi_state->list is already empty.
422                  * clear pi_state->owner.
423                  * refcount is at 0 - put it back to 1.
424                  */
425                 pi_state->owner = NULL;
426                 atomic_set(&pi_state->refcount, 1);
427                 current->pi_state_cache = pi_state;
428         }
429 }
430
431 /*
432  * Look up the task based on what TID userspace gave us.
433  * We dont trust it.
434  */
435 static struct task_struct * futex_find_get_task(pid_t pid)
436 {
437         struct task_struct *p;
438
439         rcu_read_lock();
440         p = find_task_by_pid(pid);
441
442         if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
443                 p = ERR_PTR(-ESRCH);
444         else
445                 get_task_struct(p);
446
447         rcu_read_unlock();
448
449         return p;
450 }
451
452 /*
453  * This task is holding PI mutexes at exit time => bad.
454  * Kernel cleans up PI-state, but userspace is likely hosed.
455  * (Robust-futex cleanup is separate and might save the day for userspace.)
456  */
457 void exit_pi_state_list(struct task_struct *curr)
458 {
459         struct list_head *next, *head = &curr->pi_state_list;
460         struct futex_pi_state *pi_state;
461         struct futex_hash_bucket *hb;
462         union futex_key key;
463
464         /*
465          * We are a ZOMBIE and nobody can enqueue itself on
466          * pi_state_list anymore, but we have to be careful
467          * versus waiters unqueueing themselves:
468          */
469         spin_lock_irq(&curr->pi_lock);
470         while (!list_empty(head)) {
471
472                 next = head->next;
473                 pi_state = list_entry(next, struct futex_pi_state, list);
474                 key = pi_state->key;
475                 hb = hash_futex(&key);
476                 spin_unlock_irq(&curr->pi_lock);
477
478                 spin_lock(&hb->lock);
479
480                 spin_lock_irq(&curr->pi_lock);
481                 /*
482                  * We dropped the pi-lock, so re-check whether this
483                  * task still owns the PI-state:
484                  */
485                 if (head->next != next) {
486                         spin_unlock(&hb->lock);
487                         continue;
488                 }
489
490                 WARN_ON(pi_state->owner != curr);
491                 WARN_ON(list_empty(&pi_state->list));
492                 list_del_init(&pi_state->list);
493                 pi_state->owner = NULL;
494                 spin_unlock_irq(&curr->pi_lock);
495
496                 rt_mutex_unlock(&pi_state->pi_mutex);
497
498                 spin_unlock(&hb->lock);
499
500                 spin_lock_irq(&curr->pi_lock);
501         }
502         spin_unlock_irq(&curr->pi_lock);
503 }
504
505 static int
506 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
507                 union futex_key *key, struct futex_pi_state **ps)
508 {
509         struct futex_pi_state *pi_state = NULL;
510         struct futex_q *this, *next;
511         struct plist_head *head;
512         struct task_struct *p;
513         pid_t pid = uval & FUTEX_TID_MASK;
514
515         head = &hb->chain;
516
517         plist_for_each_entry_safe(this, next, head, list) {
518                 if (match_futex(&this->key, key)) {
519                         /*
520                          * Another waiter already exists - bump up
521                          * the refcount and return its pi_state:
522                          */
523                         pi_state = this->pi_state;
524                         /*
525                          * Userspace might have messed up non PI and PI futexes
526                          */
527                         if (unlikely(!pi_state))
528                                 return -EINVAL;
529
530                         WARN_ON(!atomic_read(&pi_state->refcount));
531                         WARN_ON(pid && pi_state->owner &&
532                                 pi_state->owner->pid != pid);
533
534                         atomic_inc(&pi_state->refcount);
535                         *ps = pi_state;
536
537                         return 0;
538                 }
539         }
540
541         /*
542          * We are the first waiter - try to look up the real owner and attach
543          * the new pi_state to it, but bail out when TID = 0
544          */
545         if (!pid)
546                 return -ESRCH;
547         p = futex_find_get_task(pid);
548         if (IS_ERR(p))
549                 return PTR_ERR(p);
550
551         /*
552          * We need to look at the task state flags to figure out,
553          * whether the task is exiting. To protect against the do_exit
554          * change of the task flags, we do this protected by
555          * p->pi_lock:
556          */
557         spin_lock_irq(&p->pi_lock);
558         if (unlikely(p->flags & PF_EXITING)) {
559                 /*
560                  * The task is on the way out. When PF_EXITPIDONE is
561                  * set, we know that the task has finished the
562                  * cleanup:
563                  */
564                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
565
566                 spin_unlock_irq(&p->pi_lock);
567                 put_task_struct(p);
568                 return ret;
569         }
570
571         pi_state = alloc_pi_state();
572
573         /*
574          * Initialize the pi_mutex in locked state and make 'p'
575          * the owner of it:
576          */
577         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
578
579         /* Store the key for possible exit cleanups: */
580         pi_state->key = *key;
581
582         WARN_ON(!list_empty(&pi_state->list));
583         list_add(&pi_state->list, &p->pi_state_list);
584         pi_state->owner = p;
585         spin_unlock_irq(&p->pi_lock);
586
587         put_task_struct(p);
588
589         *ps = pi_state;
590
591         return 0;
592 }
593
594 /*
595  * The hash bucket lock must be held when this is called.
596  * Afterwards, the futex_q must not be accessed.
597  */
598 static void wake_futex(struct futex_q *q)
599 {
600         plist_del(&q->list, &q->list.plist);
601         if (q->filp)
602                 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
603         /*
604          * The lock in wake_up_all() is a crucial memory barrier after the
605          * plist_del() and also before assigning to q->lock_ptr.
606          */
607         wake_up_all(&q->waiters);
608         /*
609          * The waiting task can free the futex_q as soon as this is written,
610          * without taking any locks.  This must come last.
611          *
612          * A memory barrier is required here to prevent the following store
613          * to lock_ptr from getting ahead of the wakeup. Clearing the lock
614          * at the end of wake_up_all() does not prevent this store from
615          * moving.
616          */
617         smp_wmb();
618         q->lock_ptr = NULL;
619 }
620
621 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
622 {
623         struct task_struct *new_owner;
624         struct futex_pi_state *pi_state = this->pi_state;
625         u32 curval, newval;
626
627         if (!pi_state)
628                 return -EINVAL;
629
630         spin_lock(&pi_state->pi_mutex.wait_lock);
631         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
632
633         /*
634          * This happens when we have stolen the lock and the original
635          * pending owner did not enqueue itself back on the rt_mutex.
636          * Thats not a tragedy. We know that way, that a lock waiter
637          * is on the fly. We make the futex_q waiter the pending owner.
638          */
639         if (!new_owner)
640                 new_owner = this->task;
641
642         /*
643          * We pass it to the next owner. (The WAITERS bit is always
644          * kept enabled while there is PI state around. We must also
645          * preserve the owner died bit.)
646          */
647         if (!(uval & FUTEX_OWNER_DIED)) {
648                 int ret = 0;
649
650                 newval = FUTEX_WAITERS | new_owner->pid;
651
652                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
653
654                 if (curval == -EFAULT)
655                         ret = -EFAULT;
656                 if (curval != uval)
657                         ret = -EINVAL;
658                 if (ret) {
659                         spin_unlock(&pi_state->pi_mutex.wait_lock);
660                         return ret;
661                 }
662         }
663
664         spin_lock_irq(&pi_state->owner->pi_lock);
665         WARN_ON(list_empty(&pi_state->list));
666         list_del_init(&pi_state->list);
667         spin_unlock_irq(&pi_state->owner->pi_lock);
668
669         spin_lock_irq(&new_owner->pi_lock);
670         WARN_ON(!list_empty(&pi_state->list));
671         list_add(&pi_state->list, &new_owner->pi_state_list);
672         pi_state->owner = new_owner;
673         spin_unlock_irq(&new_owner->pi_lock);
674
675         spin_unlock(&pi_state->pi_mutex.wait_lock);
676         rt_mutex_unlock(&pi_state->pi_mutex);
677
678         return 0;
679 }
680
681 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
682 {
683         u32 oldval;
684
685         /*
686          * There is no waiter, so we unlock the futex. The owner died
687          * bit has not to be preserved here. We are the owner:
688          */
689         oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
690
691         if (oldval == -EFAULT)
692                 return oldval;
693         if (oldval != uval)
694                 return -EAGAIN;
695
696         return 0;
697 }
698
699 /*
700  * Express the locking dependencies for lockdep:
701  */
702 static inline void
703 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
704 {
705         if (hb1 <= hb2) {
706                 spin_lock(&hb1->lock);
707                 if (hb1 < hb2)
708                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
709         } else { /* hb1 > hb2 */
710                 spin_lock(&hb2->lock);
711                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
712         }
713 }
714
715 /*
716  * Wake up all waiters hashed on the physical page that is mapped
717  * to this virtual address:
718  */
719 static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
720                       int nr_wake)
721 {
722         struct futex_hash_bucket *hb;
723         struct futex_q *this, *next;
724         struct plist_head *head;
725         union futex_key key;
726         int ret;
727
728         futex_lock_mm(fshared);
729
730         ret = get_futex_key(uaddr, fshared, &key);
731         if (unlikely(ret != 0))
732                 goto out;
733
734         hb = hash_futex(&key);
735         spin_lock(&hb->lock);
736         head = &hb->chain;
737
738         plist_for_each_entry_safe(this, next, head, list) {
739                 if (match_futex (&this->key, &key)) {
740                         if (this->pi_state) {
741                                 ret = -EINVAL;
742                                 break;
743                         }
744                         wake_futex(this);
745                         if (++ret >= nr_wake)
746                                 break;
747                 }
748         }
749
750         spin_unlock(&hb->lock);
751 out:
752         futex_unlock_mm(fshared);
753         return ret;
754 }
755
756 /*
757  * Wake up all waiters hashed on the physical page that is mapped
758  * to this virtual address:
759  */
760 static int
761 futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
762               u32 __user *uaddr2,
763               int nr_wake, int nr_wake2, int op)
764 {
765         union futex_key key1, key2;
766         struct futex_hash_bucket *hb1, *hb2;
767         struct plist_head *head;
768         struct futex_q *this, *next;
769         int ret, op_ret, attempt = 0;
770
771 retryfull:
772         futex_lock_mm(fshared);
773
774         ret = get_futex_key(uaddr1, fshared, &key1);
775         if (unlikely(ret != 0))
776                 goto out;
777         ret = get_futex_key(uaddr2, fshared, &key2);
778         if (unlikely(ret != 0))
779                 goto out;
780
781         hb1 = hash_futex(&key1);
782         hb2 = hash_futex(&key2);
783
784 retry:
785         double_lock_hb(hb1, hb2);
786
787         op_ret = futex_atomic_op_inuser(op, uaddr2);
788         if (unlikely(op_ret < 0)) {
789                 u32 dummy;
790
791                 spin_unlock(&hb1->lock);
792                 if (hb1 != hb2)
793                         spin_unlock(&hb2->lock);
794
795 #ifndef CONFIG_MMU
796                 /*
797                  * we don't get EFAULT from MMU faults if we don't have an MMU,
798                  * but we might get them from range checking
799                  */
800                 ret = op_ret;
801                 goto out;
802 #endif
803
804                 if (unlikely(op_ret != -EFAULT)) {
805                         ret = op_ret;
806                         goto out;
807                 }
808
809                 /*
810                  * futex_atomic_op_inuser needs to both read and write
811                  * *(int __user *)uaddr2, but we can't modify it
812                  * non-atomically.  Therefore, if get_user below is not
813                  * enough, we need to handle the fault ourselves, while
814                  * still holding the mmap_sem.
815                  */
816                 if (attempt++) {
817                         ret = futex_handle_fault((unsigned long)uaddr2,
818                                                  fshared, attempt);
819                         if (ret)
820                                 goto out;
821                         goto retry;
822                 }
823
824                 /*
825                  * If we would have faulted, release mmap_sem,
826                  * fault it in and start all over again.
827                  */
828                 futex_unlock_mm(fshared);
829
830                 ret = get_user(dummy, uaddr2);
831                 if (ret)
832                         return ret;
833
834                 goto retryfull;
835         }
836
837         head = &hb1->chain;
838
839         plist_for_each_entry_safe(this, next, head, list) {
840                 if (match_futex (&this->key, &key1)) {
841                         wake_futex(this);
842                         if (++ret >= nr_wake)
843                                 break;
844                 }
845         }
846
847         if (op_ret > 0) {
848                 head = &hb2->chain;
849
850                 op_ret = 0;
851                 plist_for_each_entry_safe(this, next, head, list) {
852                         if (match_futex (&this->key, &key2)) {
853                                 wake_futex(this);
854                                 if (++op_ret >= nr_wake2)
855                                         break;
856                         }
857                 }
858                 ret += op_ret;
859         }
860
861         spin_unlock(&hb1->lock);
862         if (hb1 != hb2)
863                 spin_unlock(&hb2->lock);
864 out:
865         futex_unlock_mm(fshared);
866
867         return ret;
868 }
869
870 /*
871  * Requeue all waiters hashed on one physical page to another
872  * physical page.
873  */
874 static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
875                          u32 __user *uaddr2,
876                          int nr_wake, int nr_requeue, u32 *cmpval)
877 {
878         union futex_key key1, key2;
879         struct futex_hash_bucket *hb1, *hb2;
880         struct plist_head *head1;
881         struct futex_q *this, *next;
882         int ret, drop_count = 0;
883
884  retry:
885         futex_lock_mm(fshared);
886
887         ret = get_futex_key(uaddr1, fshared, &key1);
888         if (unlikely(ret != 0))
889                 goto out;
890         ret = get_futex_key(uaddr2, fshared, &key2);
891         if (unlikely(ret != 0))
892                 goto out;
893
894         hb1 = hash_futex(&key1);
895         hb2 = hash_futex(&key2);
896
897         double_lock_hb(hb1, hb2);
898
899         if (likely(cmpval != NULL)) {
900                 u32 curval;
901
902                 ret = get_futex_value_locked(&curval, uaddr1);
903
904                 if (unlikely(ret)) {
905                         spin_unlock(&hb1->lock);
906                         if (hb1 != hb2)
907                                 spin_unlock(&hb2->lock);
908
909                         /*
910                          * If we would have faulted, release mmap_sem, fault
911                          * it in and start all over again.
912                          */
913                         futex_unlock_mm(fshared);
914
915                         ret = get_user(curval, uaddr1);
916
917                         if (!ret)
918                                 goto retry;
919
920                         return ret;
921                 }
922                 if (curval != *cmpval) {
923                         ret = -EAGAIN;
924                         goto out_unlock;
925                 }
926         }
927
928         head1 = &hb1->chain;
929         plist_for_each_entry_safe(this, next, head1, list) {
930                 if (!match_futex (&this->key, &key1))
931                         continue;
932                 if (++ret <= nr_wake) {
933                         wake_futex(this);
934                 } else {
935                         /*
936                          * If key1 and key2 hash to the same bucket, no need to
937                          * requeue.
938                          */
939                         if (likely(head1 != &hb2->chain)) {
940                                 plist_del(&this->list, &hb1->chain);
941                                 plist_add(&this->list, &hb2->chain);
942                                 this->lock_ptr = &hb2->lock;
943 #ifdef CONFIG_DEBUG_PI_LIST
944                                 this->list.plist.lock = &hb2->lock;
945 #endif
946                         }
947                         this->key = key2;
948                         get_futex_key_refs(&key2);
949                         drop_count++;
950
951                         if (ret - nr_wake >= nr_requeue)
952                                 break;
953                 }
954         }
955
956 out_unlock:
957         spin_unlock(&hb1->lock);
958         if (hb1 != hb2)
959                 spin_unlock(&hb2->lock);
960
961         /* drop_futex_key_refs() must be called outside the spinlocks. */
962         while (--drop_count >= 0)
963                 drop_futex_key_refs(&key1);
964
965 out:
966         futex_unlock_mm(fshared);
967         return ret;
968 }
969
970 /* The key must be already stored in q->key. */
971 static inline struct futex_hash_bucket *
972 queue_lock(struct futex_q *q, int fd, struct file *filp)
973 {
974         struct futex_hash_bucket *hb;
975
976         q->fd = fd;
977         q->filp = filp;
978
979         init_waitqueue_head(&q->waiters);
980
981         get_futex_key_refs(&q->key);
982         hb = hash_futex(&q->key);
983         q->lock_ptr = &hb->lock;
984
985         spin_lock(&hb->lock);
986         return hb;
987 }
988
989 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
990 {
991         int prio;
992
993         /*
994          * The priority used to register this element is
995          * - either the real thread-priority for the real-time threads
996          * (i.e. threads with a priority lower than MAX_RT_PRIO)
997          * - or MAX_RT_PRIO for non-RT threads.
998          * Thus, all RT-threads are woken first in priority order, and
999          * the others are woken last, in FIFO order.
1000          */
1001         prio = min(current->normal_prio, MAX_RT_PRIO);
1002
1003         plist_node_init(&q->list, prio);
1004 #ifdef CONFIG_DEBUG_PI_LIST
1005         q->list.plist.lock = &hb->lock;
1006 #endif
1007         plist_add(&q->list, &hb->chain);
1008         q->task = current;
1009         spin_unlock(&hb->lock);
1010 }
1011
1012 static inline void
1013 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1014 {
1015         spin_unlock(&hb->lock);
1016         drop_futex_key_refs(&q->key);
1017 }
1018
1019 /*
1020  * queue_me and unqueue_me must be called as a pair, each
1021  * exactly once.  They are called with the hashed spinlock held.
1022  */
1023
1024 /* The key must be already stored in q->key. */
1025 static void queue_me(struct futex_q *q, int fd, struct file *filp)
1026 {
1027         struct futex_hash_bucket *hb;
1028
1029         hb = queue_lock(q, fd, filp);
1030         __queue_me(q, hb);
1031 }
1032
1033 /* Return 1 if we were still queued (ie. 0 means we were woken) */
1034 static int unqueue_me(struct futex_q *q)
1035 {
1036         spinlock_t *lock_ptr;
1037         int ret = 0;
1038
1039         /* In the common case we don't take the spinlock, which is nice. */
1040  retry:
1041         lock_ptr = q->lock_ptr;
1042         barrier();
1043         if (lock_ptr != 0) {
1044                 spin_lock(lock_ptr);
1045                 /*
1046                  * q->lock_ptr can change between reading it and
1047                  * spin_lock(), causing us to take the wrong lock.  This
1048                  * corrects the race condition.
1049                  *
1050                  * Reasoning goes like this: if we have the wrong lock,
1051                  * q->lock_ptr must have changed (maybe several times)
1052                  * between reading it and the spin_lock().  It can
1053                  * change again after the spin_lock() but only if it was
1054                  * already changed before the spin_lock().  It cannot,
1055                  * however, change back to the original value.  Therefore
1056                  * we can detect whether we acquired the correct lock.
1057                  */
1058                 if (unlikely(lock_ptr != q->lock_ptr)) {
1059                         spin_unlock(lock_ptr);
1060                         goto retry;
1061                 }
1062                 WARN_ON(plist_node_empty(&q->list));
1063                 plist_del(&q->list, &q->list.plist);
1064
1065                 BUG_ON(q->pi_state);
1066
1067                 spin_unlock(lock_ptr);
1068                 ret = 1;
1069         }
1070
1071         drop_futex_key_refs(&q->key);
1072         return ret;
1073 }
1074
1075 /*
1076  * PI futexes can not be requeued and must remove themself from the
1077  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1078  * and dropped here.
1079  */
1080 static void unqueue_me_pi(struct futex_q *q)
1081 {
1082         WARN_ON(plist_node_empty(&q->list));
1083         plist_del(&q->list, &q->list.plist);
1084
1085         BUG_ON(!q->pi_state);
1086         free_pi_state(q->pi_state);
1087         q->pi_state = NULL;
1088
1089         spin_unlock(q->lock_ptr);
1090
1091         drop_futex_key_refs(&q->key);
1092 }
1093
1094 /*
1095  * Fixup the pi_state owner with current.
1096  *
1097  * Must be called with hash bucket lock held and mm->sem held for non
1098  * private futexes.
1099  */
1100 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1101                                 struct task_struct *curr)
1102 {
1103         u32 newtid = curr->pid | FUTEX_WAITERS;
1104         struct futex_pi_state *pi_state = q->pi_state;
1105         u32 uval, curval, newval;
1106         int ret;
1107
1108         /* Owner died? */
1109         if (pi_state->owner != NULL) {
1110                 spin_lock_irq(&pi_state->owner->pi_lock);
1111                 WARN_ON(list_empty(&pi_state->list));
1112                 list_del_init(&pi_state->list);
1113                 spin_unlock_irq(&pi_state->owner->pi_lock);
1114         } else
1115                 newtid |= FUTEX_OWNER_DIED;
1116
1117         pi_state->owner = curr;
1118
1119         spin_lock_irq(&curr->pi_lock);
1120         WARN_ON(!list_empty(&pi_state->list));
1121         list_add(&pi_state->list, &curr->pi_state_list);
1122         spin_unlock_irq(&curr->pi_lock);
1123
1124         /*
1125          * We own it, so we have to replace the pending owner
1126          * TID. This must be atomic as we have preserve the
1127          * owner died bit here.
1128          */
1129         ret = get_futex_value_locked(&uval, uaddr);
1130
1131         while (!ret) {
1132                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1133
1134                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1135
1136                 if (curval == -EFAULT)
1137                         ret = -EFAULT;
1138                 if (curval == uval)
1139                         break;
1140                 uval = curval;
1141         }
1142         return ret;
1143 }
1144
1145 /*
1146  * In case we must use restart_block to restart a futex_wait,
1147  * we encode in the 'arg3' shared capability
1148  */
1149 #define ARG3_SHARED  1
1150
1151 static long futex_wait_restart(struct restart_block *restart);
1152
1153 static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
1154                       u32 val, ktime_t *abs_time)
1155 {
1156         struct task_struct *curr = current;
1157         DECLARE_WAITQUEUE(wait, curr);
1158         struct futex_hash_bucket *hb;
1159         struct futex_q q;
1160         u32 uval;
1161         int ret;
1162         struct hrtimer_sleeper t;
1163         int rem = 0;
1164
1165         q.pi_state = NULL;
1166  retry:
1167         futex_lock_mm(fshared);
1168
1169         ret = get_futex_key(uaddr, fshared, &q.key);
1170         if (unlikely(ret != 0))
1171                 goto out_release_sem;
1172
1173         hb = queue_lock(&q, -1, NULL);
1174
1175         /*
1176          * Access the page AFTER the futex is queued.
1177          * Order is important:
1178          *
1179          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1180          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1181          *
1182          * The basic logical guarantee of a futex is that it blocks ONLY
1183          * if cond(var) is known to be true at the time of blocking, for
1184          * any cond.  If we queued after testing *uaddr, that would open
1185          * a race condition where we could block indefinitely with
1186          * cond(var) false, which would violate the guarantee.
1187          *
1188          * A consequence is that futex_wait() can return zero and absorb
1189          * a wakeup when *uaddr != val on entry to the syscall.  This is
1190          * rare, but normal.
1191          *
1192          * for shared futexes, we hold the mmap semaphore, so the mapping
1193          * cannot have changed since we looked it up in get_futex_key.
1194          */
1195         ret = get_futex_value_locked(&uval, uaddr);
1196
1197         if (unlikely(ret)) {
1198                 queue_unlock(&q, hb);
1199
1200                 /*
1201                  * If we would have faulted, release mmap_sem, fault it in and
1202                  * start all over again.
1203                  */
1204                 futex_unlock_mm(fshared);
1205
1206                 ret = get_user(uval, uaddr);
1207
1208                 if (!ret)
1209                         goto retry;
1210                 return ret;
1211         }
1212         ret = -EWOULDBLOCK;
1213         if (uval != val)
1214                 goto out_unlock_release_sem;
1215
1216         /* Only actually queue if *uaddr contained val.  */
1217         __queue_me(&q, hb);
1218
1219         /*
1220          * Now the futex is queued and we have checked the data, we
1221          * don't want to hold mmap_sem while we sleep.
1222          */
1223         futex_unlock_mm(fshared);
1224
1225         /*
1226          * There might have been scheduling since the queue_me(), as we
1227          * cannot hold a spinlock across the get_user() in case it
1228          * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1229          * queueing ourselves into the futex hash.  This code thus has to
1230          * rely on the futex_wake() code removing us from hash when it
1231          * wakes us up.
1232          */
1233
1234         /* add_wait_queue is the barrier after __set_current_state. */
1235         __set_current_state(TASK_INTERRUPTIBLE);
1236         add_wait_queue(&q.waiters, &wait);
1237         /*
1238          * !plist_node_empty() is safe here without any lock.
1239          * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1240          */
1241         if (likely(!plist_node_empty(&q.list))) {
1242                 if (!abs_time)
1243                         schedule();
1244                 else {
1245                         hrtimer_init(&t.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1246                         hrtimer_init_sleeper(&t, current);
1247                         t.timer.expires = *abs_time;
1248
1249                         hrtimer_start(&t.timer, t.timer.expires, HRTIMER_MODE_ABS);
1250
1251                         /*
1252                          * the timer could have already expired, in which
1253                          * case current would be flagged for rescheduling.
1254                          * Don't bother calling schedule.
1255                          */
1256                         if (likely(t.task))
1257                                 schedule();
1258
1259                         hrtimer_cancel(&t.timer);
1260
1261                         /* Flag if a timeout occured */
1262                         rem = (t.task == NULL);
1263                 }
1264         }
1265         __set_current_state(TASK_RUNNING);
1266
1267         /*
1268          * NOTE: we don't remove ourselves from the waitqueue because
1269          * we are the only user of it.
1270          */
1271
1272         /* If we were woken (and unqueued), we succeeded, whatever. */
1273         if (!unqueue_me(&q))
1274                 return 0;
1275         if (rem)
1276                 return -ETIMEDOUT;
1277
1278         /*
1279          * We expect signal_pending(current), but another thread may
1280          * have handled it for us already.
1281          */
1282         if (!abs_time)
1283                 return -ERESTARTSYS;
1284         else {
1285                 struct restart_block *restart;
1286                 restart = &current_thread_info()->restart_block;
1287                 restart->fn = futex_wait_restart;
1288                 restart->arg0 = (unsigned long)uaddr;
1289                 restart->arg1 = (unsigned long)val;
1290                 restart->arg2 = (unsigned long)abs_time;
1291                 restart->arg3 = 0;
1292                 if (fshared)
1293                         restart->arg3 |= ARG3_SHARED;
1294                 return -ERESTART_RESTARTBLOCK;
1295         }
1296
1297  out_unlock_release_sem:
1298         queue_unlock(&q, hb);
1299
1300  out_release_sem:
1301         futex_unlock_mm(fshared);
1302         return ret;
1303 }
1304
1305
1306 static long futex_wait_restart(struct restart_block *restart)
1307 {
1308         u32 __user *uaddr = (u32 __user *)restart->arg0;
1309         u32 val = (u32)restart->arg1;
1310         ktime_t *abs_time = (ktime_t *)restart->arg2;
1311         struct rw_semaphore *fshared = NULL;
1312
1313         restart->fn = do_no_restart_syscall;
1314         if (restart->arg3 & ARG3_SHARED)
1315                 fshared = &current->mm->mmap_sem;
1316         return (long)futex_wait(uaddr, fshared, val, abs_time);
1317 }
1318
1319
1320 /*
1321  * Userspace tried a 0 -> TID atomic transition of the futex value
1322  * and failed. The kernel side here does the whole locking operation:
1323  * if there are waiters then it will block, it does PI, etc. (Due to
1324  * races the kernel might see a 0 value of the futex too.)
1325  */
1326 static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
1327                          int detect, ktime_t *time, int trylock)
1328 {
1329         struct hrtimer_sleeper timeout, *to = NULL;
1330         struct task_struct *curr = current;
1331         struct futex_hash_bucket *hb;
1332         u32 uval, newval, curval;
1333         struct futex_q q;
1334         int ret, lock_taken, ownerdied = 0, attempt = 0;
1335
1336         if (refill_pi_state_cache())
1337                 return -ENOMEM;
1338
1339         if (time) {
1340                 to = &timeout;
1341                 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
1342                 hrtimer_init_sleeper(to, current);
1343                 to->timer.expires = *time;
1344         }
1345
1346         q.pi_state = NULL;
1347  retry:
1348         futex_lock_mm(fshared);
1349
1350         ret = get_futex_key(uaddr, fshared, &q.key);
1351         if (unlikely(ret != 0))
1352                 goto out_release_sem;
1353
1354  retry_unlocked:
1355         hb = queue_lock(&q, -1, NULL);
1356
1357  retry_locked:
1358         ret = lock_taken = 0;
1359
1360         /*
1361          * To avoid races, we attempt to take the lock here again
1362          * (by doing a 0 -> TID atomic cmpxchg), while holding all
1363          * the locks. It will most likely not succeed.
1364          */
1365         newval = current->pid;
1366
1367         curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1368
1369         if (unlikely(curval == -EFAULT))
1370                 goto uaddr_faulted;
1371
1372         /*
1373          * Detect deadlocks. In case of REQUEUE_PI this is a valid
1374          * situation and we return success to user space.
1375          */
1376         if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
1377                 ret = -EDEADLK;
1378                 goto out_unlock_release_sem;
1379         }
1380
1381         /*
1382          * Surprise - we got the lock. Just return to userspace:
1383          */
1384         if (unlikely(!curval))
1385                 goto out_unlock_release_sem;
1386
1387         uval = curval;
1388
1389         /*
1390          * Set the WAITERS flag, so the owner will know it has someone
1391          * to wake at next unlock
1392          */
1393         newval = curval | FUTEX_WAITERS;
1394
1395         /*
1396          * There are two cases, where a futex might have no owner (the
1397          * owner TID is 0): OWNER_DIED. We take over the futex in this
1398          * case. We also do an unconditional take over, when the owner
1399          * of the futex died.
1400          *
1401          * This is safe as we are protected by the hash bucket lock !
1402          */
1403         if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1404                 /* Keep the OWNER_DIED bit */
1405                 newval = (curval & ~FUTEX_TID_MASK) | current->pid;
1406                 ownerdied = 0;
1407                 lock_taken = 1;
1408         }
1409
1410         curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1411
1412         if (unlikely(curval == -EFAULT))
1413                 goto uaddr_faulted;
1414         if (unlikely(curval != uval))
1415                 goto retry_locked;
1416
1417         /*
1418          * We took the lock due to owner died take over.
1419          */
1420         if (unlikely(lock_taken))
1421                 goto out_unlock_release_sem;
1422
1423         /*
1424          * We dont have the lock. Look up the PI state (or create it if
1425          * we are the first waiter):
1426          */
1427         ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1428
1429         if (unlikely(ret)) {
1430                 switch (ret) {
1431
1432                 case -EAGAIN:
1433                         /*
1434                          * Task is exiting and we just wait for the
1435                          * exit to complete.
1436                          */
1437                         queue_unlock(&q, hb);
1438                         futex_unlock_mm(fshared);
1439                         cond_resched();
1440                         goto retry;
1441
1442                 case -ESRCH:
1443                         /*
1444                          * No owner found for this futex. Check if the
1445                          * OWNER_DIED bit is set to figure out whether
1446                          * this is a robust futex or not.
1447                          */
1448                         if (get_futex_value_locked(&curval, uaddr))
1449                                 goto uaddr_faulted;
1450
1451                         /*
1452                          * We simply start over in case of a robust
1453                          * futex. The code above will take the futex
1454                          * and return happy.
1455                          */
1456                         if (curval & FUTEX_OWNER_DIED) {
1457                                 ownerdied = 1;
1458                                 goto retry_locked;
1459                         }
1460                 default:
1461                         goto out_unlock_release_sem;
1462                 }
1463         }
1464
1465         /*
1466          * Only actually queue now that the atomic ops are done:
1467          */
1468         __queue_me(&q, hb);
1469
1470         /*
1471          * Now the futex is queued and we have checked the data, we
1472          * don't want to hold mmap_sem while we sleep.
1473          */
1474         futex_unlock_mm(fshared);
1475
1476         WARN_ON(!q.pi_state);
1477         /*
1478          * Block on the PI mutex:
1479          */
1480         if (!trylock)
1481                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1482         else {
1483                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1484                 /* Fixup the trylock return value: */
1485                 ret = ret ? 0 : -EWOULDBLOCK;
1486         }
1487
1488         futex_lock_mm(fshared);
1489         spin_lock(q.lock_ptr);
1490
1491         if (!ret) {
1492                 /*
1493                  * Got the lock. We might not be the anticipated owner
1494                  * if we did a lock-steal - fix up the PI-state in
1495                  * that case:
1496                  */
1497                 if (q.pi_state->owner != curr)
1498                         ret = fixup_pi_state_owner(uaddr, &q, curr);
1499         } else {
1500                 /*
1501                  * Catch the rare case, where the lock was released
1502                  * when we were on the way back before we locked the
1503                  * hash bucket.
1504                  */
1505                 if (q.pi_state->owner == curr &&
1506                     rt_mutex_trylock(&q.pi_state->pi_mutex)) {
1507                         ret = 0;
1508                 } else {
1509                         /*
1510                          * Paranoia check. If we did not take the lock
1511                          * in the trylock above, then we should not be
1512                          * the owner of the rtmutex, neither the real
1513                          * nor the pending one:
1514                          */
1515                         if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1516                                 printk(KERN_ERR "futex_lock_pi: ret = %d "
1517                                        "pi-mutex: %p pi-state %p\n", ret,
1518                                        q.pi_state->pi_mutex.owner,
1519                                        q.pi_state->owner);
1520                 }
1521         }
1522
1523         /* Unqueue and drop the lock */
1524         unqueue_me_pi(&q);
1525         futex_unlock_mm(fshared);
1526
1527         return ret != -EINTR ? ret : -ERESTARTNOINTR;
1528
1529  out_unlock_release_sem:
1530         queue_unlock(&q, hb);
1531
1532  out_release_sem:
1533         futex_unlock_mm(fshared);
1534         return ret;
1535
1536  uaddr_faulted:
1537         /*
1538          * We have to r/w  *(int __user *)uaddr, but we can't modify it
1539          * non-atomically.  Therefore, if get_user below is not
1540          * enough, we need to handle the fault ourselves, while
1541          * still holding the mmap_sem.
1542          *
1543          * ... and hb->lock. :-) --ANK
1544          */
1545         queue_unlock(&q, hb);
1546
1547         if (attempt++) {
1548                 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1549                                          attempt);
1550                 if (ret)
1551                         goto out_release_sem;
1552                 goto retry_unlocked;
1553         }
1554
1555         futex_unlock_mm(fshared);
1556
1557         ret = get_user(uval, uaddr);
1558         if (!ret && (uval != -EFAULT))
1559                 goto retry;
1560
1561         return ret;
1562 }
1563
1564 /*
1565  * Userspace attempted a TID -> 0 atomic transition, and failed.
1566  * This is the in-kernel slowpath: we look up the PI state (if any),
1567  * and do the rt-mutex unlock.
1568  */
1569 static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
1570 {
1571         struct futex_hash_bucket *hb;
1572         struct futex_q *this, *next;
1573         u32 uval;
1574         struct plist_head *head;
1575         union futex_key key;
1576         int ret, attempt = 0;
1577
1578 retry:
1579         if (get_user(uval, uaddr))
1580                 return -EFAULT;
1581         /*
1582          * We release only a lock we actually own:
1583          */
1584         if ((uval & FUTEX_TID_MASK) != current->pid)
1585                 return -EPERM;
1586         /*
1587          * First take all the futex related locks:
1588          */
1589         futex_lock_mm(fshared);
1590
1591         ret = get_futex_key(uaddr, fshared, &key);
1592         if (unlikely(ret != 0))
1593                 goto out;
1594
1595         hb = hash_futex(&key);
1596 retry_unlocked:
1597         spin_lock(&hb->lock);
1598
1599         /*
1600          * To avoid races, try to do the TID -> 0 atomic transition
1601          * again. If it succeeds then we can return without waking
1602          * anyone else up:
1603          */
1604         if (!(uval & FUTEX_OWNER_DIED))
1605                 uval = cmpxchg_futex_value_locked(uaddr, current->pid, 0);
1606
1607
1608         if (unlikely(uval == -EFAULT))
1609                 goto pi_faulted;
1610         /*
1611          * Rare case: we managed to release the lock atomically,
1612          * no need to wake anyone else up:
1613          */
1614         if (unlikely(uval == current->pid))
1615                 goto out_unlock;
1616
1617         /*
1618          * Ok, other tasks may need to be woken up - check waiters
1619          * and do the wakeup if necessary:
1620          */
1621         head = &hb->chain;
1622
1623         plist_for_each_entry_safe(this, next, head, list) {
1624                 if (!match_futex (&this->key, &key))
1625                         continue;
1626                 ret = wake_futex_pi(uaddr, uval, this);
1627                 /*
1628                  * The atomic access to the futex value
1629                  * generated a pagefault, so retry the
1630                  * user-access and the wakeup:
1631                  */
1632                 if (ret == -EFAULT)
1633                         goto pi_faulted;
1634                 goto out_unlock;
1635         }
1636         /*
1637          * No waiters - kernel unlocks the futex:
1638          */
1639         if (!(uval & FUTEX_OWNER_DIED)) {
1640                 ret = unlock_futex_pi(uaddr, uval);
1641                 if (ret == -EFAULT)
1642                         goto pi_faulted;
1643         }
1644
1645 out_unlock:
1646         spin_unlock(&hb->lock);
1647 out:
1648         futex_unlock_mm(fshared);
1649
1650         return ret;
1651
1652 pi_faulted:
1653         /*
1654          * We have to r/w  *(int __user *)uaddr, but we can't modify it
1655          * non-atomically.  Therefore, if get_user below is not
1656          * enough, we need to handle the fault ourselves, while
1657          * still holding the mmap_sem.
1658          *
1659          * ... and hb->lock. --ANK
1660          */
1661         spin_unlock(&hb->lock);
1662
1663         if (attempt++) {
1664                 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1665                                          attempt);
1666                 if (ret)
1667                         goto out;
1668                 goto retry_unlocked;
1669         }
1670
1671         futex_unlock_mm(fshared);
1672
1673         ret = get_user(uval, uaddr);
1674         if (!ret && (uval != -EFAULT))
1675                 goto retry;
1676
1677         return ret;
1678 }
1679
1680 static int futex_close(struct inode *inode, struct file *filp)
1681 {
1682         struct futex_q *q = filp->private_data;
1683
1684         unqueue_me(q);
1685         kfree(q);
1686
1687         return 0;
1688 }
1689
1690 /* This is one-shot: once it's gone off you need a new fd */
1691 static unsigned int futex_poll(struct file *filp,
1692                                struct poll_table_struct *wait)
1693 {
1694         struct futex_q *q = filp->private_data;
1695         int ret = 0;
1696
1697         poll_wait(filp, &q->waiters, wait);
1698
1699         /*
1700          * plist_node_empty() is safe here without any lock.
1701          * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1702          */
1703         if (plist_node_empty(&q->list))
1704                 ret = POLLIN | POLLRDNORM;
1705
1706         return ret;
1707 }
1708
1709 static const struct file_operations futex_fops = {
1710         .release        = futex_close,
1711         .poll           = futex_poll,
1712 };
1713
1714 /*
1715  * Signal allows caller to avoid the race which would occur if they
1716  * set the sigio stuff up afterwards.
1717  */
1718 static int futex_fd(u32 __user *uaddr, int signal)
1719 {
1720         struct futex_q *q;
1721         struct file *filp;
1722         int ret, err;
1723         struct rw_semaphore *fshared;
1724         static unsigned long printk_interval;
1725
1726         if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) {
1727                 printk(KERN_WARNING "Process `%s' used FUTEX_FD, which "
1728                        "will be removed from the kernel in June 2007\n",
1729                        current->comm);
1730         }
1731
1732         ret = -EINVAL;
1733         if (!valid_signal(signal))
1734                 goto out;
1735
1736         ret = get_unused_fd();
1737         if (ret < 0)
1738                 goto out;
1739         filp = get_empty_filp();
1740         if (!filp) {
1741                 put_unused_fd(ret);
1742                 ret = -ENFILE;
1743                 goto out;
1744         }
1745         filp->f_op = &futex_fops;
1746         filp->f_path.mnt = mntget(futex_mnt);
1747         filp->f_path.dentry = dget(futex_mnt->mnt_root);
1748         filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping;
1749
1750         if (signal) {
1751                 err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1);
1752                 if (err < 0) {
1753                         goto error;
1754                 }
1755                 filp->f_owner.signum = signal;
1756         }
1757
1758         q = kmalloc(sizeof(*q), GFP_KERNEL);
1759         if (!q) {
1760                 err = -ENOMEM;
1761                 goto error;
1762         }
1763         q->pi_state = NULL;
1764
1765         fshared = &current->mm->mmap_sem;
1766         down_read(fshared);
1767         err = get_futex_key(uaddr, fshared, &q->key);
1768
1769         if (unlikely(err != 0)) {
1770                 up_read(fshared);
1771                 kfree(q);
1772                 goto error;
1773         }
1774
1775         /*
1776          * queue_me() must be called before releasing mmap_sem, because
1777          * key->shared.inode needs to be referenced while holding it.
1778          */
1779         filp->private_data = q;
1780
1781         queue_me(q, ret, filp);
1782         up_read(fshared);
1783
1784         /* Now we map fd to filp, so userspace can access it */
1785         fd_install(ret, filp);
1786 out:
1787         return ret;
1788 error:
1789         put_unused_fd(ret);
1790         put_filp(filp);
1791         ret = err;
1792         goto out;
1793 }
1794
1795 /*
1796  * Support for robust futexes: the kernel cleans up held futexes at
1797  * thread exit time.
1798  *
1799  * Implementation: user-space maintains a per-thread list of locks it
1800  * is holding. Upon do_exit(), the kernel carefully walks this list,
1801  * and marks all locks that are owned by this thread with the
1802  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1803  * always manipulated with the lock held, so the list is private and
1804  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1805  * field, to allow the kernel to clean up if the thread dies after
1806  * acquiring the lock, but just before it could have added itself to
1807  * the list. There can only be one such pending lock.
1808  */
1809
1810 /**
1811  * sys_set_robust_list - set the robust-futex list head of a task
1812  * @head: pointer to the list-head
1813  * @len: length of the list-head, as userspace expects
1814  */
1815 asmlinkage long
1816 sys_set_robust_list(struct robust_list_head __user *head,
1817                     size_t len)
1818 {
1819         /*
1820          * The kernel knows only one size for now:
1821          */
1822         if (unlikely(len != sizeof(*head)))
1823                 return -EINVAL;
1824
1825         current->robust_list = head;
1826
1827         return 0;
1828 }
1829
1830 /**
1831  * sys_get_robust_list - get the robust-futex list head of a task
1832  * @pid: pid of the process [zero for current task]
1833  * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1834  * @len_ptr: pointer to a length field, the kernel fills in the header size
1835  */
1836 asmlinkage long
1837 sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
1838                     size_t __user *len_ptr)
1839 {
1840         struct robust_list_head __user *head;
1841         unsigned long ret;
1842
1843         if (!pid)
1844                 head = current->robust_list;
1845         else {
1846                 struct task_struct *p;
1847
1848                 ret = -ESRCH;
1849                 rcu_read_lock();
1850                 p = find_task_by_pid(pid);
1851                 if (!p)
1852                         goto err_unlock;
1853                 ret = -EPERM;
1854                 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1855                                 !capable(CAP_SYS_PTRACE))
1856                         goto err_unlock;
1857                 head = p->robust_list;
1858                 rcu_read_unlock();
1859         }
1860
1861         if (put_user(sizeof(*head), len_ptr))
1862                 return -EFAULT;
1863         return put_user(head, head_ptr);
1864
1865 err_unlock:
1866         rcu_read_unlock();
1867
1868         return ret;
1869 }
1870
1871 /*
1872  * Process a futex-list entry, check whether it's owned by the
1873  * dying task, and do notification if so:
1874  */
1875 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1876 {
1877         u32 uval, nval, mval;
1878
1879 retry:
1880         if (get_user(uval, uaddr))
1881                 return -1;
1882
1883         if ((uval & FUTEX_TID_MASK) == curr->pid) {
1884                 /*
1885                  * Ok, this dying thread is truly holding a futex
1886                  * of interest. Set the OWNER_DIED bit atomically
1887                  * via cmpxchg, and if the value had FUTEX_WAITERS
1888                  * set, wake up a waiter (if any). (We have to do a
1889                  * futex_wake() even if OWNER_DIED is already set -
1890                  * to handle the rare but possible case of recursive
1891                  * thread-death.) The rest of the cleanup is done in
1892                  * userspace.
1893                  */
1894                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1895                 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1896
1897                 if (nval == -EFAULT)
1898                         return -1;
1899
1900                 if (nval != uval)
1901                         goto retry;
1902
1903                 /*
1904                  * Wake robust non-PI futexes here. The wakeup of
1905                  * PI futexes happens in exit_pi_state():
1906                  */
1907                 if (!pi && (uval & FUTEX_WAITERS))
1908                                 futex_wake(uaddr, &curr->mm->mmap_sem, 1);
1909         }
1910         return 0;
1911 }
1912
1913 /*
1914  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1915  */
1916 static inline int fetch_robust_entry(struct robust_list __user **entry,
1917                                      struct robust_list __user * __user *head,
1918                                      int *pi)
1919 {
1920         unsigned long uentry;
1921
1922         if (get_user(uentry, (unsigned long __user *)head))
1923                 return -EFAULT;
1924
1925         *entry = (void __user *)(uentry & ~1UL);
1926         *pi = uentry & 1;
1927
1928         return 0;
1929 }
1930
1931 /*
1932  * Walk curr->robust_list (very carefully, it's a userspace list!)
1933  * and mark any locks found there dead, and notify any waiters.
1934  *
1935  * We silently return on any sign of list-walking problem.
1936  */
1937 void exit_robust_list(struct task_struct *curr)
1938 {
1939         struct robust_list_head __user *head = curr->robust_list;
1940         struct robust_list __user *entry, *pending;
1941         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
1942         unsigned long futex_offset;
1943
1944         /*
1945          * Fetch the list head (which was registered earlier, via
1946          * sys_set_robust_list()):
1947          */
1948         if (fetch_robust_entry(&entry, &head->list.next, &pi))
1949                 return;
1950         /*
1951          * Fetch the relative futex offset:
1952          */
1953         if (get_user(futex_offset, &head->futex_offset))
1954                 return;
1955         /*
1956          * Fetch any possibly pending lock-add first, and handle it
1957          * if it exists:
1958          */
1959         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1960                 return;
1961
1962         if (pending)
1963                 handle_futex_death((void __user *)pending + futex_offset,
1964                                    curr, pip);
1965
1966         while (entry != &head->list) {
1967                 /*
1968                  * A pending lock might already be on the list, so
1969                  * don't process it twice:
1970                  */
1971                 if (entry != pending)
1972                         if (handle_futex_death((void __user *)entry + futex_offset,
1973                                                 curr, pi))
1974                                 return;
1975                 /*
1976                  * Fetch the next entry in the list:
1977                  */
1978                 if (fetch_robust_entry(&entry, &entry->next, &pi))
1979                         return;
1980                 /*
1981                  * Avoid excessively long or circular lists:
1982                  */
1983                 if (!--limit)
1984                         break;
1985
1986                 cond_resched();
1987         }
1988 }
1989
1990 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
1991                 u32 __user *uaddr2, u32 val2, u32 val3)
1992 {
1993         int ret;
1994         int cmd = op & FUTEX_CMD_MASK;
1995         struct rw_semaphore *fshared = NULL;
1996
1997         if (!(op & FUTEX_PRIVATE_FLAG))
1998                 fshared = &current->mm->mmap_sem;
1999
2000         switch (cmd) {
2001         case FUTEX_WAIT:
2002                 ret = futex_wait(uaddr, fshared, val, timeout);
2003                 break;
2004         case FUTEX_WAKE:
2005                 ret = futex_wake(uaddr, fshared, val);
2006                 break;
2007         case FUTEX_FD:
2008                 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
2009                 ret = futex_fd(uaddr, val);
2010                 break;
2011         case FUTEX_REQUEUE:
2012                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
2013                 break;
2014         case FUTEX_CMP_REQUEUE:
2015                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
2016                 break;
2017         case FUTEX_WAKE_OP:
2018                 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2019                 break;
2020         case FUTEX_LOCK_PI:
2021                 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2022                 break;
2023         case FUTEX_UNLOCK_PI:
2024                 ret = futex_unlock_pi(uaddr, fshared);
2025                 break;
2026         case FUTEX_TRYLOCK_PI:
2027                 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2028                 break;
2029         default:
2030                 ret = -ENOSYS;
2031         }
2032         return ret;
2033 }
2034
2035
2036 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
2037                           struct timespec __user *utime, u32 __user *uaddr2,
2038                           u32 val3)
2039 {
2040         struct timespec ts;
2041         ktime_t t, *tp = NULL;
2042         u32 val2 = 0;
2043         int cmd = op & FUTEX_CMD_MASK;
2044
2045         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI)) {
2046                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2047                         return -EFAULT;
2048                 if (!timespec_valid(&ts))
2049                         return -EINVAL;
2050
2051                 t = timespec_to_ktime(ts);
2052                 if (cmd == FUTEX_WAIT)
2053                         t = ktime_add(ktime_get(), t);
2054                 tp = &t;
2055         }
2056         /*
2057          * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
2058          */
2059         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE)
2060                 val2 = (u32) (unsigned long) utime;
2061
2062         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2063 }
2064
2065 static int futexfs_get_sb(struct file_system_type *fs_type,
2066                           int flags, const char *dev_name, void *data,
2067                           struct vfsmount *mnt)
2068 {
2069         return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
2070 }
2071
2072 static struct file_system_type futex_fs_type = {
2073         .name           = "futexfs",
2074         .get_sb         = futexfs_get_sb,
2075         .kill_sb        = kill_anon_super,
2076 };
2077
2078 static int __init init(void)
2079 {
2080         int i = register_filesystem(&futex_fs_type);
2081
2082         if (i)
2083                 return i;
2084
2085         futex_mnt = kern_mount(&futex_fs_type);
2086         if (IS_ERR(futex_mnt)) {
2087                 unregister_filesystem(&futex_fs_type);
2088                 return PTR_ERR(futex_mnt);
2089         }
2090
2091         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2092                 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2093                 spin_lock_init(&futex_queues[i].lock);
2094         }
2095         return 0;
2096 }
2097 __initcall(init);