1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/stddef.h>
70 #include <linux/ioctl.h>
71 #include <linux/timex.h>
72 #include <linux/ethtool.h>
73 #include <linux/workqueue.h>
74 #include <linux/if_vlan.h>
76 #include <linux/tcp.h>
79 #include <asm/system.h>
80 #include <asm/uaccess.h>
82 #include <asm/div64.h>
87 #include "s2io-regs.h"
89 #define DRV_VERSION "2.0.26.23"
91 /* S2io Driver name & version. */
92 static char s2io_driver_name[] = "Neterion";
93 static char s2io_driver_version[] = DRV_VERSION;
95 static int rxd_size[2] = {32,48};
96 static int rxd_count[2] = {127,85};
98 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
102 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
103 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
113 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
118 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
121 static inline int is_s2io_card_up(const struct s2io_nic * sp)
123 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
135 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
137 {"tmac_data_octets"},
141 {"tmac_pause_ctrl_frms"},
145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
147 {"tmac_vld_ip_octets"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
210 {"rmac_accepted_ip"},
214 {"new_rd_req_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
219 {"new_wr_req_rtry_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
232 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
233 {"rmac_ttl_1519_4095_frms"},
234 {"rmac_ttl_4096_8191_frms"},
235 {"rmac_ttl_8192_max_frms"},
236 {"rmac_ttl_gt_max_frms"},
237 {"rmac_osized_alt_frms"},
238 {"rmac_jabber_alt_frms"},
239 {"rmac_gt_max_alt_frms"},
241 {"rmac_len_discard"},
242 {"rmac_fcs_discard"},
245 {"rmac_red_discard"},
246 {"rmac_rts_discard"},
247 {"rmac_ingm_full_discard"},
251 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
252 {"\n DRIVER STATISTICS"},
253 {"single_bit_ecc_errs"},
254 {"double_bit_ecc_errs"},
267 {"alarm_transceiver_temp_high"},
268 {"alarm_transceiver_temp_low"},
269 {"alarm_laser_bias_current_high"},
270 {"alarm_laser_bias_current_low"},
271 {"alarm_laser_output_power_high"},
272 {"alarm_laser_output_power_low"},
273 {"warn_transceiver_temp_high"},
274 {"warn_transceiver_temp_low"},
275 {"warn_laser_bias_current_high"},
276 {"warn_laser_bias_current_low"},
277 {"warn_laser_output_power_high"},
278 {"warn_laser_output_power_low"},
279 {"lro_aggregated_pkts"},
280 {"lro_flush_both_count"},
281 {"lro_out_of_sequence_pkts"},
282 {"lro_flush_due_to_max_pkts"},
283 {"lro_avg_aggr_pkts"},
284 {"mem_alloc_fail_cnt"},
285 {"pci_map_fail_cnt"},
286 {"watchdog_timer_cnt"},
293 {"tx_tcode_buf_abort_cnt"},
294 {"tx_tcode_desc_abort_cnt"},
295 {"tx_tcode_parity_err_cnt"},
296 {"tx_tcode_link_loss_cnt"},
297 {"tx_tcode_list_proc_err_cnt"},
298 {"rx_tcode_parity_err_cnt"},
299 {"rx_tcode_abort_cnt"},
300 {"rx_tcode_parity_abort_cnt"},
301 {"rx_tcode_rda_fail_cnt"},
302 {"rx_tcode_unkn_prot_cnt"},
303 {"rx_tcode_fcs_err_cnt"},
304 {"rx_tcode_buf_size_err_cnt"},
305 {"rx_tcode_rxd_corrupt_cnt"},
306 {"rx_tcode_unkn_err_cnt"},
314 {"mac_tmac_err_cnt"},
315 {"mac_rmac_err_cnt"},
316 {"xgxs_txgxs_err_cnt"},
317 {"xgxs_rxgxs_err_cnt"},
319 {"prc_pcix_err_cnt"},
326 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
327 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
328 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
330 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
333 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
336 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
337 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
339 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
340 init_timer(&timer); \
341 timer.function = handle; \
342 timer.data = (unsigned long) arg; \
343 mod_timer(&timer, (jiffies + exp)) \
345 /* copy mac addr to def_mac_addr array */
346 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
348 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
349 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
350 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
351 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
352 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
353 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
356 static void s2io_vlan_rx_register(struct net_device *dev,
357 struct vlan_group *grp)
360 struct s2io_nic *nic = dev->priv;
361 unsigned long flags[MAX_TX_FIFOS];
362 struct mac_info *mac_control = &nic->mac_control;
363 struct config_param *config = &nic->config;
365 for (i = 0; i < config->tx_fifo_num; i++)
366 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
369 for (i = config->tx_fifo_num - 1; i >= 0; i--)
370 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
374 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
375 static int vlan_strip_flag;
377 /* Unregister the vlan */
378 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
381 struct s2io_nic *nic = dev->priv;
382 unsigned long flags[MAX_TX_FIFOS];
383 struct mac_info *mac_control = &nic->mac_control;
384 struct config_param *config = &nic->config;
386 for (i = 0; i < config->tx_fifo_num; i++)
387 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
390 vlan_group_set_device(nic->vlgrp, vid, NULL);
392 for (i = config->tx_fifo_num - 1; i >= 0; i--)
393 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
398 * Constants to be programmed into the Xena's registers, to configure
403 static const u64 herc_act_dtx_cfg[] = {
405 0x8000051536750000ULL, 0x80000515367500E0ULL,
407 0x8000051536750004ULL, 0x80000515367500E4ULL,
409 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
411 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
413 0x801205150D440000ULL, 0x801205150D4400E0ULL,
415 0x801205150D440004ULL, 0x801205150D4400E4ULL,
417 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
419 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
424 static const u64 xena_dtx_cfg[] = {
426 0x8000051500000000ULL, 0x80000515000000E0ULL,
428 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
430 0x8001051500000000ULL, 0x80010515000000E0ULL,
432 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
434 0x8002051500000000ULL, 0x80020515000000E0ULL,
436 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
441 * Constants for Fixing the MacAddress problem seen mostly on
444 static const u64 fix_mac[] = {
445 0x0060000000000000ULL, 0x0060600000000000ULL,
446 0x0040600000000000ULL, 0x0000600000000000ULL,
447 0x0020600000000000ULL, 0x0060600000000000ULL,
448 0x0020600000000000ULL, 0x0060600000000000ULL,
449 0x0020600000000000ULL, 0x0060600000000000ULL,
450 0x0020600000000000ULL, 0x0060600000000000ULL,
451 0x0020600000000000ULL, 0x0060600000000000ULL,
452 0x0020600000000000ULL, 0x0060600000000000ULL,
453 0x0020600000000000ULL, 0x0060600000000000ULL,
454 0x0020600000000000ULL, 0x0060600000000000ULL,
455 0x0020600000000000ULL, 0x0060600000000000ULL,
456 0x0020600000000000ULL, 0x0060600000000000ULL,
457 0x0020600000000000ULL, 0x0000600000000000ULL,
458 0x0040600000000000ULL, 0x0060600000000000ULL,
462 MODULE_LICENSE("GPL");
463 MODULE_VERSION(DRV_VERSION);
466 /* Module Loadable parameters. */
467 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
468 S2IO_PARM_INT(rx_ring_num, 1);
469 S2IO_PARM_INT(multiq, 0);
470 S2IO_PARM_INT(rx_ring_mode, 1);
471 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
472 S2IO_PARM_INT(rmac_pause_time, 0x100);
473 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
474 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
475 S2IO_PARM_INT(shared_splits, 0);
476 S2IO_PARM_INT(tmac_util_period, 5);
477 S2IO_PARM_INT(rmac_util_period, 5);
478 S2IO_PARM_INT(l3l4hdr_size, 128);
479 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
480 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
481 /* Frequency of Rx desc syncs expressed as power of 2 */
482 S2IO_PARM_INT(rxsync_frequency, 3);
483 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
484 S2IO_PARM_INT(intr_type, 2);
485 /* Large receive offload feature */
486 static unsigned int lro_enable;
487 module_param_named(lro, lro_enable, uint, 0);
489 /* Max pkts to be aggregated by LRO at one time. If not specified,
490 * aggregation happens until we hit max IP pkt size(64K)
492 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
493 S2IO_PARM_INT(indicate_max_pkts, 0);
495 S2IO_PARM_INT(napi, 1);
496 S2IO_PARM_INT(ufo, 0);
497 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
499 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
500 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
501 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
502 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
503 static unsigned int rts_frm_len[MAX_RX_RINGS] =
504 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
506 module_param_array(tx_fifo_len, uint, NULL, 0);
507 module_param_array(rx_ring_sz, uint, NULL, 0);
508 module_param_array(rts_frm_len, uint, NULL, 0);
512 * This table lists all the devices that this driver supports.
514 static struct pci_device_id s2io_tbl[] __devinitdata = {
515 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
516 PCI_ANY_ID, PCI_ANY_ID},
517 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
518 PCI_ANY_ID, PCI_ANY_ID},
519 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
520 PCI_ANY_ID, PCI_ANY_ID},
521 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
522 PCI_ANY_ID, PCI_ANY_ID},
526 MODULE_DEVICE_TABLE(pci, s2io_tbl);
528 static struct pci_error_handlers s2io_err_handler = {
529 .error_detected = s2io_io_error_detected,
530 .slot_reset = s2io_io_slot_reset,
531 .resume = s2io_io_resume,
534 static struct pci_driver s2io_driver = {
536 .id_table = s2io_tbl,
537 .probe = s2io_init_nic,
538 .remove = __devexit_p(s2io_rem_nic),
539 .err_handler = &s2io_err_handler,
542 /* A simplifier macro used both by init and free shared_mem Fns(). */
543 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
545 /* netqueue manipulation helper functions */
546 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
549 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
550 if (sp->config.multiq) {
551 for (i = 0; i < sp->config.tx_fifo_num; i++)
552 netif_stop_subqueue(sp->dev, i);
556 for (i = 0; i < sp->config.tx_fifo_num; i++)
557 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
558 netif_stop_queue(sp->dev);
562 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
564 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
565 if (sp->config.multiq)
566 netif_stop_subqueue(sp->dev, fifo_no);
570 sp->mac_control.fifos[fifo_no].queue_state =
572 netif_stop_queue(sp->dev);
576 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
579 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
580 if (sp->config.multiq) {
581 for (i = 0; i < sp->config.tx_fifo_num; i++)
582 netif_start_subqueue(sp->dev, i);
586 for (i = 0; i < sp->config.tx_fifo_num; i++)
587 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
588 netif_start_queue(sp->dev);
592 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
594 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
595 if (sp->config.multiq)
596 netif_start_subqueue(sp->dev, fifo_no);
600 sp->mac_control.fifos[fifo_no].queue_state =
602 netif_start_queue(sp->dev);
606 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
609 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
610 if (sp->config.multiq) {
611 for (i = 0; i < sp->config.tx_fifo_num; i++)
612 netif_wake_subqueue(sp->dev, i);
616 for (i = 0; i < sp->config.tx_fifo_num; i++)
617 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
618 netif_wake_queue(sp->dev);
622 static inline void s2io_wake_tx_queue(
623 struct fifo_info *fifo, int cnt, u8 multiq)
626 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
628 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
629 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
632 if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
633 if (netif_queue_stopped(fifo->dev)) {
634 fifo->queue_state = FIFO_QUEUE_START;
635 netif_wake_queue(fifo->dev);
641 * init_shared_mem - Allocation and Initialization of Memory
642 * @nic: Device private variable.
643 * Description: The function allocates all the memory areas shared
644 * between the NIC and the driver. This includes Tx descriptors,
645 * Rx descriptors and the statistics block.
648 static int init_shared_mem(struct s2io_nic *nic)
651 void *tmp_v_addr, *tmp_v_addr_next;
652 dma_addr_t tmp_p_addr, tmp_p_addr_next;
653 struct RxD_block *pre_rxd_blk = NULL;
655 int lst_size, lst_per_page;
656 struct net_device *dev = nic->dev;
660 struct mac_info *mac_control;
661 struct config_param *config;
662 unsigned long long mem_allocated = 0;
664 mac_control = &nic->mac_control;
665 config = &nic->config;
668 /* Allocation and initialization of TXDLs in FIOFs */
670 for (i = 0; i < config->tx_fifo_num; i++) {
671 size += config->tx_cfg[i].fifo_len;
673 if (size > MAX_AVAILABLE_TXDS) {
674 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
675 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
680 for (i = 0; i < config->tx_fifo_num; i++) {
681 size = config->tx_cfg[i].fifo_len;
683 * Legal values are from 2 to 8192
686 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
687 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
688 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
694 lst_size = (sizeof(struct TxD) * config->max_txds);
695 lst_per_page = PAGE_SIZE / lst_size;
697 for (i = 0; i < config->tx_fifo_num; i++) {
698 int fifo_len = config->tx_cfg[i].fifo_len;
699 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
700 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
702 if (!mac_control->fifos[i].list_info) {
704 "Malloc failed for list_info\n");
707 mem_allocated += list_holder_size;
709 for (i = 0; i < config->tx_fifo_num; i++) {
710 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
712 mac_control->fifos[i].tx_curr_put_info.offset = 0;
713 mac_control->fifos[i].tx_curr_put_info.fifo_len =
714 config->tx_cfg[i].fifo_len - 1;
715 mac_control->fifos[i].tx_curr_get_info.offset = 0;
716 mac_control->fifos[i].tx_curr_get_info.fifo_len =
717 config->tx_cfg[i].fifo_len - 1;
718 mac_control->fifos[i].fifo_no = i;
719 mac_control->fifos[i].nic = nic;
720 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
721 mac_control->fifos[i].dev = dev;
723 for (j = 0; j < page_num; j++) {
727 tmp_v = pci_alloc_consistent(nic->pdev,
731 "pci_alloc_consistent ");
732 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
735 /* If we got a zero DMA address(can happen on
736 * certain platforms like PPC), reallocate.
737 * Store virtual address of page we don't want,
741 mac_control->zerodma_virt_addr = tmp_v;
743 "%s: Zero DMA address for TxDL. ", dev->name);
745 "Virtual address %p\n", tmp_v);
746 tmp_v = pci_alloc_consistent(nic->pdev,
750 "pci_alloc_consistent ");
751 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
754 mem_allocated += PAGE_SIZE;
756 while (k < lst_per_page) {
757 int l = (j * lst_per_page) + k;
758 if (l == config->tx_cfg[i].fifo_len)
760 mac_control->fifos[i].list_info[l].list_virt_addr =
761 tmp_v + (k * lst_size);
762 mac_control->fifos[i].list_info[l].list_phy_addr =
763 tmp_p + (k * lst_size);
769 for (i = 0; i < config->tx_fifo_num; i++) {
770 size = config->tx_cfg[i].fifo_len;
771 mac_control->fifos[i].ufo_in_band_v
772 = kcalloc(size, sizeof(u64), GFP_KERNEL);
773 if (!mac_control->fifos[i].ufo_in_band_v)
775 mem_allocated += (size * sizeof(u64));
778 /* Allocation and initialization of RXDs in Rings */
780 for (i = 0; i < config->rx_ring_num; i++) {
781 if (config->rx_cfg[i].num_rxd %
782 (rxd_count[nic->rxd_mode] + 1)) {
783 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
784 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
786 DBG_PRINT(ERR_DBG, "RxDs per Block");
789 size += config->rx_cfg[i].num_rxd;
790 mac_control->rings[i].block_count =
791 config->rx_cfg[i].num_rxd /
792 (rxd_count[nic->rxd_mode] + 1 );
793 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
794 mac_control->rings[i].block_count;
796 if (nic->rxd_mode == RXD_MODE_1)
797 size = (size * (sizeof(struct RxD1)));
799 size = (size * (sizeof(struct RxD3)));
801 for (i = 0; i < config->rx_ring_num; i++) {
802 mac_control->rings[i].rx_curr_get_info.block_index = 0;
803 mac_control->rings[i].rx_curr_get_info.offset = 0;
804 mac_control->rings[i].rx_curr_get_info.ring_len =
805 config->rx_cfg[i].num_rxd - 1;
806 mac_control->rings[i].rx_curr_put_info.block_index = 0;
807 mac_control->rings[i].rx_curr_put_info.offset = 0;
808 mac_control->rings[i].rx_curr_put_info.ring_len =
809 config->rx_cfg[i].num_rxd - 1;
810 mac_control->rings[i].nic = nic;
811 mac_control->rings[i].ring_no = i;
812 mac_control->rings[i].lro = lro_enable;
814 blk_cnt = config->rx_cfg[i].num_rxd /
815 (rxd_count[nic->rxd_mode] + 1);
816 /* Allocating all the Rx blocks */
817 for (j = 0; j < blk_cnt; j++) {
818 struct rx_block_info *rx_blocks;
821 rx_blocks = &mac_control->rings[i].rx_blocks[j];
822 size = SIZE_OF_BLOCK; //size is always page size
823 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
825 if (tmp_v_addr == NULL) {
827 * In case of failure, free_shared_mem()
828 * is called, which should free any
829 * memory that was alloced till the
832 rx_blocks->block_virt_addr = tmp_v_addr;
835 mem_allocated += size;
836 memset(tmp_v_addr, 0, size);
837 rx_blocks->block_virt_addr = tmp_v_addr;
838 rx_blocks->block_dma_addr = tmp_p_addr;
839 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
840 rxd_count[nic->rxd_mode],
842 if (!rx_blocks->rxds)
845 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
846 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
847 rx_blocks->rxds[l].virt_addr =
848 rx_blocks->block_virt_addr +
849 (rxd_size[nic->rxd_mode] * l);
850 rx_blocks->rxds[l].dma_addr =
851 rx_blocks->block_dma_addr +
852 (rxd_size[nic->rxd_mode] * l);
855 /* Interlinking all Rx Blocks */
856 for (j = 0; j < blk_cnt; j++) {
858 mac_control->rings[i].rx_blocks[j].block_virt_addr;
860 mac_control->rings[i].rx_blocks[(j + 1) %
861 blk_cnt].block_virt_addr;
863 mac_control->rings[i].rx_blocks[j].block_dma_addr;
865 mac_control->rings[i].rx_blocks[(j + 1) %
866 blk_cnt].block_dma_addr;
868 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
869 pre_rxd_blk->reserved_2_pNext_RxD_block =
870 (unsigned long) tmp_v_addr_next;
871 pre_rxd_blk->pNext_RxD_Blk_physical =
872 (u64) tmp_p_addr_next;
875 if (nic->rxd_mode == RXD_MODE_3B) {
877 * Allocation of Storages for buffer addresses in 2BUFF mode
878 * and the buffers as well.
880 for (i = 0; i < config->rx_ring_num; i++) {
881 blk_cnt = config->rx_cfg[i].num_rxd /
882 (rxd_count[nic->rxd_mode]+ 1);
883 mac_control->rings[i].ba =
884 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
886 if (!mac_control->rings[i].ba)
888 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
889 for (j = 0; j < blk_cnt; j++) {
891 mac_control->rings[i].ba[j] =
892 kmalloc((sizeof(struct buffAdd) *
893 (rxd_count[nic->rxd_mode] + 1)),
895 if (!mac_control->rings[i].ba[j])
897 mem_allocated += (sizeof(struct buffAdd) * \
898 (rxd_count[nic->rxd_mode] + 1));
899 while (k != rxd_count[nic->rxd_mode]) {
900 ba = &mac_control->rings[i].ba[j][k];
902 ba->ba_0_org = (void *) kmalloc
903 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
907 (BUF0_LEN + ALIGN_SIZE);
908 tmp = (unsigned long)ba->ba_0_org;
910 tmp &= ~((unsigned long) ALIGN_SIZE);
911 ba->ba_0 = (void *) tmp;
913 ba->ba_1_org = (void *) kmalloc
914 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
918 += (BUF1_LEN + ALIGN_SIZE);
919 tmp = (unsigned long) ba->ba_1_org;
921 tmp &= ~((unsigned long) ALIGN_SIZE);
922 ba->ba_1 = (void *) tmp;
929 /* Allocation and initialization of Statistics block */
930 size = sizeof(struct stat_block);
931 mac_control->stats_mem = pci_alloc_consistent
932 (nic->pdev, size, &mac_control->stats_mem_phy);
934 if (!mac_control->stats_mem) {
936 * In case of failure, free_shared_mem() is called, which
937 * should free any memory that was alloced till the
942 mem_allocated += size;
943 mac_control->stats_mem_sz = size;
945 tmp_v_addr = mac_control->stats_mem;
946 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
947 memset(tmp_v_addr, 0, size);
948 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
949 (unsigned long long) tmp_p_addr);
950 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
955 * free_shared_mem - Free the allocated Memory
956 * @nic: Device private variable.
957 * Description: This function is to free all memory locations allocated by
958 * the init_shared_mem() function and return it to the kernel.
961 static void free_shared_mem(struct s2io_nic *nic)
963 int i, j, blk_cnt, size;
965 dma_addr_t tmp_p_addr;
966 struct mac_info *mac_control;
967 struct config_param *config;
968 int lst_size, lst_per_page;
969 struct net_device *dev;
977 mac_control = &nic->mac_control;
978 config = &nic->config;
980 lst_size = (sizeof(struct TxD) * config->max_txds);
981 lst_per_page = PAGE_SIZE / lst_size;
983 for (i = 0; i < config->tx_fifo_num; i++) {
984 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
986 for (j = 0; j < page_num; j++) {
987 int mem_blks = (j * lst_per_page);
988 if (!mac_control->fifos[i].list_info)
990 if (!mac_control->fifos[i].list_info[mem_blks].
993 pci_free_consistent(nic->pdev, PAGE_SIZE,
994 mac_control->fifos[i].
997 mac_control->fifos[i].
1000 nic->mac_control.stats_info->sw_stat.mem_freed
1003 /* If we got a zero DMA address during allocation,
1006 if (mac_control->zerodma_virt_addr) {
1007 pci_free_consistent(nic->pdev, PAGE_SIZE,
1008 mac_control->zerodma_virt_addr,
1011 "%s: Freeing TxDL with zero DMA addr. ",
1013 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
1014 mac_control->zerodma_virt_addr);
1015 nic->mac_control.stats_info->sw_stat.mem_freed
1018 kfree(mac_control->fifos[i].list_info);
1019 nic->mac_control.stats_info->sw_stat.mem_freed +=
1020 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
1023 size = SIZE_OF_BLOCK;
1024 for (i = 0; i < config->rx_ring_num; i++) {
1025 blk_cnt = mac_control->rings[i].block_count;
1026 for (j = 0; j < blk_cnt; j++) {
1027 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
1029 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1031 if (tmp_v_addr == NULL)
1033 pci_free_consistent(nic->pdev, size,
1034 tmp_v_addr, tmp_p_addr);
1035 nic->mac_control.stats_info->sw_stat.mem_freed += size;
1036 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1037 nic->mac_control.stats_info->sw_stat.mem_freed +=
1038 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1042 if (nic->rxd_mode == RXD_MODE_3B) {
1043 /* Freeing buffer storage addresses in 2BUFF mode. */
1044 for (i = 0; i < config->rx_ring_num; i++) {
1045 blk_cnt = config->rx_cfg[i].num_rxd /
1046 (rxd_count[nic->rxd_mode] + 1);
1047 for (j = 0; j < blk_cnt; j++) {
1049 if (!mac_control->rings[i].ba[j])
1051 while (k != rxd_count[nic->rxd_mode]) {
1052 struct buffAdd *ba =
1053 &mac_control->rings[i].ba[j][k];
1054 kfree(ba->ba_0_org);
1055 nic->mac_control.stats_info->sw_stat.\
1056 mem_freed += (BUF0_LEN + ALIGN_SIZE);
1057 kfree(ba->ba_1_org);
1058 nic->mac_control.stats_info->sw_stat.\
1059 mem_freed += (BUF1_LEN + ALIGN_SIZE);
1062 kfree(mac_control->rings[i].ba[j]);
1063 nic->mac_control.stats_info->sw_stat.mem_freed +=
1064 (sizeof(struct buffAdd) *
1065 (rxd_count[nic->rxd_mode] + 1));
1067 kfree(mac_control->rings[i].ba);
1068 nic->mac_control.stats_info->sw_stat.mem_freed +=
1069 (sizeof(struct buffAdd *) * blk_cnt);
1073 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1074 if (mac_control->fifos[i].ufo_in_band_v) {
1075 nic->mac_control.stats_info->sw_stat.mem_freed
1076 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1077 kfree(mac_control->fifos[i].ufo_in_band_v);
1081 if (mac_control->stats_mem) {
1082 nic->mac_control.stats_info->sw_stat.mem_freed +=
1083 mac_control->stats_mem_sz;
1084 pci_free_consistent(nic->pdev,
1085 mac_control->stats_mem_sz,
1086 mac_control->stats_mem,
1087 mac_control->stats_mem_phy);
1092 * s2io_verify_pci_mode -
1095 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1097 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1098 register u64 val64 = 0;
1101 val64 = readq(&bar0->pci_mode);
1102 mode = (u8)GET_PCI_MODE(val64);
1104 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1105 return -1; /* Unknown PCI mode */
1109 #define NEC_VENID 0x1033
1110 #define NEC_DEVID 0x0125
1111 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1113 struct pci_dev *tdev = NULL;
1114 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1115 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1116 if (tdev->bus == s2io_pdev->bus->parent) {
1125 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1127 * s2io_print_pci_mode -
1129 static int s2io_print_pci_mode(struct s2io_nic *nic)
1131 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1132 register u64 val64 = 0;
1134 struct config_param *config = &nic->config;
1136 val64 = readq(&bar0->pci_mode);
1137 mode = (u8)GET_PCI_MODE(val64);
1139 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1140 return -1; /* Unknown PCI mode */
1142 config->bus_speed = bus_speed[mode];
1144 if (s2io_on_nec_bridge(nic->pdev)) {
1145 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1150 if (val64 & PCI_MODE_32_BITS) {
1151 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1153 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1157 case PCI_MODE_PCI_33:
1158 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1160 case PCI_MODE_PCI_66:
1161 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1163 case PCI_MODE_PCIX_M1_66:
1164 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1166 case PCI_MODE_PCIX_M1_100:
1167 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1169 case PCI_MODE_PCIX_M1_133:
1170 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1172 case PCI_MODE_PCIX_M2_66:
1173 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1175 case PCI_MODE_PCIX_M2_100:
1176 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1178 case PCI_MODE_PCIX_M2_133:
1179 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1182 return -1; /* Unsupported bus speed */
1189 * init_tti - Initialization transmit traffic interrupt scheme
1190 * @nic: device private variable
1191 * @link: link status (UP/DOWN) used to enable/disable continuous
1192 * transmit interrupts
1193 * Description: The function configures transmit traffic interrupts
1194 * Return Value: SUCCESS on success and
1198 static int init_tti(struct s2io_nic *nic, int link)
1200 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1201 register u64 val64 = 0;
1203 struct config_param *config;
1205 config = &nic->config;
1207 for (i = 0; i < config->tx_fifo_num; i++) {
1209 * TTI Initialization. Default Tx timer gets us about
1210 * 250 interrupts per sec. Continuous interrupts are enabled
1213 if (nic->device_type == XFRAME_II_DEVICE) {
1214 int count = (nic->config.bus_speed * 125)/2;
1215 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1217 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1219 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1220 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1221 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1222 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1224 if (use_continuous_tx_intrs && (link == LINK_UP))
1225 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1226 writeq(val64, &bar0->tti_data1_mem);
1228 if (nic->config.intr_type == MSI_X) {
1229 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1230 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1231 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1232 TTI_DATA2_MEM_TX_UFC_D(0x300);
1234 if ((nic->config.tx_steering_type ==
1235 TX_DEFAULT_STEERING) &&
1236 (config->tx_fifo_num > 1) &&
1237 (i >= nic->udp_fifo_idx) &&
1238 (i < (nic->udp_fifo_idx +
1239 nic->total_udp_fifos)))
1240 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1241 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1242 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1243 TTI_DATA2_MEM_TX_UFC_D(0x120);
1245 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1246 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1247 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1248 TTI_DATA2_MEM_TX_UFC_D(0x80);
1251 writeq(val64, &bar0->tti_data2_mem);
1253 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1254 TTI_CMD_MEM_OFFSET(i);
1255 writeq(val64, &bar0->tti_command_mem);
1257 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1258 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1266 * init_nic - Initialization of hardware
1267 * @nic: device private variable
1268 * Description: The function sequentially configures every block
1269 * of the H/W from their reset values.
1270 * Return Value: SUCCESS on success and
1271 * '-1' on failure (endian settings incorrect).
1274 static int init_nic(struct s2io_nic *nic)
1276 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1277 struct net_device *dev = nic->dev;
1278 register u64 val64 = 0;
1282 struct mac_info *mac_control;
1283 struct config_param *config;
1285 unsigned long long mem_share;
1288 mac_control = &nic->mac_control;
1289 config = &nic->config;
1291 /* to set the swapper controle on the card */
1292 if(s2io_set_swapper(nic)) {
1293 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1298 * Herc requires EOI to be removed from reset before XGXS, so..
1300 if (nic->device_type & XFRAME_II_DEVICE) {
1301 val64 = 0xA500000000ULL;
1302 writeq(val64, &bar0->sw_reset);
1304 val64 = readq(&bar0->sw_reset);
1307 /* Remove XGXS from reset state */
1309 writeq(val64, &bar0->sw_reset);
1311 val64 = readq(&bar0->sw_reset);
1313 /* Ensure that it's safe to access registers by checking
1314 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1316 if (nic->device_type == XFRAME_II_DEVICE) {
1317 for (i = 0; i < 50; i++) {
1318 val64 = readq(&bar0->adapter_status);
1319 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1327 /* Enable Receiving broadcasts */
1328 add = &bar0->mac_cfg;
1329 val64 = readq(&bar0->mac_cfg);
1330 val64 |= MAC_RMAC_BCAST_ENABLE;
1331 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1332 writel((u32) val64, add);
1333 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1334 writel((u32) (val64 >> 32), (add + 4));
1336 /* Read registers in all blocks */
1337 val64 = readq(&bar0->mac_int_mask);
1338 val64 = readq(&bar0->mc_int_mask);
1339 val64 = readq(&bar0->xgxs_int_mask);
1343 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1345 if (nic->device_type & XFRAME_II_DEVICE) {
1346 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1347 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1348 &bar0->dtx_control, UF);
1350 msleep(1); /* Necessary!! */
1354 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1355 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1356 &bar0->dtx_control, UF);
1357 val64 = readq(&bar0->dtx_control);
1362 /* Tx DMA Initialization */
1364 writeq(val64, &bar0->tx_fifo_partition_0);
1365 writeq(val64, &bar0->tx_fifo_partition_1);
1366 writeq(val64, &bar0->tx_fifo_partition_2);
1367 writeq(val64, &bar0->tx_fifo_partition_3);
1370 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1372 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1373 13) | vBIT(config->tx_cfg[i].fifo_priority,
1376 if (i == (config->tx_fifo_num - 1)) {
1383 writeq(val64, &bar0->tx_fifo_partition_0);
1388 writeq(val64, &bar0->tx_fifo_partition_1);
1393 writeq(val64, &bar0->tx_fifo_partition_2);
1398 writeq(val64, &bar0->tx_fifo_partition_3);
1409 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1410 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1412 if ((nic->device_type == XFRAME_I_DEVICE) &&
1413 (nic->pdev->revision < 4))
1414 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1416 val64 = readq(&bar0->tx_fifo_partition_0);
1417 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1418 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1421 * Initialization of Tx_PA_CONFIG register to ignore packet
1422 * integrity checking.
1424 val64 = readq(&bar0->tx_pa_cfg);
1425 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1426 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1427 writeq(val64, &bar0->tx_pa_cfg);
1429 /* Rx DMA intialization. */
1431 for (i = 0; i < config->rx_ring_num; i++) {
1433 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1436 writeq(val64, &bar0->rx_queue_priority);
1439 * Allocating equal share of memory to all the
1443 if (nic->device_type & XFRAME_II_DEVICE)
1448 for (i = 0; i < config->rx_ring_num; i++) {
1451 mem_share = (mem_size / config->rx_ring_num +
1452 mem_size % config->rx_ring_num);
1453 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1456 mem_share = (mem_size / config->rx_ring_num);
1457 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1460 mem_share = (mem_size / config->rx_ring_num);
1461 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1464 mem_share = (mem_size / config->rx_ring_num);
1465 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1468 mem_share = (mem_size / config->rx_ring_num);
1469 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1472 mem_share = (mem_size / config->rx_ring_num);
1473 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1476 mem_share = (mem_size / config->rx_ring_num);
1477 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1480 mem_share = (mem_size / config->rx_ring_num);
1481 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1485 writeq(val64, &bar0->rx_queue_cfg);
1488 * Filling Tx round robin registers
1489 * as per the number of FIFOs for equal scheduling priority
1491 switch (config->tx_fifo_num) {
1494 writeq(val64, &bar0->tx_w_round_robin_0);
1495 writeq(val64, &bar0->tx_w_round_robin_1);
1496 writeq(val64, &bar0->tx_w_round_robin_2);
1497 writeq(val64, &bar0->tx_w_round_robin_3);
1498 writeq(val64, &bar0->tx_w_round_robin_4);
1501 val64 = 0x0001000100010001ULL;
1502 writeq(val64, &bar0->tx_w_round_robin_0);
1503 writeq(val64, &bar0->tx_w_round_robin_1);
1504 writeq(val64, &bar0->tx_w_round_robin_2);
1505 writeq(val64, &bar0->tx_w_round_robin_3);
1506 val64 = 0x0001000100000000ULL;
1507 writeq(val64, &bar0->tx_w_round_robin_4);
1510 val64 = 0x0001020001020001ULL;
1511 writeq(val64, &bar0->tx_w_round_robin_0);
1512 val64 = 0x0200010200010200ULL;
1513 writeq(val64, &bar0->tx_w_round_robin_1);
1514 val64 = 0x0102000102000102ULL;
1515 writeq(val64, &bar0->tx_w_round_robin_2);
1516 val64 = 0x0001020001020001ULL;
1517 writeq(val64, &bar0->tx_w_round_robin_3);
1518 val64 = 0x0200010200000000ULL;
1519 writeq(val64, &bar0->tx_w_round_robin_4);
1522 val64 = 0x0001020300010203ULL;
1523 writeq(val64, &bar0->tx_w_round_robin_0);
1524 writeq(val64, &bar0->tx_w_round_robin_1);
1525 writeq(val64, &bar0->tx_w_round_robin_2);
1526 writeq(val64, &bar0->tx_w_round_robin_3);
1527 val64 = 0x0001020300000000ULL;
1528 writeq(val64, &bar0->tx_w_round_robin_4);
1531 val64 = 0x0001020304000102ULL;
1532 writeq(val64, &bar0->tx_w_round_robin_0);
1533 val64 = 0x0304000102030400ULL;
1534 writeq(val64, &bar0->tx_w_round_robin_1);
1535 val64 = 0x0102030400010203ULL;
1536 writeq(val64, &bar0->tx_w_round_robin_2);
1537 val64 = 0x0400010203040001ULL;
1538 writeq(val64, &bar0->tx_w_round_robin_3);
1539 val64 = 0x0203040000000000ULL;
1540 writeq(val64, &bar0->tx_w_round_robin_4);
1543 val64 = 0x0001020304050001ULL;
1544 writeq(val64, &bar0->tx_w_round_robin_0);
1545 val64 = 0x0203040500010203ULL;
1546 writeq(val64, &bar0->tx_w_round_robin_1);
1547 val64 = 0x0405000102030405ULL;
1548 writeq(val64, &bar0->tx_w_round_robin_2);
1549 val64 = 0x0001020304050001ULL;
1550 writeq(val64, &bar0->tx_w_round_robin_3);
1551 val64 = 0x0203040500000000ULL;
1552 writeq(val64, &bar0->tx_w_round_robin_4);
1555 val64 = 0x0001020304050600ULL;
1556 writeq(val64, &bar0->tx_w_round_robin_0);
1557 val64 = 0x0102030405060001ULL;
1558 writeq(val64, &bar0->tx_w_round_robin_1);
1559 val64 = 0x0203040506000102ULL;
1560 writeq(val64, &bar0->tx_w_round_robin_2);
1561 val64 = 0x0304050600010203ULL;
1562 writeq(val64, &bar0->tx_w_round_robin_3);
1563 val64 = 0x0405060000000000ULL;
1564 writeq(val64, &bar0->tx_w_round_robin_4);
1567 val64 = 0x0001020304050607ULL;
1568 writeq(val64, &bar0->tx_w_round_robin_0);
1569 writeq(val64, &bar0->tx_w_round_robin_1);
1570 writeq(val64, &bar0->tx_w_round_robin_2);
1571 writeq(val64, &bar0->tx_w_round_robin_3);
1572 val64 = 0x0001020300000000ULL;
1573 writeq(val64, &bar0->tx_w_round_robin_4);
1577 /* Enable all configured Tx FIFO partitions */
1578 val64 = readq(&bar0->tx_fifo_partition_0);
1579 val64 |= (TX_FIFO_PARTITION_EN);
1580 writeq(val64, &bar0->tx_fifo_partition_0);
1582 /* Filling the Rx round robin registers as per the
1583 * number of Rings and steering based on QoS with
1586 switch (config->rx_ring_num) {
1589 writeq(val64, &bar0->rx_w_round_robin_0);
1590 writeq(val64, &bar0->rx_w_round_robin_1);
1591 writeq(val64, &bar0->rx_w_round_robin_2);
1592 writeq(val64, &bar0->rx_w_round_robin_3);
1593 writeq(val64, &bar0->rx_w_round_robin_4);
1595 val64 = 0x8080808080808080ULL;
1596 writeq(val64, &bar0->rts_qos_steering);
1599 val64 = 0x0001000100010001ULL;
1600 writeq(val64, &bar0->rx_w_round_robin_0);
1601 writeq(val64, &bar0->rx_w_round_robin_1);
1602 writeq(val64, &bar0->rx_w_round_robin_2);
1603 writeq(val64, &bar0->rx_w_round_robin_3);
1604 val64 = 0x0001000100000000ULL;
1605 writeq(val64, &bar0->rx_w_round_robin_4);
1607 val64 = 0x8080808040404040ULL;
1608 writeq(val64, &bar0->rts_qos_steering);
1611 val64 = 0x0001020001020001ULL;
1612 writeq(val64, &bar0->rx_w_round_robin_0);
1613 val64 = 0x0200010200010200ULL;
1614 writeq(val64, &bar0->rx_w_round_robin_1);
1615 val64 = 0x0102000102000102ULL;
1616 writeq(val64, &bar0->rx_w_round_robin_2);
1617 val64 = 0x0001020001020001ULL;
1618 writeq(val64, &bar0->rx_w_round_robin_3);
1619 val64 = 0x0200010200000000ULL;
1620 writeq(val64, &bar0->rx_w_round_robin_4);
1622 val64 = 0x8080804040402020ULL;
1623 writeq(val64, &bar0->rts_qos_steering);
1626 val64 = 0x0001020300010203ULL;
1627 writeq(val64, &bar0->rx_w_round_robin_0);
1628 writeq(val64, &bar0->rx_w_round_robin_1);
1629 writeq(val64, &bar0->rx_w_round_robin_2);
1630 writeq(val64, &bar0->rx_w_round_robin_3);
1631 val64 = 0x0001020300000000ULL;
1632 writeq(val64, &bar0->rx_w_round_robin_4);
1634 val64 = 0x8080404020201010ULL;
1635 writeq(val64, &bar0->rts_qos_steering);
1638 val64 = 0x0001020304000102ULL;
1639 writeq(val64, &bar0->rx_w_round_robin_0);
1640 val64 = 0x0304000102030400ULL;
1641 writeq(val64, &bar0->rx_w_round_robin_1);
1642 val64 = 0x0102030400010203ULL;
1643 writeq(val64, &bar0->rx_w_round_robin_2);
1644 val64 = 0x0400010203040001ULL;
1645 writeq(val64, &bar0->rx_w_round_robin_3);
1646 val64 = 0x0203040000000000ULL;
1647 writeq(val64, &bar0->rx_w_round_robin_4);
1649 val64 = 0x8080404020201008ULL;
1650 writeq(val64, &bar0->rts_qos_steering);
1653 val64 = 0x0001020304050001ULL;
1654 writeq(val64, &bar0->rx_w_round_robin_0);
1655 val64 = 0x0203040500010203ULL;
1656 writeq(val64, &bar0->rx_w_round_robin_1);
1657 val64 = 0x0405000102030405ULL;
1658 writeq(val64, &bar0->rx_w_round_robin_2);
1659 val64 = 0x0001020304050001ULL;
1660 writeq(val64, &bar0->rx_w_round_robin_3);
1661 val64 = 0x0203040500000000ULL;
1662 writeq(val64, &bar0->rx_w_round_robin_4);
1664 val64 = 0x8080404020100804ULL;
1665 writeq(val64, &bar0->rts_qos_steering);
1668 val64 = 0x0001020304050600ULL;
1669 writeq(val64, &bar0->rx_w_round_robin_0);
1670 val64 = 0x0102030405060001ULL;
1671 writeq(val64, &bar0->rx_w_round_robin_1);
1672 val64 = 0x0203040506000102ULL;
1673 writeq(val64, &bar0->rx_w_round_robin_2);
1674 val64 = 0x0304050600010203ULL;
1675 writeq(val64, &bar0->rx_w_round_robin_3);
1676 val64 = 0x0405060000000000ULL;
1677 writeq(val64, &bar0->rx_w_round_robin_4);
1679 val64 = 0x8080402010080402ULL;
1680 writeq(val64, &bar0->rts_qos_steering);
1683 val64 = 0x0001020304050607ULL;
1684 writeq(val64, &bar0->rx_w_round_robin_0);
1685 writeq(val64, &bar0->rx_w_round_robin_1);
1686 writeq(val64, &bar0->rx_w_round_robin_2);
1687 writeq(val64, &bar0->rx_w_round_robin_3);
1688 val64 = 0x0001020300000000ULL;
1689 writeq(val64, &bar0->rx_w_round_robin_4);
1691 val64 = 0x8040201008040201ULL;
1692 writeq(val64, &bar0->rts_qos_steering);
1698 for (i = 0; i < 8; i++)
1699 writeq(val64, &bar0->rts_frm_len_n[i]);
1701 /* Set the default rts frame length for the rings configured */
1702 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1703 for (i = 0 ; i < config->rx_ring_num ; i++)
1704 writeq(val64, &bar0->rts_frm_len_n[i]);
1706 /* Set the frame length for the configured rings
1707 * desired by the user
1709 for (i = 0; i < config->rx_ring_num; i++) {
1710 /* If rts_frm_len[i] == 0 then it is assumed that user not
1711 * specified frame length steering.
1712 * If the user provides the frame length then program
1713 * the rts_frm_len register for those values or else
1714 * leave it as it is.
1716 if (rts_frm_len[i] != 0) {
1717 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1718 &bar0->rts_frm_len_n[i]);
1722 /* Disable differentiated services steering logic */
1723 for (i = 0; i < 64; i++) {
1724 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1725 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1727 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1732 /* Program statistics memory */
1733 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1735 if (nic->device_type == XFRAME_II_DEVICE) {
1736 val64 = STAT_BC(0x320);
1737 writeq(val64, &bar0->stat_byte_cnt);
1741 * Initializing the sampling rate for the device to calculate the
1742 * bandwidth utilization.
1744 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1745 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1746 writeq(val64, &bar0->mac_link_util);
1749 * Initializing the Transmit and Receive Traffic Interrupt
1753 /* Initialize TTI */
1754 if (SUCCESS != init_tti(nic, nic->last_link_state))
1757 /* RTI Initialization */
1758 if (nic->device_type == XFRAME_II_DEVICE) {
1760 * Programmed to generate Apprx 500 Intrs per
1763 int count = (nic->config.bus_speed * 125)/4;
1764 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1766 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1767 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1768 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1769 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1771 writeq(val64, &bar0->rti_data1_mem);
1773 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1774 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1775 if (nic->config.intr_type == MSI_X)
1776 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1777 RTI_DATA2_MEM_RX_UFC_D(0x40));
1779 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1780 RTI_DATA2_MEM_RX_UFC_D(0x80));
1781 writeq(val64, &bar0->rti_data2_mem);
1783 for (i = 0; i < config->rx_ring_num; i++) {
1784 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1785 | RTI_CMD_MEM_OFFSET(i);
1786 writeq(val64, &bar0->rti_command_mem);
1789 * Once the operation completes, the Strobe bit of the
1790 * command register will be reset. We poll for this
1791 * particular condition. We wait for a maximum of 500ms
1792 * for the operation to complete, if it's not complete
1793 * by then we return error.
1797 val64 = readq(&bar0->rti_command_mem);
1798 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1802 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1812 * Initializing proper values as Pause threshold into all
1813 * the 8 Queues on Rx side.
1815 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1816 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1818 /* Disable RMAC PAD STRIPPING */
1819 add = &bar0->mac_cfg;
1820 val64 = readq(&bar0->mac_cfg);
1821 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1822 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1823 writel((u32) (val64), add);
1824 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1825 writel((u32) (val64 >> 32), (add + 4));
1826 val64 = readq(&bar0->mac_cfg);
1828 /* Enable FCS stripping by adapter */
1829 add = &bar0->mac_cfg;
1830 val64 = readq(&bar0->mac_cfg);
1831 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1832 if (nic->device_type == XFRAME_II_DEVICE)
1833 writeq(val64, &bar0->mac_cfg);
1835 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1836 writel((u32) (val64), add);
1837 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1838 writel((u32) (val64 >> 32), (add + 4));
1842 * Set the time value to be inserted in the pause frame
1843 * generated by xena.
1845 val64 = readq(&bar0->rmac_pause_cfg);
1846 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1847 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1848 writeq(val64, &bar0->rmac_pause_cfg);
1851 * Set the Threshold Limit for Generating the pause frame
1852 * If the amount of data in any Queue exceeds ratio of
1853 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1854 * pause frame is generated
1857 for (i = 0; i < 4; i++) {
1859 (((u64) 0xFF00 | nic->mac_control.
1860 mc_pause_threshold_q0q3)
1863 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1866 for (i = 0; i < 4; i++) {
1868 (((u64) 0xFF00 | nic->mac_control.
1869 mc_pause_threshold_q4q7)
1872 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1875 * TxDMA will stop Read request if the number of read split has
1876 * exceeded the limit pointed by shared_splits
1878 val64 = readq(&bar0->pic_control);
1879 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1880 writeq(val64, &bar0->pic_control);
1882 if (nic->config.bus_speed == 266) {
1883 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1884 writeq(0x0, &bar0->read_retry_delay);
1885 writeq(0x0, &bar0->write_retry_delay);
1889 * Programming the Herc to split every write transaction
1890 * that does not start on an ADB to reduce disconnects.
1892 if (nic->device_type == XFRAME_II_DEVICE) {
1893 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1894 MISC_LINK_STABILITY_PRD(3);
1895 writeq(val64, &bar0->misc_control);
1896 val64 = readq(&bar0->pic_control2);
1897 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1898 writeq(val64, &bar0->pic_control2);
1900 if (strstr(nic->product_name, "CX4")) {
1901 val64 = TMAC_AVG_IPG(0x17);
1902 writeq(val64, &bar0->tmac_avg_ipg);
1907 #define LINK_UP_DOWN_INTERRUPT 1
1908 #define MAC_RMAC_ERR_TIMER 2
1910 static int s2io_link_fault_indication(struct s2io_nic *nic)
1912 if (nic->config.intr_type != INTA)
1913 return MAC_RMAC_ERR_TIMER;
1914 if (nic->device_type == XFRAME_II_DEVICE)
1915 return LINK_UP_DOWN_INTERRUPT;
1917 return MAC_RMAC_ERR_TIMER;
1921 * do_s2io_write_bits - update alarm bits in alarm register
1922 * @value: alarm bits
1923 * @flag: interrupt status
1924 * @addr: address value
1925 * Description: update alarm bits in alarm register
1929 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1933 temp64 = readq(addr);
1935 if(flag == ENABLE_INTRS)
1936 temp64 &= ~((u64) value);
1938 temp64 |= ((u64) value);
1939 writeq(temp64, addr);
1942 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1944 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1945 register u64 gen_int_mask = 0;
1947 if (mask & TX_DMA_INTR) {
1949 gen_int_mask |= TXDMA_INT_M;
1951 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1952 TXDMA_PCC_INT | TXDMA_TTI_INT |
1953 TXDMA_LSO_INT | TXDMA_TPA_INT |
1954 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1956 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1957 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1958 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1959 &bar0->pfc_err_mask);
1961 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1962 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1963 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1965 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1966 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1967 PCC_N_SERR | PCC_6_COF_OV_ERR |
1968 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1969 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1970 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1972 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1973 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1975 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1976 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1977 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1978 flag, &bar0->lso_err_mask);
1980 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1981 flag, &bar0->tpa_err_mask);
1983 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1987 if (mask & TX_MAC_INTR) {
1988 gen_int_mask |= TXMAC_INT_M;
1989 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1990 &bar0->mac_int_mask);
1991 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1992 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1993 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1994 flag, &bar0->mac_tmac_err_mask);
1997 if (mask & TX_XGXS_INTR) {
1998 gen_int_mask |= TXXGXS_INT_M;
1999 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
2000 &bar0->xgxs_int_mask);
2001 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
2002 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
2003 flag, &bar0->xgxs_txgxs_err_mask);
2006 if (mask & RX_DMA_INTR) {
2007 gen_int_mask |= RXDMA_INT_M;
2008 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
2009 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
2010 flag, &bar0->rxdma_int_mask);
2011 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
2012 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
2013 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
2014 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
2015 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
2016 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
2017 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
2018 &bar0->prc_pcix_err_mask);
2019 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
2020 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
2021 &bar0->rpa_err_mask);
2022 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2023 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2024 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2025 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
2026 flag, &bar0->rda_err_mask);
2027 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2028 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2029 flag, &bar0->rti_err_mask);
2032 if (mask & RX_MAC_INTR) {
2033 gen_int_mask |= RXMAC_INT_M;
2034 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2035 &bar0->mac_int_mask);
2036 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2037 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2038 RMAC_DOUBLE_ECC_ERR |
2039 RMAC_LINK_STATE_CHANGE_INT,
2040 flag, &bar0->mac_rmac_err_mask);
2043 if (mask & RX_XGXS_INTR)
2045 gen_int_mask |= RXXGXS_INT_M;
2046 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2047 &bar0->xgxs_int_mask);
2048 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2049 &bar0->xgxs_rxgxs_err_mask);
2052 if (mask & MC_INTR) {
2053 gen_int_mask |= MC_INT_M;
2054 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2055 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2056 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2057 &bar0->mc_err_mask);
2059 nic->general_int_mask = gen_int_mask;
2061 /* Remove this line when alarm interrupts are enabled */
2062 nic->general_int_mask = 0;
2065 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2066 * @nic: device private variable,
2067 * @mask: A mask indicating which Intr block must be modified and,
2068 * @flag: A flag indicating whether to enable or disable the Intrs.
2069 * Description: This function will either disable or enable the interrupts
2070 * depending on the flag argument. The mask argument can be used to
2071 * enable/disable any Intr block.
2072 * Return Value: NONE.
2075 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2077 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2078 register u64 temp64 = 0, intr_mask = 0;
2080 intr_mask = nic->general_int_mask;
2082 /* Top level interrupt classification */
2083 /* PIC Interrupts */
2084 if (mask & TX_PIC_INTR) {
2085 /* Enable PIC Intrs in the general intr mask register */
2086 intr_mask |= TXPIC_INT_M;
2087 if (flag == ENABLE_INTRS) {
2089 * If Hercules adapter enable GPIO otherwise
2090 * disable all PCIX, Flash, MDIO, IIC and GPIO
2091 * interrupts for now.
2094 if (s2io_link_fault_indication(nic) ==
2095 LINK_UP_DOWN_INTERRUPT ) {
2096 do_s2io_write_bits(PIC_INT_GPIO, flag,
2097 &bar0->pic_int_mask);
2098 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2099 &bar0->gpio_int_mask);
2101 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2102 } else if (flag == DISABLE_INTRS) {
2104 * Disable PIC Intrs in the general
2105 * intr mask register
2107 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2111 /* Tx traffic interrupts */
2112 if (mask & TX_TRAFFIC_INTR) {
2113 intr_mask |= TXTRAFFIC_INT_M;
2114 if (flag == ENABLE_INTRS) {
2116 * Enable all the Tx side interrupts
2117 * writing 0 Enables all 64 TX interrupt levels
2119 writeq(0x0, &bar0->tx_traffic_mask);
2120 } else if (flag == DISABLE_INTRS) {
2122 * Disable Tx Traffic Intrs in the general intr mask
2125 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2129 /* Rx traffic interrupts */
2130 if (mask & RX_TRAFFIC_INTR) {
2131 intr_mask |= RXTRAFFIC_INT_M;
2132 if (flag == ENABLE_INTRS) {
2133 /* writing 0 Enables all 8 RX interrupt levels */
2134 writeq(0x0, &bar0->rx_traffic_mask);
2135 } else if (flag == DISABLE_INTRS) {
2137 * Disable Rx Traffic Intrs in the general intr mask
2140 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2144 temp64 = readq(&bar0->general_int_mask);
2145 if (flag == ENABLE_INTRS)
2146 temp64 &= ~((u64) intr_mask);
2148 temp64 = DISABLE_ALL_INTRS;
2149 writeq(temp64, &bar0->general_int_mask);
2151 nic->general_int_mask = readq(&bar0->general_int_mask);
2155 * verify_pcc_quiescent- Checks for PCC quiescent state
2156 * Return: 1 If PCC is quiescence
2157 * 0 If PCC is not quiescence
2159 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2162 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2163 u64 val64 = readq(&bar0->adapter_status);
2165 herc = (sp->device_type == XFRAME_II_DEVICE);
2167 if (flag == FALSE) {
2168 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2169 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2172 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2176 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2177 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2178 ADAPTER_STATUS_RMAC_PCC_IDLE))
2181 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2182 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2190 * verify_xena_quiescence - Checks whether the H/W is ready
2191 * Description: Returns whether the H/W is ready to go or not. Depending
2192 * on whether adapter enable bit was written or not the comparison
2193 * differs and the calling function passes the input argument flag to
2195 * Return: 1 If xena is quiescence
2196 * 0 If Xena is not quiescence
2199 static int verify_xena_quiescence(struct s2io_nic *sp)
2202 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2203 u64 val64 = readq(&bar0->adapter_status);
2204 mode = s2io_verify_pci_mode(sp);
2206 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2207 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2210 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2211 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2214 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2215 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2218 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2219 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2222 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2223 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2226 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2227 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2230 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2231 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2234 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2235 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2240 * In PCI 33 mode, the P_PLL is not used, and therefore,
2241 * the the P_PLL_LOCK bit in the adapter_status register will
2244 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2245 sp->device_type == XFRAME_II_DEVICE && mode !=
2247 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2250 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2251 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2252 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2259 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2260 * @sp: Pointer to device specifc structure
2262 * New procedure to clear mac address reading problems on Alpha platforms
2266 static void fix_mac_address(struct s2io_nic * sp)
2268 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2272 while (fix_mac[i] != END_SIGN) {
2273 writeq(fix_mac[i++], &bar0->gpio_control);
2275 val64 = readq(&bar0->gpio_control);
2280 * start_nic - Turns the device on
2281 * @nic : device private variable.
2283 * This function actually turns the device on. Before this function is
2284 * called,all Registers are configured from their reset states
2285 * and shared memory is allocated but the NIC is still quiescent. On
2286 * calling this function, the device interrupts are cleared and the NIC is
2287 * literally switched on by writing into the adapter control register.
2289 * SUCCESS on success and -1 on failure.
2292 static int start_nic(struct s2io_nic *nic)
2294 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2295 struct net_device *dev = nic->dev;
2296 register u64 val64 = 0;
2298 struct mac_info *mac_control;
2299 struct config_param *config;
2301 mac_control = &nic->mac_control;
2302 config = &nic->config;
2304 /* PRC Initialization and configuration */
2305 for (i = 0; i < config->rx_ring_num; i++) {
2306 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2307 &bar0->prc_rxd0_n[i]);
2309 val64 = readq(&bar0->prc_ctrl_n[i]);
2310 if (nic->rxd_mode == RXD_MODE_1)
2311 val64 |= PRC_CTRL_RC_ENABLED;
2313 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2314 if (nic->device_type == XFRAME_II_DEVICE)
2315 val64 |= PRC_CTRL_GROUP_READS;
2316 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2317 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2318 writeq(val64, &bar0->prc_ctrl_n[i]);
2321 if (nic->rxd_mode == RXD_MODE_3B) {
2322 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2323 val64 = readq(&bar0->rx_pa_cfg);
2324 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2325 writeq(val64, &bar0->rx_pa_cfg);
2328 if (vlan_tag_strip == 0) {
2329 val64 = readq(&bar0->rx_pa_cfg);
2330 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2331 writeq(val64, &bar0->rx_pa_cfg);
2332 vlan_strip_flag = 0;
2336 * Enabling MC-RLDRAM. After enabling the device, we timeout
2337 * for around 100ms, which is approximately the time required
2338 * for the device to be ready for operation.
2340 val64 = readq(&bar0->mc_rldram_mrs);
2341 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2342 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2343 val64 = readq(&bar0->mc_rldram_mrs);
2345 msleep(100); /* Delay by around 100 ms. */
2347 /* Enabling ECC Protection. */
2348 val64 = readq(&bar0->adapter_control);
2349 val64 &= ~ADAPTER_ECC_EN;
2350 writeq(val64, &bar0->adapter_control);
2353 * Verify if the device is ready to be enabled, if so enable
2356 val64 = readq(&bar0->adapter_status);
2357 if (!verify_xena_quiescence(nic)) {
2358 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2359 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2360 (unsigned long long) val64);
2365 * With some switches, link might be already up at this point.
2366 * Because of this weird behavior, when we enable laser,
2367 * we may not get link. We need to handle this. We cannot
2368 * figure out which switch is misbehaving. So we are forced to
2369 * make a global change.
2372 /* Enabling Laser. */
2373 val64 = readq(&bar0->adapter_control);
2374 val64 |= ADAPTER_EOI_TX_ON;
2375 writeq(val64, &bar0->adapter_control);
2377 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2379 * Dont see link state interrupts initally on some switches,
2380 * so directly scheduling the link state task here.
2382 schedule_work(&nic->set_link_task);
2384 /* SXE-002: Initialize link and activity LED */
2385 subid = nic->pdev->subsystem_device;
2386 if (((subid & 0xFF) >= 0x07) &&
2387 (nic->device_type == XFRAME_I_DEVICE)) {
2388 val64 = readq(&bar0->gpio_control);
2389 val64 |= 0x0000800000000000ULL;
2390 writeq(val64, &bar0->gpio_control);
2391 val64 = 0x0411040400000000ULL;
2392 writeq(val64, (void __iomem *)bar0 + 0x2700);
2398 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2400 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2401 TxD *txdlp, int get_off)
2403 struct s2io_nic *nic = fifo_data->nic;
2404 struct sk_buff *skb;
2409 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2410 pci_unmap_single(nic->pdev, (dma_addr_t)
2411 txds->Buffer_Pointer, sizeof(u64),
2416 skb = (struct sk_buff *) ((unsigned long)
2417 txds->Host_Control);
2419 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2422 pci_unmap_single(nic->pdev, (dma_addr_t)
2423 txds->Buffer_Pointer,
2424 skb->len - skb->data_len,
2426 frg_cnt = skb_shinfo(skb)->nr_frags;
2429 for (j = 0; j < frg_cnt; j++, txds++) {
2430 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2431 if (!txds->Buffer_Pointer)
2433 pci_unmap_page(nic->pdev, (dma_addr_t)
2434 txds->Buffer_Pointer,
2435 frag->size, PCI_DMA_TODEVICE);
2438 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2443 * free_tx_buffers - Free all queued Tx buffers
2444 * @nic : device private variable.
2446 * Free all queued Tx buffers.
2447 * Return Value: void
2450 static void free_tx_buffers(struct s2io_nic *nic)
2452 struct net_device *dev = nic->dev;
2453 struct sk_buff *skb;
2456 struct mac_info *mac_control;
2457 struct config_param *config;
2460 mac_control = &nic->mac_control;
2461 config = &nic->config;
2463 for (i = 0; i < config->tx_fifo_num; i++) {
2464 unsigned long flags;
2465 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2466 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
2467 txdp = (struct TxD *) \
2468 mac_control->fifos[i].list_info[j].list_virt_addr;
2469 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2471 nic->mac_control.stats_info->sw_stat.mem_freed
2478 "%s:forcibly freeing %d skbs on FIFO%d\n",
2480 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2481 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2482 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2487 * stop_nic - To stop the nic
2488 * @nic ; device private variable.
2490 * This function does exactly the opposite of what the start_nic()
2491 * function does. This function is called to stop the device.
2496 static void stop_nic(struct s2io_nic *nic)
2498 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2499 register u64 val64 = 0;
2501 struct mac_info *mac_control;
2502 struct config_param *config;
2504 mac_control = &nic->mac_control;
2505 config = &nic->config;
2507 /* Disable all interrupts */
2508 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2509 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2510 interruptible |= TX_PIC_INTR;
2511 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2513 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2514 val64 = readq(&bar0->adapter_control);
2515 val64 &= ~(ADAPTER_CNTL_EN);
2516 writeq(val64, &bar0->adapter_control);
2520 * fill_rx_buffers - Allocates the Rx side skbs
2521 * @ring_info: per ring structure
2523 * The function allocates Rx side skbs and puts the physical
2524 * address of these buffers into the RxD buffer pointers, so that the NIC
2525 * can DMA the received frame into these locations.
2526 * The NIC supports 3 receive modes, viz
2528 * 2. three buffer and
2529 * 3. Five buffer modes.
2530 * Each mode defines how many fragments the received frame will be split
2531 * up into by the NIC. The frame is split into L3 header, L4 Header,
2532 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2533 * is split into 3 fragments. As of now only single buffer mode is
2536 * SUCCESS on success or an appropriate -ve value on failure.
2539 static int fill_rx_buffers(struct ring_info *ring)
2541 struct sk_buff *skb;
2543 int off, size, block_no, block_no1;
2548 struct RxD_t *first_rxdp = NULL;
2549 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2553 struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
2555 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2557 block_no1 = ring->rx_curr_get_info.block_index;
2558 while (alloc_tab < alloc_cnt) {
2559 block_no = ring->rx_curr_put_info.block_index;
2561 off = ring->rx_curr_put_info.offset;
2563 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2565 rxd_index = off + 1;
2567 rxd_index += (block_no * ring->rxd_count);
2569 if ((block_no == block_no1) &&
2570 (off == ring->rx_curr_get_info.offset) &&
2571 (rxdp->Host_Control)) {
2572 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2574 DBG_PRINT(INTR_DBG, " info equated\n");
2577 if (off && (off == ring->rxd_count)) {
2578 ring->rx_curr_put_info.block_index++;
2579 if (ring->rx_curr_put_info.block_index ==
2581 ring->rx_curr_put_info.block_index = 0;
2582 block_no = ring->rx_curr_put_info.block_index;
2584 ring->rx_curr_put_info.offset = off;
2585 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2586 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2587 ring->dev->name, rxdp);
2591 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2592 ((ring->rxd_mode == RXD_MODE_3B) &&
2593 (rxdp->Control_2 & s2BIT(0)))) {
2594 ring->rx_curr_put_info.offset = off;
2597 /* calculate size of skb based on ring mode */
2598 size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2599 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2600 if (ring->rxd_mode == RXD_MODE_1)
2601 size += NET_IP_ALIGN;
2603 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2606 skb = dev_alloc_skb(size);
2608 DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
2609 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2612 first_rxdp->Control_1 |= RXD_OWN_XENA;
2614 stats->mem_alloc_fail_cnt++;
2618 stats->mem_allocated += skb->truesize;
2620 if (ring->rxd_mode == RXD_MODE_1) {
2621 /* 1 buffer mode - normal operation mode */
2622 rxdp1 = (struct RxD1*)rxdp;
2623 memset(rxdp, 0, sizeof(struct RxD1));
2624 skb_reserve(skb, NET_IP_ALIGN);
2625 rxdp1->Buffer0_ptr = pci_map_single
2626 (ring->pdev, skb->data, size - NET_IP_ALIGN,
2627 PCI_DMA_FROMDEVICE);
2628 if( (rxdp1->Buffer0_ptr == 0) ||
2629 (rxdp1->Buffer0_ptr ==
2631 goto pci_map_failed;
2634 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2635 rxdp->Host_Control = (unsigned long) (skb);
2636 } else if (ring->rxd_mode == RXD_MODE_3B) {
2639 * 2 buffer mode provides 128
2640 * byte aligned receive buffers.
2643 rxdp3 = (struct RxD3*)rxdp;
2644 /* save buffer pointers to avoid frequent dma mapping */
2645 Buffer0_ptr = rxdp3->Buffer0_ptr;
2646 Buffer1_ptr = rxdp3->Buffer1_ptr;
2647 memset(rxdp, 0, sizeof(struct RxD3));
2648 /* restore the buffer pointers for dma sync*/
2649 rxdp3->Buffer0_ptr = Buffer0_ptr;
2650 rxdp3->Buffer1_ptr = Buffer1_ptr;
2652 ba = &ring->ba[block_no][off];
2653 skb_reserve(skb, BUF0_LEN);
2654 tmp = (u64)(unsigned long) skb->data;
2657 skb->data = (void *) (unsigned long)tmp;
2658 skb_reset_tail_pointer(skb);
2660 if (!(rxdp3->Buffer0_ptr))
2661 rxdp3->Buffer0_ptr =
2662 pci_map_single(ring->pdev, ba->ba_0,
2663 BUF0_LEN, PCI_DMA_FROMDEVICE);
2665 pci_dma_sync_single_for_device(ring->pdev,
2666 (dma_addr_t) rxdp3->Buffer0_ptr,
2667 BUF0_LEN, PCI_DMA_FROMDEVICE);
2668 if( (rxdp3->Buffer0_ptr == 0) ||
2669 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2670 goto pci_map_failed;
2672 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2673 if (ring->rxd_mode == RXD_MODE_3B) {
2674 /* Two buffer mode */
2677 * Buffer2 will have L3/L4 header plus
2680 rxdp3->Buffer2_ptr = pci_map_single
2681 (ring->pdev, skb->data, ring->mtu + 4,
2682 PCI_DMA_FROMDEVICE);
2684 if( (rxdp3->Buffer2_ptr == 0) ||
2685 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2686 goto pci_map_failed;
2688 if (!rxdp3->Buffer1_ptr)
2689 rxdp3->Buffer1_ptr =
2690 pci_map_single(ring->pdev,
2692 PCI_DMA_FROMDEVICE);
2694 if( (rxdp3->Buffer1_ptr == 0) ||
2695 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2698 (dma_addr_t)(unsigned long)
2701 PCI_DMA_FROMDEVICE);
2702 goto pci_map_failed;
2704 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2705 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2708 rxdp->Control_2 |= s2BIT(0);
2709 rxdp->Host_Control = (unsigned long) (skb);
2711 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2712 rxdp->Control_1 |= RXD_OWN_XENA;
2714 if (off == (ring->rxd_count + 1))
2716 ring->rx_curr_put_info.offset = off;
2718 rxdp->Control_2 |= SET_RXD_MARKER;
2719 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2722 first_rxdp->Control_1 |= RXD_OWN_XENA;
2726 ring->rx_bufs_left += 1;
2731 /* Transfer ownership of first descriptor to adapter just before
2732 * exiting. Before that, use memory barrier so that ownership
2733 * and other fields are seen by adapter correctly.
2737 first_rxdp->Control_1 |= RXD_OWN_XENA;
2742 stats->pci_map_fail_cnt++;
2743 stats->mem_freed += skb->truesize;
2744 dev_kfree_skb_irq(skb);
2748 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2750 struct net_device *dev = sp->dev;
2752 struct sk_buff *skb;
2754 struct mac_info *mac_control;
2759 mac_control = &sp->mac_control;
2760 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2761 rxdp = mac_control->rings[ring_no].
2762 rx_blocks[blk].rxds[j].virt_addr;
2763 skb = (struct sk_buff *)
2764 ((unsigned long) rxdp->Host_Control);
2768 if (sp->rxd_mode == RXD_MODE_1) {
2769 rxdp1 = (struct RxD1*)rxdp;
2770 pci_unmap_single(sp->pdev, (dma_addr_t)
2773 HEADER_ETHERNET_II_802_3_SIZE
2774 + HEADER_802_2_SIZE +
2776 PCI_DMA_FROMDEVICE);
2777 memset(rxdp, 0, sizeof(struct RxD1));
2778 } else if(sp->rxd_mode == RXD_MODE_3B) {
2779 rxdp3 = (struct RxD3*)rxdp;
2780 ba = &mac_control->rings[ring_no].
2782 pci_unmap_single(sp->pdev, (dma_addr_t)
2785 PCI_DMA_FROMDEVICE);
2786 pci_unmap_single(sp->pdev, (dma_addr_t)
2789 PCI_DMA_FROMDEVICE);
2790 pci_unmap_single(sp->pdev, (dma_addr_t)
2793 PCI_DMA_FROMDEVICE);
2794 memset(rxdp, 0, sizeof(struct RxD3));
2796 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2798 mac_control->rings[ring_no].rx_bufs_left -= 1;
2803 * free_rx_buffers - Frees all Rx buffers
2804 * @sp: device private variable.
2806 * This function will free all Rx buffers allocated by host.
2811 static void free_rx_buffers(struct s2io_nic *sp)
2813 struct net_device *dev = sp->dev;
2814 int i, blk = 0, buf_cnt = 0;
2815 struct mac_info *mac_control;
2816 struct config_param *config;
2818 mac_control = &sp->mac_control;
2819 config = &sp->config;
2821 for (i = 0; i < config->rx_ring_num; i++) {
2822 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2823 free_rxd_blk(sp,i,blk);
2825 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2826 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2827 mac_control->rings[i].rx_curr_put_info.offset = 0;
2828 mac_control->rings[i].rx_curr_get_info.offset = 0;
2829 mac_control->rings[i].rx_bufs_left = 0;
2830 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2831 dev->name, buf_cnt, i);
2836 * s2io_poll - Rx interrupt handler for NAPI support
2837 * @napi : pointer to the napi structure.
2838 * @budget : The number of packets that were budgeted to be processed
2839 * during one pass through the 'Poll" function.
2841 * Comes into picture only if NAPI support has been incorporated. It does
2842 * the same thing that rx_intr_handler does, but not in a interrupt context
2843 * also It will process only a given number of packets.
2845 * 0 on success and 1 if there are No Rx packets to be processed.
2848 static int s2io_poll(struct napi_struct *napi, int budget)
2850 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2851 struct net_device *dev = nic->dev;
2852 int pkt_cnt = 0, org_pkts_to_process;
2853 struct mac_info *mac_control;
2854 struct config_param *config;
2855 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2858 mac_control = &nic->mac_control;
2859 config = &nic->config;
2861 nic->pkts_to_process = budget;
2862 org_pkts_to_process = nic->pkts_to_process;
2864 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2865 readl(&bar0->rx_traffic_int);
2867 for (i = 0; i < config->rx_ring_num; i++) {
2868 rx_intr_handler(&mac_control->rings[i]);
2869 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2870 if (!nic->pkts_to_process) {
2871 /* Quota for the current iteration has been met */
2876 netif_rx_complete(dev, napi);
2878 for (i = 0; i < config->rx_ring_num; i++) {
2879 if (fill_rx_buffers(&mac_control->rings[i]) == -ENOMEM) {
2880 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2881 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2885 /* Re enable the Rx interrupts. */
2886 writeq(0x0, &bar0->rx_traffic_mask);
2887 readl(&bar0->rx_traffic_mask);
2891 for (i = 0; i < config->rx_ring_num; i++) {
2892 if (fill_rx_buffers(&mac_control->rings[i]) == -ENOMEM) {
2893 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2894 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2901 #ifdef CONFIG_NET_POLL_CONTROLLER
2903 * s2io_netpoll - netpoll event handler entry point
2904 * @dev : pointer to the device structure.
2906 * This function will be called by upper layer to check for events on the
2907 * interface in situations where interrupts are disabled. It is used for
2908 * specific in-kernel networking tasks, such as remote consoles and kernel
2909 * debugging over the network (example netdump in RedHat).
2911 static void s2io_netpoll(struct net_device *dev)
2913 struct s2io_nic *nic = dev->priv;
2914 struct mac_info *mac_control;
2915 struct config_param *config;
2916 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2917 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2920 if (pci_channel_offline(nic->pdev))
2923 disable_irq(dev->irq);
2925 mac_control = &nic->mac_control;
2926 config = &nic->config;
2928 writeq(val64, &bar0->rx_traffic_int);
2929 writeq(val64, &bar0->tx_traffic_int);
2931 /* we need to free up the transmitted skbufs or else netpoll will
2932 * run out of skbs and will fail and eventually netpoll application such
2933 * as netdump will fail.
2935 for (i = 0; i < config->tx_fifo_num; i++)
2936 tx_intr_handler(&mac_control->fifos[i]);
2938 /* check for received packet and indicate up to network */
2939 for (i = 0; i < config->rx_ring_num; i++)
2940 rx_intr_handler(&mac_control->rings[i]);
2942 for (i = 0; i < config->rx_ring_num; i++) {
2943 if (fill_rx_buffers(&mac_control->rings[i]) == -ENOMEM) {
2944 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2945 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2949 enable_irq(dev->irq);
2955 * rx_intr_handler - Rx interrupt handler
2956 * @nic: device private variable.
2958 * If the interrupt is because of a received frame or if the
2959 * receive ring contains fresh as yet un-processed frames,this function is
2960 * called. It picks out the RxD at which place the last Rx processing had
2961 * stopped and sends the skb to the OSM's Rx handler and then increments
2966 static void rx_intr_handler(struct ring_info *ring_data)
2968 int get_block, put_block;
2969 struct rx_curr_get_info get_info, put_info;
2971 struct sk_buff *skb;
2977 get_info = ring_data->rx_curr_get_info;
2978 get_block = get_info.block_index;
2979 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2980 put_block = put_info.block_index;
2981 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2983 while (RXD_IS_UP2DT(rxdp)) {
2985 * If your are next to put index then it's
2986 * FIFO full condition
2988 if ((get_block == put_block) &&
2989 (get_info.offset + 1) == put_info.offset) {
2990 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2991 ring_data->dev->name);
2994 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2996 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2997 ring_data->dev->name);
2998 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
3001 if (ring_data->rxd_mode == RXD_MODE_1) {
3002 rxdp1 = (struct RxD1*)rxdp;
3003 pci_unmap_single(ring_data->pdev, (dma_addr_t)
3006 HEADER_ETHERNET_II_802_3_SIZE +
3009 PCI_DMA_FROMDEVICE);
3010 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3011 rxdp3 = (struct RxD3*)rxdp;
3012 pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
3014 BUF0_LEN, PCI_DMA_FROMDEVICE);
3015 pci_unmap_single(ring_data->pdev, (dma_addr_t)
3018 PCI_DMA_FROMDEVICE);
3020 prefetch(skb->data);
3021 rx_osm_handler(ring_data, rxdp);
3023 ring_data->rx_curr_get_info.offset = get_info.offset;
3024 rxdp = ring_data->rx_blocks[get_block].
3025 rxds[get_info.offset].virt_addr;
3026 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3027 get_info.offset = 0;
3028 ring_data->rx_curr_get_info.offset = get_info.offset;
3030 if (get_block == ring_data->block_count)
3032 ring_data->rx_curr_get_info.block_index = get_block;
3033 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3036 if(ring_data->nic->config.napi){
3037 ring_data->nic->pkts_to_process -= 1;
3038 if (!ring_data->nic->pkts_to_process)
3042 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3045 if (ring_data->lro) {
3046 /* Clear all LRO sessions before exiting */
3047 for (i=0; i<MAX_LRO_SESSIONS; i++) {
3048 struct lro *lro = &ring_data->lro0_n[i];
3050 update_L3L4_header(ring_data->nic, lro);
3051 queue_rx_frame(lro->parent, lro->vlan_tag);
3052 clear_lro_session(lro);
3059 * tx_intr_handler - Transmit interrupt handler
3060 * @nic : device private variable
3062 * If an interrupt was raised to indicate DMA complete of the
3063 * Tx packet, this function is called. It identifies the last TxD
3064 * whose buffer was freed and frees all skbs whose data have already
3065 * DMA'ed into the NICs internal memory.
3070 static void tx_intr_handler(struct fifo_info *fifo_data)
3072 struct s2io_nic *nic = fifo_data->nic;
3073 struct tx_curr_get_info get_info, put_info;
3074 struct sk_buff *skb = NULL;
3077 unsigned long flags = 0;
3080 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3083 get_info = fifo_data->tx_curr_get_info;
3084 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3085 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
3087 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3088 (get_info.offset != put_info.offset) &&
3089 (txdlp->Host_Control)) {
3090 /* Check for TxD errors */
3091 if (txdlp->Control_1 & TXD_T_CODE) {
3092 unsigned long long err;
3093 err = txdlp->Control_1 & TXD_T_CODE;
3095 nic->mac_control.stats_info->sw_stat.
3099 /* update t_code statistics */
3100 err_mask = err >> 48;
3103 nic->mac_control.stats_info->sw_stat.
3108 nic->mac_control.stats_info->sw_stat.
3109 tx_desc_abort_cnt++;
3113 nic->mac_control.stats_info->sw_stat.
3114 tx_parity_err_cnt++;
3118 nic->mac_control.stats_info->sw_stat.
3123 nic->mac_control.stats_info->sw_stat.
3124 tx_list_proc_err_cnt++;
3129 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3131 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3132 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3134 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3139 /* Updating the statistics block */
3140 nic->stats.tx_bytes += skb->len;
3141 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3142 dev_kfree_skb_irq(skb);
3145 if (get_info.offset == get_info.fifo_len + 1)
3146 get_info.offset = 0;
3147 txdlp = (struct TxD *) fifo_data->list_info
3148 [get_info.offset].list_virt_addr;
3149 fifo_data->tx_curr_get_info.offset =
3153 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3155 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3159 * s2io_mdio_write - Function to write in to MDIO registers
3160 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3161 * @addr : address value
3162 * @value : data value
3163 * @dev : pointer to net_device structure
3165 * This function is used to write values to the MDIO registers
3168 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3171 struct s2io_nic *sp = dev->priv;
3172 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3174 //address transaction
3175 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3176 | MDIO_MMD_DEV_ADDR(mmd_type)
3177 | MDIO_MMS_PRT_ADDR(0x0);
3178 writeq(val64, &bar0->mdio_control);
3179 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3180 writeq(val64, &bar0->mdio_control);
3185 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3186 | MDIO_MMD_DEV_ADDR(mmd_type)
3187 | MDIO_MMS_PRT_ADDR(0x0)
3188 | MDIO_MDIO_DATA(value)
3189 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3190 writeq(val64, &bar0->mdio_control);
3191 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3192 writeq(val64, &bar0->mdio_control);
3196 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3197 | MDIO_MMD_DEV_ADDR(mmd_type)
3198 | MDIO_MMS_PRT_ADDR(0x0)
3199 | MDIO_OP(MDIO_OP_READ_TRANS);
3200 writeq(val64, &bar0->mdio_control);
3201 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3202 writeq(val64, &bar0->mdio_control);
3208 * s2io_mdio_read - Function to write in to MDIO registers
3209 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3210 * @addr : address value
3211 * @dev : pointer to net_device structure
3213 * This function is used to read values to the MDIO registers
3216 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3220 struct s2io_nic *sp = dev->priv;
3221 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3223 /* address transaction */
3224 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3225 | MDIO_MMD_DEV_ADDR(mmd_type)
3226 | MDIO_MMS_PRT_ADDR(0x0);
3227 writeq(val64, &bar0->mdio_control);
3228 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3229 writeq(val64, &bar0->mdio_control);
3232 /* Data transaction */
3234 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3235 | MDIO_MMD_DEV_ADDR(mmd_type)
3236 | MDIO_MMS_PRT_ADDR(0x0)
3237 | MDIO_OP(MDIO_OP_READ_TRANS);
3238 writeq(val64, &bar0->mdio_control);
3239 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3240 writeq(val64, &bar0->mdio_control);
3243 /* Read the value from regs */
3244 rval64 = readq(&bar0->mdio_control);
3245 rval64 = rval64 & 0xFFFF0000;
3246 rval64 = rval64 >> 16;
3250 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3251 * @counter : couter value to be updated
3252 * @flag : flag to indicate the status
3253 * @type : counter type
3255 * This function is to check the status of the xpak counters value
3259 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3264 for(i = 0; i <index; i++)
3269 *counter = *counter + 1;
3270 val64 = *regs_stat & mask;
3271 val64 = val64 >> (index * 0x2);
3278 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3279 "service. Excessive temperatures may "
3280 "result in premature transceiver "
3284 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3285 "service Excessive bias currents may "
3286 "indicate imminent laser diode "
3290 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3291 "service Excessive laser output "
3292 "power may saturate far-end "
3296 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3301 val64 = val64 << (index * 0x2);
3302 *regs_stat = (*regs_stat & (~mask)) | (val64);
3305 *regs_stat = *regs_stat & (~mask);
3310 * s2io_updt_xpak_counter - Function to update the xpak counters
3311 * @dev : pointer to net_device struct
3313 * This function is to upate the status of the xpak counters value
3316 static void s2io_updt_xpak_counter(struct net_device *dev)
3324 struct s2io_nic *sp = dev->priv;
3325 struct stat_block *stat_info = sp->mac_control.stats_info;
3327 /* Check the communication with the MDIO slave */
3330 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3331 if((val64 == 0xFFFF) || (val64 == 0x0000))
3333 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3334 "Returned %llx\n", (unsigned long long)val64);
3338 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3341 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3342 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3343 (unsigned long long)val64);
3347 /* Loading the DOM register to MDIO register */
3349 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3350 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3352 /* Reading the Alarm flags */
3355 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3357 flag = CHECKBIT(val64, 0x7);
3359 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3360 &stat_info->xpak_stat.xpak_regs_stat,
3363 if(CHECKBIT(val64, 0x6))
3364 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3366 flag = CHECKBIT(val64, 0x3);
3368 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3369 &stat_info->xpak_stat.xpak_regs_stat,
3372 if(CHECKBIT(val64, 0x2))
3373 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3375 flag = CHECKBIT(val64, 0x1);
3377 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3378 &stat_info->xpak_stat.xpak_regs_stat,
3381 if(CHECKBIT(val64, 0x0))
3382 stat_info->xpak_stat.alarm_laser_output_power_low++;
3384 /* Reading the Warning flags */
3387 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3389 if(CHECKBIT(val64, 0x7))
3390 stat_info->xpak_stat.warn_transceiver_temp_high++;
3392 if(CHECKBIT(val64, 0x6))
3393 stat_info->xpak_stat.warn_transceiver_temp_low++;
3395 if(CHECKBIT(val64, 0x3))
3396 stat_info->xpak_stat.warn_laser_bias_current_high++;
3398 if(CHECKBIT(val64, 0x2))
3399 stat_info->xpak_stat.warn_laser_bias_current_low++;
3401 if(CHECKBIT(val64, 0x1))
3402 stat_info->xpak_stat.warn_laser_output_power_high++;
3404 if(CHECKBIT(val64, 0x0))
3405 stat_info->xpak_stat.warn_laser_output_power_low++;
3409 * wait_for_cmd_complete - waits for a command to complete.
3410 * @sp : private member of the device structure, which is a pointer to the
3411 * s2io_nic structure.
3412 * Description: Function that waits for a command to Write into RMAC
3413 * ADDR DATA registers to be completed and returns either success or
3414 * error depending on whether the command was complete or not.
3416 * SUCCESS on success and FAILURE on failure.
3419 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3422 int ret = FAILURE, cnt = 0, delay = 1;
3425 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3429 val64 = readq(addr);
3430 if (bit_state == S2IO_BIT_RESET) {
3431 if (!(val64 & busy_bit)) {
3436 if (!(val64 & busy_bit)) {
3453 * check_pci_device_id - Checks if the device id is supported
3455 * Description: Function to check if the pci device id is supported by driver.
3456 * Return value: Actual device id if supported else PCI_ANY_ID
3458 static u16 check_pci_device_id(u16 id)
3461 case PCI_DEVICE_ID_HERC_WIN:
3462 case PCI_DEVICE_ID_HERC_UNI:
3463 return XFRAME_II_DEVICE;
3464 case PCI_DEVICE_ID_S2IO_UNI:
3465 case PCI_DEVICE_ID_S2IO_WIN:
3466 return XFRAME_I_DEVICE;
3473 * s2io_reset - Resets the card.
3474 * @sp : private member of the device structure.
3475 * Description: Function to Reset the card. This function then also
3476 * restores the previously saved PCI configuration space registers as
3477 * the card reset also resets the configuration space.
3482 static void s2io_reset(struct s2io_nic * sp)
3484 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3489 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3490 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3492 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3493 __FUNCTION__, sp->dev->name);
3495 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3496 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3498 val64 = SW_RESET_ALL;
3499 writeq(val64, &bar0->sw_reset);
3500 if (strstr(sp->product_name, "CX4")) {
3504 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3506 /* Restore the PCI state saved during initialization. */
3507 pci_restore_state(sp->pdev);
3508 pci_read_config_word(sp->pdev, 0x2, &val16);
3509 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3514 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3515 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3518 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3522 /* Set swapper to enable I/O register access */
3523 s2io_set_swapper(sp);
3525 /* restore mac_addr entries */
3526 do_s2io_restore_unicast_mc(sp);
3528 /* Restore the MSIX table entries from local variables */
3529 restore_xmsi_data(sp);
3531 /* Clear certain PCI/PCI-X fields after reset */
3532 if (sp->device_type == XFRAME_II_DEVICE) {
3533 /* Clear "detected parity error" bit */
3534 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3536 /* Clearing PCIX Ecc status register */
3537 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3539 /* Clearing PCI_STATUS error reflected here */
3540 writeq(s2BIT(62), &bar0->txpic_int_reg);
3543 /* Reset device statistics maintained by OS */
3544 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3546 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3547 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3548 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3549 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3550 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3551 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3552 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3553 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3554 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3555 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3556 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3557 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3558 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3559 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3560 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3561 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3562 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3563 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3564 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3566 /* SXE-002: Configure link and activity LED to turn it off */
3567 subid = sp->pdev->subsystem_device;
3568 if (((subid & 0xFF) >= 0x07) &&
3569 (sp->device_type == XFRAME_I_DEVICE)) {
3570 val64 = readq(&bar0->gpio_control);
3571 val64 |= 0x0000800000000000ULL;
3572 writeq(val64, &bar0->gpio_control);
3573 val64 = 0x0411040400000000ULL;
3574 writeq(val64, (void __iomem *)bar0 + 0x2700);
3578 * Clear spurious ECC interrupts that would have occured on
3579 * XFRAME II cards after reset.
3581 if (sp->device_type == XFRAME_II_DEVICE) {
3582 val64 = readq(&bar0->pcc_err_reg);
3583 writeq(val64, &bar0->pcc_err_reg);
3586 sp->device_enabled_once = FALSE;
3590 * s2io_set_swapper - to set the swapper controle on the card
3591 * @sp : private member of the device structure,
3592 * pointer to the s2io_nic structure.
3593 * Description: Function to set the swapper control on the card
3594 * correctly depending on the 'endianness' of the system.
3596 * SUCCESS on success and FAILURE on failure.
3599 static int s2io_set_swapper(struct s2io_nic * sp)
3601 struct net_device *dev = sp->dev;
3602 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3603 u64 val64, valt, valr;
3606 * Set proper endian settings and verify the same by reading
3607 * the PIF Feed-back register.
3610 val64 = readq(&bar0->pif_rd_swapper_fb);
3611 if (val64 != 0x0123456789ABCDEFULL) {
3613 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3614 0x8100008181000081ULL, /* FE=1, SE=0 */
3615 0x4200004242000042ULL, /* FE=0, SE=1 */
3616 0}; /* FE=0, SE=0 */
3619 writeq(value[i], &bar0->swapper_ctrl);
3620 val64 = readq(&bar0->pif_rd_swapper_fb);
3621 if (val64 == 0x0123456789ABCDEFULL)
3626 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3628 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3629 (unsigned long long) val64);
3634 valr = readq(&bar0->swapper_ctrl);
3637 valt = 0x0123456789ABCDEFULL;
3638 writeq(valt, &bar0->xmsi_address);
3639 val64 = readq(&bar0->xmsi_address);
3643 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3644 0x0081810000818100ULL, /* FE=1, SE=0 */
3645 0x0042420000424200ULL, /* FE=0, SE=1 */
3646 0}; /* FE=0, SE=0 */
3649 writeq((value[i] | valr), &bar0->swapper_ctrl);
3650 writeq(valt, &bar0->xmsi_address);
3651 val64 = readq(&bar0->xmsi_address);
3657 unsigned long long x = val64;
3658 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3659 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3663 val64 = readq(&bar0->swapper_ctrl);
3664 val64 &= 0xFFFF000000000000ULL;
3668 * The device by default set to a big endian format, so a
3669 * big endian driver need not set anything.
3671 val64 |= (SWAPPER_CTRL_TXP_FE |
3672 SWAPPER_CTRL_TXP_SE |
3673 SWAPPER_CTRL_TXD_R_FE |
3674 SWAPPER_CTRL_TXD_W_FE |
3675 SWAPPER_CTRL_TXF_R_FE |
3676 SWAPPER_CTRL_RXD_R_FE |
3677 SWAPPER_CTRL_RXD_W_FE |
3678 SWAPPER_CTRL_RXF_W_FE |
3679 SWAPPER_CTRL_XMSI_FE |
3680 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3681 if (sp->config.intr_type == INTA)
3682 val64 |= SWAPPER_CTRL_XMSI_SE;
3683 writeq(val64, &bar0->swapper_ctrl);
3686 * Initially we enable all bits to make it accessible by the
3687 * driver, then we selectively enable only those bits that
3690 val64 |= (SWAPPER_CTRL_TXP_FE |
3691 SWAPPER_CTRL_TXP_SE |
3692 SWAPPER_CTRL_TXD_R_FE |
3693 SWAPPER_CTRL_TXD_R_SE |
3694 SWAPPER_CTRL_TXD_W_FE |
3695 SWAPPER_CTRL_TXD_W_SE |
3696 SWAPPER_CTRL_TXF_R_FE |
3697 SWAPPER_CTRL_RXD_R_FE |
3698 SWAPPER_CTRL_RXD_R_SE |
3699 SWAPPER_CTRL_RXD_W_FE |
3700 SWAPPER_CTRL_RXD_W_SE |
3701 SWAPPER_CTRL_RXF_W_FE |
3702 SWAPPER_CTRL_XMSI_FE |
3703 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3704 if (sp->config.intr_type == INTA)
3705 val64 |= SWAPPER_CTRL_XMSI_SE;
3706 writeq(val64, &bar0->swapper_ctrl);
3708 val64 = readq(&bar0->swapper_ctrl);
3711 * Verifying if endian settings are accurate by reading a
3712 * feedback register.
3714 val64 = readq(&bar0->pif_rd_swapper_fb);
3715 if (val64 != 0x0123456789ABCDEFULL) {
3716 /* Endian settings are incorrect, calls for another dekko. */
3717 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3719 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3720 (unsigned long long) val64);
3727 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3729 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3731 int ret = 0, cnt = 0;
3734 val64 = readq(&bar0->xmsi_access);
3735 if (!(val64 & s2BIT(15)))
3741 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3748 static void restore_xmsi_data(struct s2io_nic *nic)
3750 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3754 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3755 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3756 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3757 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
3758 writeq(val64, &bar0->xmsi_access);
3759 if (wait_for_msix_trans(nic, i)) {
3760 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3766 static void store_xmsi_data(struct s2io_nic *nic)
3768 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3769 u64 val64, addr, data;
3772 /* Store and display */
3773 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3774 val64 = (s2BIT(15) | vBIT(i, 26, 6));
3775 writeq(val64, &bar0->xmsi_access);
3776 if (wait_for_msix_trans(nic, i)) {
3777 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3780 addr = readq(&bar0->xmsi_address);
3781 data = readq(&bar0->xmsi_data);
3783 nic->msix_info[i].addr = addr;
3784 nic->msix_info[i].data = data;
3789 static int s2io_enable_msi_x(struct s2io_nic *nic)
3791 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3793 u16 msi_control; /* Temp variable */
3794 int ret, i, j, msix_indx = 1;
3796 nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
3798 if (!nic->entries) {
3799 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3801 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3804 nic->mac_control.stats_info->sw_stat.mem_allocated
3805 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3808 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
3810 if (!nic->s2io_entries) {
3811 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3813 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3814 kfree(nic->entries);
3815 nic->mac_control.stats_info->sw_stat.mem_freed
3816 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3819 nic->mac_control.stats_info->sw_stat.mem_allocated
3820 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3822 nic->entries[0].entry = 0;
3823 nic->s2io_entries[0].entry = 0;
3824 nic->s2io_entries[0].in_use = MSIX_FLG;
3825 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3826 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3828 for (i = 1; i < MAX_REQUESTED_MSI_X; i++) {
3829 nic->entries[i].entry = i;
3830 nic->s2io_entries[i].entry = i;
3831 nic->s2io_entries[i].arg = NULL;
3832 nic->s2io_entries[i].in_use = 0;
3835 rx_mat = readq(&bar0->rx_mat);
3836 for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3837 rx_mat |= RX_MAT_SET(j, msix_indx);
3838 nic->s2io_entries[msix_indx].arg
3839 = &nic->mac_control.rings[j];
3840 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3841 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3843 writeq(rx_mat, &bar0->rx_mat);
3845 nic->avail_msix_vectors = 0;
3846 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3847 /* We fail init if error or we get less vectors than min required */
3848 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3849 nic->avail_msix_vectors = ret;
3850 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3853 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3854 kfree(nic->entries);
3855 nic->mac_control.stats_info->sw_stat.mem_freed
3856 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3857 kfree(nic->s2io_entries);
3858 nic->mac_control.stats_info->sw_stat.mem_freed
3859 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3860 nic->entries = NULL;
3861 nic->s2io_entries = NULL;
3862 nic->avail_msix_vectors = 0;
3865 if (!nic->avail_msix_vectors)
3866 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3869 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3870 * in the herc NIC. (Temp change, needs to be removed later)
3872 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3873 msi_control |= 0x1; /* Enable MSI */
3874 pci_write_config_word(nic->pdev, 0x42, msi_control);
3879 /* Handle software interrupt used during MSI(X) test */
3880 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3882 struct s2io_nic *sp = dev_id;
3884 sp->msi_detected = 1;
3885 wake_up(&sp->msi_wait);
3890 /* Test interrupt path by forcing a a software IRQ */
3891 static int s2io_test_msi(struct s2io_nic *sp)
3893 struct pci_dev *pdev = sp->pdev;
3894 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3898 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3901 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3902 sp->dev->name, pci_name(pdev), pdev->irq);
3906 init_waitqueue_head (&sp->msi_wait);
3907 sp->msi_detected = 0;
3909 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3910 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3911 val64 |= SCHED_INT_CTRL_TIMER_EN;
3912 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3913 writeq(val64, &bar0->scheduled_int_ctrl);
3915 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3917 if (!sp->msi_detected) {
3918 /* MSI(X) test failed, go back to INTx mode */
3919 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3920 "using MSI(X) during test\n", sp->dev->name,
3926 free_irq(sp->entries[1].vector, sp);
3928 writeq(saved64, &bar0->scheduled_int_ctrl);
3933 static void remove_msix_isr(struct s2io_nic *sp)
3938 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3939 if (sp->s2io_entries[i].in_use ==
3940 MSIX_REGISTERED_SUCCESS) {
3941 int vector = sp->entries[i].vector;
3942 void *arg = sp->s2io_entries[i].arg;
3943 free_irq(vector, arg);
3948 kfree(sp->s2io_entries);
3950 sp->s2io_entries = NULL;
3952 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3953 msi_control &= 0xFFFE; /* Disable MSI */
3954 pci_write_config_word(sp->pdev, 0x42, msi_control);
3956 pci_disable_msix(sp->pdev);
3959 static void remove_inta_isr(struct s2io_nic *sp)
3961 struct net_device *dev = sp->dev;
3963 free_irq(sp->pdev->irq, dev);
3966 /* ********************************************************* *
3967 * Functions defined below concern the OS part of the driver *
3968 * ********************************************************* */
3971 * s2io_open - open entry point of the driver
3972 * @dev : pointer to the device structure.
3974 * This function is the open entry point of the driver. It mainly calls a
3975 * function to allocate Rx buffers and inserts them into the buffer
3976 * descriptors and then enables the Rx part of the NIC.
3978 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3982 static int s2io_open(struct net_device *dev)
3984 struct s2io_nic *sp = dev->priv;
3988 * Make sure you have link off by default every time
3989 * Nic is initialized
3991 netif_carrier_off(dev);
3992 sp->last_link_state = 0;
3994 if (sp->config.intr_type == MSI_X) {
3995 int ret = s2io_enable_msi_x(sp);
3998 ret = s2io_test_msi(sp);
3999 /* rollback MSI-X, will re-enable during add_isr() */
4000 remove_msix_isr(sp);
4005 "%s: MSI-X requested but failed to enable\n",
4007 sp->config.intr_type = INTA;
4011 /* NAPI doesn't work well with MSI(X) */
4012 if (sp->config.intr_type != INTA) {
4014 sp->config.napi = 0;
4017 /* Initialize H/W and enable interrupts */
4018 err = s2io_card_up(sp);
4020 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4022 goto hw_init_failed;
4025 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4026 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4029 goto hw_init_failed;
4031 s2io_start_all_tx_queue(sp);
4035 if (sp->config.intr_type == MSI_X) {
4038 sp->mac_control.stats_info->sw_stat.mem_freed
4039 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
4041 if (sp->s2io_entries) {
4042 kfree(sp->s2io_entries);
4043 sp->mac_control.stats_info->sw_stat.mem_freed
4044 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
4051 * s2io_close -close entry point of the driver
4052 * @dev : device pointer.
4054 * This is the stop entry point of the driver. It needs to undo exactly
4055 * whatever was done by the open entry point,thus it's usually referred to
4056 * as the close function.Among other things this function mainly stops the
4057 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4059 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4063 static int s2io_close(struct net_device *dev)
4065 struct s2io_nic *sp = dev->priv;
4066 struct config_param *config = &sp->config;
4070 /* Return if the device is already closed *
4071 * Can happen when s2io_card_up failed in change_mtu *
4073 if (!is_s2io_card_up(sp))
4076 s2io_stop_all_tx_queue(sp);
4077 /* delete all populated mac entries */
4078 for (offset = 1; offset < config->max_mc_addr; offset++) {
4079 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4080 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4081 do_s2io_delete_unicast_mc(sp, tmp64);
4090 * s2io_xmit - Tx entry point of te driver
4091 * @skb : the socket buffer containing the Tx data.
4092 * @dev : device pointer.
4094 * This function is the Tx entry point of the driver. S2IO NIC supports
4095 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4096 * NOTE: when device cant queue the pkt,just the trans_start variable will
4099 * 0 on success & 1 on failure.
4102 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4104 struct s2io_nic *sp = dev->priv;
4105 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4108 struct TxFIFO_element __iomem *tx_fifo;
4109 unsigned long flags = 0;
4111 struct fifo_info *fifo = NULL;
4112 struct mac_info *mac_control;
4113 struct config_param *config;
4114 int do_spin_lock = 1;
4116 int enable_per_list_interrupt = 0;
4117 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4119 mac_control = &sp->mac_control;
4120 config = &sp->config;
4122 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4124 if (unlikely(skb->len <= 0)) {
4125 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4126 dev_kfree_skb_any(skb);
4130 if (!is_s2io_card_up(sp)) {
4131 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4138 if (sp->vlgrp && vlan_tx_tag_present(skb))
4139 vlan_tag = vlan_tx_tag_get(skb);
4140 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4141 if (skb->protocol == htons(ETH_P_IP)) {
4146 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4147 th = (struct tcphdr *)(((unsigned char *)ip) +
4150 if (ip->protocol == IPPROTO_TCP) {
4151 queue_len = sp->total_tcp_fifos;
4152 queue = (ntohs(th->source) +
4154 sp->fifo_selector[queue_len - 1];
4155 if (queue >= queue_len)
4156 queue = queue_len - 1;
4157 } else if (ip->protocol == IPPROTO_UDP) {
4158 queue_len = sp->total_udp_fifos;
4159 queue = (ntohs(th->source) +
4161 sp->fifo_selector[queue_len - 1];
4162 if (queue >= queue_len)
4163 queue = queue_len - 1;
4164 queue += sp->udp_fifo_idx;
4165 if (skb->len > 1024)
4166 enable_per_list_interrupt = 1;
4171 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4172 /* get fifo number based on skb->priority value */
4173 queue = config->fifo_mapping
4174 [skb->priority & (MAX_TX_FIFOS - 1)];
4175 fifo = &mac_control->fifos[queue];
4178 spin_lock_irqsave(&fifo->tx_lock, flags);
4180 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4181 return NETDEV_TX_LOCKED;
4184 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
4185 if (sp->config.multiq) {
4186 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4187 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4188 return NETDEV_TX_BUSY;
4192 if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4193 if (netif_queue_stopped(dev)) {
4194 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4195 return NETDEV_TX_BUSY;
4199 put_off = (u16) fifo->tx_curr_put_info.offset;
4200 get_off = (u16) fifo->tx_curr_get_info.offset;
4201 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4203 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4204 /* Avoid "put" pointer going beyond "get" pointer */
4205 if (txdp->Host_Control ||
4206 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4207 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4208 s2io_stop_tx_queue(sp, fifo->fifo_no);
4210 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4214 offload_type = s2io_offload_type(skb);
4215 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4216 txdp->Control_1 |= TXD_TCP_LSO_EN;
4217 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4219 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4221 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4224 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4225 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4226 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4227 if (enable_per_list_interrupt)
4228 if (put_off & (queue_len >> 5))
4229 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4231 txdp->Control_2 |= TXD_VLAN_ENABLE;
4232 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4235 frg_len = skb->len - skb->data_len;
4236 if (offload_type == SKB_GSO_UDP) {
4239 ufo_size = s2io_udp_mss(skb);
4241 txdp->Control_1 |= TXD_UFO_EN;
4242 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4243 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4245 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4246 fifo->ufo_in_band_v[put_off] =
4247 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4249 fifo->ufo_in_band_v[put_off] =
4250 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4252 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4253 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4254 fifo->ufo_in_band_v,
4255 sizeof(u64), PCI_DMA_TODEVICE);
4256 if((txdp->Buffer_Pointer == 0) ||
4257 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4258 goto pci_map_failed;
4262 txdp->Buffer_Pointer = pci_map_single
4263 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4264 if((txdp->Buffer_Pointer == 0) ||
4265 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4266 goto pci_map_failed;
4268 txdp->Host_Control = (unsigned long) skb;
4269 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4270 if (offload_type == SKB_GSO_UDP)
4271 txdp->Control_1 |= TXD_UFO_EN;
4273 frg_cnt = skb_shinfo(skb)->nr_frags;
4274 /* For fragmented SKB. */
4275 for (i = 0; i < frg_cnt; i++) {
4276 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4277 /* A '0' length fragment will be ignored */
4281 txdp->Buffer_Pointer = (u64) pci_map_page
4282 (sp->pdev, frag->page, frag->page_offset,
4283 frag->size, PCI_DMA_TODEVICE);
4284 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4285 if (offload_type == SKB_GSO_UDP)
4286 txdp->Control_1 |= TXD_UFO_EN;
4288 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4290 if (offload_type == SKB_GSO_UDP)
4291 frg_cnt++; /* as Txd0 was used for inband header */
4293 tx_fifo = mac_control->tx_FIFO_start[queue];
4294 val64 = fifo->list_info[put_off].list_phy_addr;
4295 writeq(val64, &tx_fifo->TxDL_Pointer);
4297 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4300 val64 |= TX_FIFO_SPECIAL_FUNC;
4302 writeq(val64, &tx_fifo->List_Control);
4307 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4309 fifo->tx_curr_put_info.offset = put_off;
4311 /* Avoid "put" pointer going beyond "get" pointer */
4312 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4313 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4315 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4317 s2io_stop_tx_queue(sp, fifo->fifo_no);
4319 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4320 dev->trans_start = jiffies;
4321 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4323 if (sp->config.intr_type == MSI_X)
4324 tx_intr_handler(fifo);
4328 stats->pci_map_fail_cnt++;
4329 s2io_stop_tx_queue(sp, fifo->fifo_no);
4330 stats->mem_freed += skb->truesize;
4332 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4337 s2io_alarm_handle(unsigned long data)
4339 struct s2io_nic *sp = (struct s2io_nic *)data;
4340 struct net_device *dev = sp->dev;
4342 s2io_handle_errors(dev);
4343 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4346 static int s2io_chk_rx_buffers(struct ring_info *ring)
4348 if (fill_rx_buffers(ring) == -ENOMEM) {
4349 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
4350 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4355 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4357 struct ring_info *ring = (struct ring_info *)dev_id;
4358 struct s2io_nic *sp = ring->nic;
4360 if (!is_s2io_card_up(sp))
4363 rx_intr_handler(ring);
4364 s2io_chk_rx_buffers(ring);
4369 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4372 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4373 struct s2io_nic *sp = fifos->nic;
4374 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4375 struct config_param *config = &sp->config;
4378 if (unlikely(!is_s2io_card_up(sp)))
4381 reason = readq(&bar0->general_int_status);
4382 if (unlikely(reason == S2IO_MINUS_ONE))
4383 /* Nothing much can be done. Get out */
4386 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4388 if (reason & GEN_INTR_TXTRAFFIC)
4389 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4391 for (i = 0; i < config->tx_fifo_num; i++)
4392 tx_intr_handler(&fifos[i]);
4394 writeq(sp->general_int_mask, &bar0->general_int_mask);
4395 readl(&bar0->general_int_status);
4400 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4402 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4405 val64 = readq(&bar0->pic_int_status);
4406 if (val64 & PIC_INT_GPIO) {
4407 val64 = readq(&bar0->gpio_int_reg);
4408 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4409 (val64 & GPIO_INT_REG_LINK_UP)) {
4411 * This is unstable state so clear both up/down
4412 * interrupt and adapter to re-evaluate the link state.
4414 val64 |= GPIO_INT_REG_LINK_DOWN;
4415 val64 |= GPIO_INT_REG_LINK_UP;
4416 writeq(val64, &bar0->gpio_int_reg);
4417 val64 = readq(&bar0->gpio_int_mask);
4418 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4419 GPIO_INT_MASK_LINK_DOWN);
4420 writeq(val64, &bar0->gpio_int_mask);
4422 else if (val64 & GPIO_INT_REG_LINK_UP) {
4423 val64 = readq(&bar0->adapter_status);
4424 /* Enable Adapter */
4425 val64 = readq(&bar0->adapter_control);
4426 val64 |= ADAPTER_CNTL_EN;
4427 writeq(val64, &bar0->adapter_control);
4428 val64 |= ADAPTER_LED_ON;
4429 writeq(val64, &bar0->adapter_control);
4430 if (!sp->device_enabled_once)
4431 sp->device_enabled_once = 1;
4433 s2io_link(sp, LINK_UP);
4435 * unmask link down interrupt and mask link-up
4438 val64 = readq(&bar0->gpio_int_mask);
4439 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4440 val64 |= GPIO_INT_MASK_LINK_UP;
4441 writeq(val64, &bar0->gpio_int_mask);
4443 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4444 val64 = readq(&bar0->adapter_status);
4445 s2io_link(sp, LINK_DOWN);
4446 /* Link is down so unmaks link up interrupt */
4447 val64 = readq(&bar0->gpio_int_mask);
4448 val64 &= ~GPIO_INT_MASK_LINK_UP;
4449 val64 |= GPIO_INT_MASK_LINK_DOWN;
4450 writeq(val64, &bar0->gpio_int_mask);
4453 val64 = readq(&bar0->adapter_control);
4454 val64 = val64 &(~ADAPTER_LED_ON);
4455 writeq(val64, &bar0->adapter_control);
4458 val64 = readq(&bar0->gpio_int_mask);
4462 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4463 * @value: alarm bits
4464 * @addr: address value
4465 * @cnt: counter variable
4466 * Description: Check for alarm and increment the counter
4468 * 1 - if alarm bit set
4469 * 0 - if alarm bit is not set
4471 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4472 unsigned long long *cnt)
4475 val64 = readq(addr);
4476 if ( val64 & value ) {
4477 writeq(val64, addr);
4486 * s2io_handle_errors - Xframe error indication handler
4487 * @nic: device private variable
4488 * Description: Handle alarms such as loss of link, single or
4489 * double ECC errors, critical and serious errors.
4493 static void s2io_handle_errors(void * dev_id)
4495 struct net_device *dev = (struct net_device *) dev_id;
4496 struct s2io_nic *sp = dev->priv;
4497 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4498 u64 temp64 = 0,val64=0;
4501 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4502 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4504 if (!is_s2io_card_up(sp))
4507 if (pci_channel_offline(sp->pdev))
4510 memset(&sw_stat->ring_full_cnt, 0,
4511 sizeof(sw_stat->ring_full_cnt));
4513 /* Handling the XPAK counters update */
4514 if(stats->xpak_timer_count < 72000) {
4515 /* waiting for an hour */
4516 stats->xpak_timer_count++;
4518 s2io_updt_xpak_counter(dev);
4519 /* reset the count to zero */
4520 stats->xpak_timer_count = 0;
4523 /* Handling link status change error Intr */
4524 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4525 val64 = readq(&bar0->mac_rmac_err_reg);
4526 writeq(val64, &bar0->mac_rmac_err_reg);
4527 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4528 schedule_work(&sp->set_link_task);
4531 /* In case of a serious error, the device will be Reset. */
4532 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4533 &sw_stat->serious_err_cnt))
4536 /* Check for data parity error */
4537 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4538 &sw_stat->parity_err_cnt))
4541 /* Check for ring full counter */
4542 if (sp->device_type == XFRAME_II_DEVICE) {
4543 val64 = readq(&bar0->ring_bump_counter1);
4544 for (i=0; i<4; i++) {
4545 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4546 temp64 >>= 64 - ((i+1)*16);
4547 sw_stat->ring_full_cnt[i] += temp64;
4550 val64 = readq(&bar0->ring_bump_counter2);
4551 for (i=0; i<4; i++) {
4552 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4553 temp64 >>= 64 - ((i+1)*16);
4554 sw_stat->ring_full_cnt[i+4] += temp64;
4558 val64 = readq(&bar0->txdma_int_status);
4559 /*check for pfc_err*/
4560 if (val64 & TXDMA_PFC_INT) {
4561 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4562 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4563 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4564 &sw_stat->pfc_err_cnt))
4566 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4567 &sw_stat->pfc_err_cnt);
4570 /*check for tda_err*/
4571 if (val64 & TXDMA_TDA_INT) {
4572 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4573 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4574 &sw_stat->tda_err_cnt))
4576 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4577 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4579 /*check for pcc_err*/
4580 if (val64 & TXDMA_PCC_INT) {
4581 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4582 | PCC_N_SERR | PCC_6_COF_OV_ERR
4583 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4584 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4585 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4586 &sw_stat->pcc_err_cnt))
4588 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4589 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4592 /*check for tti_err*/
4593 if (val64 & TXDMA_TTI_INT) {
4594 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4595 &sw_stat->tti_err_cnt))
4597 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4598 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4601 /*check for lso_err*/
4602 if (val64 & TXDMA_LSO_INT) {
4603 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4604 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4605 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4607 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4608 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4611 /*check for tpa_err*/
4612 if (val64 & TXDMA_TPA_INT) {
4613 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4614 &sw_stat->tpa_err_cnt))
4616 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4617 &sw_stat->tpa_err_cnt);
4620 /*check for sm_err*/
4621 if (val64 & TXDMA_SM_INT) {
4622 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4623 &sw_stat->sm_err_cnt))
4627 val64 = readq(&bar0->mac_int_status);
4628 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4629 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4630 &bar0->mac_tmac_err_reg,
4631 &sw_stat->mac_tmac_err_cnt))
4633 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4634 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4635 &bar0->mac_tmac_err_reg,
4636 &sw_stat->mac_tmac_err_cnt);
4639 val64 = readq(&bar0->xgxs_int_status);
4640 if (val64 & XGXS_INT_STATUS_TXGXS) {
4641 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4642 &bar0->xgxs_txgxs_err_reg,
4643 &sw_stat->xgxs_txgxs_err_cnt))
4645 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4646 &bar0->xgxs_txgxs_err_reg,
4647 &sw_stat->xgxs_txgxs_err_cnt);
4650 val64 = readq(&bar0->rxdma_int_status);
4651 if (val64 & RXDMA_INT_RC_INT_M) {
4652 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4653 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4654 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4656 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4657 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4658 &sw_stat->rc_err_cnt);
4659 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4660 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4661 &sw_stat->prc_pcix_err_cnt))
4663 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4664 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4665 &sw_stat->prc_pcix_err_cnt);
4668 if (val64 & RXDMA_INT_RPA_INT_M) {
4669 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4670 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4672 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4673 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4676 if (val64 & RXDMA_INT_RDA_INT_M) {
4677 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4678 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4679 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4680 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4682 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4683 | RDA_MISC_ERR | RDA_PCIX_ERR,
4684 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4687 if (val64 & RXDMA_INT_RTI_INT_M) {
4688 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4689 &sw_stat->rti_err_cnt))
4691 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4692 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4695 val64 = readq(&bar0->mac_int_status);
4696 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4697 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4698 &bar0->mac_rmac_err_reg,
4699 &sw_stat->mac_rmac_err_cnt))
4701 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4702 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4703 &sw_stat->mac_rmac_err_cnt);
4706 val64 = readq(&bar0->xgxs_int_status);
4707 if (val64 & XGXS_INT_STATUS_RXGXS) {
4708 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4709 &bar0->xgxs_rxgxs_err_reg,
4710 &sw_stat->xgxs_rxgxs_err_cnt))
4714 val64 = readq(&bar0->mc_int_status);
4715 if(val64 & MC_INT_STATUS_MC_INT) {
4716 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4717 &sw_stat->mc_err_cnt))
4720 /* Handling Ecc errors */
4721 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4722 writeq(val64, &bar0->mc_err_reg);
4723 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4724 sw_stat->double_ecc_errs++;
4725 if (sp->device_type != XFRAME_II_DEVICE) {
4727 * Reset XframeI only if critical error
4730 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4731 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4735 sw_stat->single_ecc_errs++;
4741 s2io_stop_all_tx_queue(sp);
4742 schedule_work(&sp->rst_timer_task);
4743 sw_stat->soft_reset_cnt++;
4748 * s2io_isr - ISR handler of the device .
4749 * @irq: the irq of the device.
4750 * @dev_id: a void pointer to the dev structure of the NIC.
4751 * Description: This function is the ISR handler of the device. It
4752 * identifies the reason for the interrupt and calls the relevant
4753 * service routines. As a contongency measure, this ISR allocates the
4754 * recv buffers, if their numbers are below the panic value which is
4755 * presently set to 25% of the original number of rcv buffers allocated.
4757 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4758 * IRQ_NONE: will be returned if interrupt is not from our device
4760 static irqreturn_t s2io_isr(int irq, void *dev_id)
4762 struct net_device *dev = (struct net_device *) dev_id;
4763 struct s2io_nic *sp = dev->priv;
4764 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4767 struct mac_info *mac_control;
4768 struct config_param *config;
4770 /* Pretend we handled any irq's from a disconnected card */
4771 if (pci_channel_offline(sp->pdev))
4774 if (!is_s2io_card_up(sp))
4777 mac_control = &sp->mac_control;
4778 config = &sp->config;
4781 * Identify the cause for interrupt and call the appropriate
4782 * interrupt handler. Causes for the interrupt could be;
4787 reason = readq(&bar0->general_int_status);
4789 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4790 /* Nothing much can be done. Get out */
4794 if (reason & (GEN_INTR_RXTRAFFIC |
4795 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4797 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4800 if (reason & GEN_INTR_RXTRAFFIC) {
4801 if (likely(netif_rx_schedule_prep(dev,
4803 __netif_rx_schedule(dev, &sp->napi);
4804 writeq(S2IO_MINUS_ONE,
4805 &bar0->rx_traffic_mask);
4807 writeq(S2IO_MINUS_ONE,
4808 &bar0->rx_traffic_int);
4812 * rx_traffic_int reg is an R1 register, writing all 1's
4813 * will ensure that the actual interrupt causing bit
4814 * get's cleared and hence a read can be avoided.
4816 if (reason & GEN_INTR_RXTRAFFIC)
4817 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4819 for (i = 0; i < config->rx_ring_num; i++)
4820 rx_intr_handler(&mac_control->rings[i]);
4824 * tx_traffic_int reg is an R1 register, writing all 1's
4825 * will ensure that the actual interrupt causing bit get's
4826 * cleared and hence a read can be avoided.
4828 if (reason & GEN_INTR_TXTRAFFIC)
4829 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4831 for (i = 0; i < config->tx_fifo_num; i++)
4832 tx_intr_handler(&mac_control->fifos[i]);
4834 if (reason & GEN_INTR_TXPIC)
4835 s2io_txpic_intr_handle(sp);
4838 * Reallocate the buffers from the interrupt handler itself.
4840 if (!config->napi) {
4841 for (i = 0; i < config->rx_ring_num; i++)
4842 s2io_chk_rx_buffers(&mac_control->rings[i]);
4844 writeq(sp->general_int_mask, &bar0->general_int_mask);
4845 readl(&bar0->general_int_status);
4851 /* The interrupt was not raised by us */
4861 static void s2io_updt_stats(struct s2io_nic *sp)
4863 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4867 if (is_s2io_card_up(sp)) {
4868 /* Apprx 30us on a 133 MHz bus */
4869 val64 = SET_UPDT_CLICKS(10) |
4870 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4871 writeq(val64, &bar0->stat_cfg);
4874 val64 = readq(&bar0->stat_cfg);
4875 if (!(val64 & s2BIT(0)))
4879 break; /* Updt failed */
4885 * s2io_get_stats - Updates the device statistics structure.
4886 * @dev : pointer to the device structure.
4888 * This function updates the device statistics structure in the s2io_nic
4889 * structure and returns a pointer to the same.
4891 * pointer to the updated net_device_stats structure.
4894 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4896 struct s2io_nic *sp = dev->priv;
4897 struct mac_info *mac_control;
4898 struct config_param *config;
4902 mac_control = &sp->mac_control;
4903 config = &sp->config;
4905 /* Configure Stats for immediate updt */
4906 s2io_updt_stats(sp);
4908 sp->stats.tx_packets =
4909 le32_to_cpu(mac_control->stats_info->tmac_frms);
4910 sp->stats.tx_errors =
4911 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4912 sp->stats.rx_errors =
4913 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4914 sp->stats.multicast =
4915 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4916 sp->stats.rx_length_errors =
4917 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4919 /* collect per-ring rx_packets and rx_bytes */
4920 sp->stats.rx_packets = sp->stats.rx_bytes = 0;
4921 for (i = 0; i < config->rx_ring_num; i++) {
4922 sp->stats.rx_packets += mac_control->rings[i].rx_packets;
4923 sp->stats.rx_bytes += mac_control->rings[i].rx_bytes;
4926 return (&sp->stats);
4930 * s2io_set_multicast - entry point for multicast address enable/disable.
4931 * @dev : pointer to the device structure
4933 * This function is a driver entry point which gets called by the kernel
4934 * whenever multicast addresses must be enabled/disabled. This also gets
4935 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4936 * determine, if multicast address must be enabled or if promiscuous mode
4937 * is to be disabled etc.
4942 static void s2io_set_multicast(struct net_device *dev)
4945 struct dev_mc_list *mclist;
4946 struct s2io_nic *sp = dev->priv;
4947 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4948 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4950 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4952 struct config_param *config = &sp->config;
4954 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4955 /* Enable all Multicast addresses */
4956 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4957 &bar0->rmac_addr_data0_mem);
4958 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4959 &bar0->rmac_addr_data1_mem);
4960 val64 = RMAC_ADDR_CMD_MEM_WE |
4961 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4962 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4963 writeq(val64, &bar0->rmac_addr_cmd_mem);
4964 /* Wait till command completes */
4965 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4966 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4970 sp->all_multi_pos = config->max_mc_addr - 1;
4971 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4972 /* Disable all Multicast addresses */
4973 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4974 &bar0->rmac_addr_data0_mem);
4975 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4976 &bar0->rmac_addr_data1_mem);
4977 val64 = RMAC_ADDR_CMD_MEM_WE |
4978 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4979 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4980 writeq(val64, &bar0->rmac_addr_cmd_mem);
4981 /* Wait till command completes */
4982 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4983 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4987 sp->all_multi_pos = 0;
4990 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4991 /* Put the NIC into promiscuous mode */
4992 add = &bar0->mac_cfg;
4993 val64 = readq(&bar0->mac_cfg);
4994 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4996 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4997 writel((u32) val64, add);
4998 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4999 writel((u32) (val64 >> 32), (add + 4));
5001 if (vlan_tag_strip != 1) {
5002 val64 = readq(&bar0->rx_pa_cfg);
5003 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5004 writeq(val64, &bar0->rx_pa_cfg);
5005 vlan_strip_flag = 0;
5008 val64 = readq(&bar0->mac_cfg);
5009 sp->promisc_flg = 1;
5010 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5012 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5013 /* Remove the NIC from promiscuous mode */
5014 add = &bar0->mac_cfg;
5015 val64 = readq(&bar0->mac_cfg);
5016 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5018 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5019 writel((u32) val64, add);
5020 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5021 writel((u32) (val64 >> 32), (add + 4));
5023 if (vlan_tag_strip != 0) {
5024 val64 = readq(&bar0->rx_pa_cfg);
5025 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5026 writeq(val64, &bar0->rx_pa_cfg);
5027 vlan_strip_flag = 1;
5030 val64 = readq(&bar0->mac_cfg);
5031 sp->promisc_flg = 0;
5032 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
5036 /* Update individual M_CAST address list */
5037 if ((!sp->m_cast_flg) && dev->mc_count) {
5039 (config->max_mc_addr - config->max_mac_addr)) {
5040 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5042 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5043 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5047 prev_cnt = sp->mc_addr_count;
5048 sp->mc_addr_count = dev->mc_count;
5050 /* Clear out the previous list of Mc in the H/W. */
5051 for (i = 0; i < prev_cnt; i++) {
5052 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5053 &bar0->rmac_addr_data0_mem);
5054 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5055 &bar0->rmac_addr_data1_mem);
5056 val64 = RMAC_ADDR_CMD_MEM_WE |
5057 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5058 RMAC_ADDR_CMD_MEM_OFFSET
5059 (config->mc_start_offset + i);
5060 writeq(val64, &bar0->rmac_addr_cmd_mem);
5062 /* Wait for command completes */
5063 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5064 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5066 DBG_PRINT(ERR_DBG, "%s: Adding ",
5068 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5073 /* Create the new Rx filter list and update the same in H/W. */
5074 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5075 i++, mclist = mclist->next) {
5076 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5079 for (j = 0; j < ETH_ALEN; j++) {
5080 mac_addr |= mclist->dmi_addr[j];
5084 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5085 &bar0->rmac_addr_data0_mem);
5086 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5087 &bar0->rmac_addr_data1_mem);
5088 val64 = RMAC_ADDR_CMD_MEM_WE |
5089 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5090 RMAC_ADDR_CMD_MEM_OFFSET
5091 (i + config->mc_start_offset);
5092 writeq(val64, &bar0->rmac_addr_cmd_mem);
5094 /* Wait for command completes */
5095 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5096 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5098 DBG_PRINT(ERR_DBG, "%s: Adding ",
5100 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5107 /* read from CAM unicast & multicast addresses and store it in
5108 * def_mac_addr structure
5110 void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5114 struct config_param *config = &sp->config;
5116 /* store unicast & multicast mac addresses */
5117 for (offset = 0; offset < config->max_mc_addr; offset++) {
5118 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5119 /* if read fails disable the entry */
5120 if (mac_addr == FAILURE)
5121 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5122 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5126 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5127 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5130 struct config_param *config = &sp->config;
5131 /* restore unicast mac address */
5132 for (offset = 0; offset < config->max_mac_addr; offset++)
5133 do_s2io_prog_unicast(sp->dev,
5134 sp->def_mac_addr[offset].mac_addr);
5136 /* restore multicast mac address */
5137 for (offset = config->mc_start_offset;
5138 offset < config->max_mc_addr; offset++)
5139 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5142 /* add a multicast MAC address to CAM */
5143 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5147 struct config_param *config = &sp->config;
5149 for (i = 0; i < ETH_ALEN; i++) {
5151 mac_addr |= addr[i];
5153 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5156 /* check if the multicast mac already preset in CAM */
5157 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5159 tmp64 = do_s2io_read_unicast_mc(sp, i);
5160 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5163 if (tmp64 == mac_addr)
5166 if (i == config->max_mc_addr) {
5168 "CAM full no space left for multicast MAC\n");
5171 /* Update the internal structure with this new mac address */
5172 do_s2io_copy_mac_addr(sp, i, mac_addr);
5174 return (do_s2io_add_mac(sp, mac_addr, i));
5177 /* add MAC address to CAM */
5178 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5181 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5183 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5184 &bar0->rmac_addr_data0_mem);
5187 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5188 RMAC_ADDR_CMD_MEM_OFFSET(off);
5189 writeq(val64, &bar0->rmac_addr_cmd_mem);
5191 /* Wait till command completes */
5192 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5193 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5195 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5200 /* deletes a specified unicast/multicast mac entry from CAM */
5201 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5204 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5205 struct config_param *config = &sp->config;
5208 offset < config->max_mc_addr; offset++) {
5209 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5210 if (tmp64 == addr) {
5211 /* disable the entry by writing 0xffffffffffffULL */
5212 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5214 /* store the new mac list from CAM */
5215 do_s2io_store_unicast_mc(sp);
5219 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5220 (unsigned long long)addr);
5224 /* read mac entries from CAM */
5225 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5227 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5228 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5232 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5233 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5234 writeq(val64, &bar0->rmac_addr_cmd_mem);
5236 /* Wait till command completes */
5237 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5238 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5240 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5243 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5244 return (tmp64 >> 16);
5248 * s2io_set_mac_addr driver entry point
5251 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5253 struct sockaddr *addr = p;
5255 if (!is_valid_ether_addr(addr->sa_data))
5258 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5260 /* store the MAC address in CAM */
5261 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5264 * do_s2io_prog_unicast - Programs the Xframe mac address
5265 * @dev : pointer to the device structure.
5266 * @addr: a uchar pointer to the new mac address which is to be set.
5267 * Description : This procedure will program the Xframe to receive
5268 * frames with new Mac Address
5269 * Return value: SUCCESS on success and an appropriate (-)ve integer
5270 * as defined in errno.h file on failure.
5273 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5275 struct s2io_nic *sp = dev->priv;
5276 register u64 mac_addr = 0, perm_addr = 0;
5279 struct config_param *config = &sp->config;
5282 * Set the new MAC address as the new unicast filter and reflect this
5283 * change on the device address registered with the OS. It will be
5286 for (i = 0; i < ETH_ALEN; i++) {
5288 mac_addr |= addr[i];
5290 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5293 /* check if the dev_addr is different than perm_addr */
5294 if (mac_addr == perm_addr)
5297 /* check if the mac already preset in CAM */
5298 for (i = 1; i < config->max_mac_addr; i++) {
5299 tmp64 = do_s2io_read_unicast_mc(sp, i);
5300 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5303 if (tmp64 == mac_addr) {
5305 "MAC addr:0x%llx already present in CAM\n",
5306 (unsigned long long)mac_addr);
5310 if (i == config->max_mac_addr) {
5311 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5314 /* Update the internal structure with this new mac address */
5315 do_s2io_copy_mac_addr(sp, i, mac_addr);
5316 return (do_s2io_add_mac(sp, mac_addr, i));
5320 * s2io_ethtool_sset - Sets different link parameters.
5321 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5322 * @info: pointer to the structure with parameters given by ethtool to set
5325 * The function sets different link parameters provided by the user onto
5331 static int s2io_ethtool_sset(struct net_device *dev,
5332 struct ethtool_cmd *info)
5334 struct s2io_nic *sp = dev->priv;
5335 if ((info->autoneg == AUTONEG_ENABLE) ||
5336 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5339 s2io_close(sp->dev);
5347 * s2io_ethtol_gset - Return link specific information.
5348 * @sp : private member of the device structure, pointer to the
5349 * s2io_nic structure.
5350 * @info : pointer to the structure with parameters given by ethtool
5351 * to return link information.
5353 * Returns link specific information like speed, duplex etc.. to ethtool.
5355 * return 0 on success.
5358 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5360 struct s2io_nic *sp = dev->priv;
5361 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5362 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5363 info->port = PORT_FIBRE;
5365 /* info->transceiver */
5366 info->transceiver = XCVR_EXTERNAL;
5368 if (netif_carrier_ok(sp->dev)) {
5369 info->speed = 10000;
5370 info->duplex = DUPLEX_FULL;
5376 info->autoneg = AUTONEG_DISABLE;
5381 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5382 * @sp : private member of the device structure, which is a pointer to the
5383 * s2io_nic structure.
5384 * @info : pointer to the structure with parameters given by ethtool to
5385 * return driver information.
5387 * Returns driver specefic information like name, version etc.. to ethtool.
5392 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5393 struct ethtool_drvinfo *info)
5395 struct s2io_nic *sp = dev->priv;
5397 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5398 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5399 strncpy(info->fw_version, "", sizeof(info->fw_version));
5400 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5401 info->regdump_len = XENA_REG_SPACE;
5402 info->eedump_len = XENA_EEPROM_SPACE;
5406 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5407 * @sp: private member of the device structure, which is a pointer to the
5408 * s2io_nic structure.
5409 * @regs : pointer to the structure with parameters given by ethtool for
5410 * dumping the registers.
5411 * @reg_space: The input argumnet into which all the registers are dumped.
5413 * Dumps the entire register space of xFrame NIC into the user given
5419 static void s2io_ethtool_gregs(struct net_device *dev,
5420 struct ethtool_regs *regs, void *space)
5424 u8 *reg_space = (u8 *) space;
5425 struct s2io_nic *sp = dev->priv;
5427 regs->len = XENA_REG_SPACE;
5428 regs->version = sp->pdev->subsystem_device;
5430 for (i = 0; i < regs->len; i += 8) {
5431 reg = readq(sp->bar0 + i);
5432 memcpy((reg_space + i), ®, 8);
5437 * s2io_phy_id - timer function that alternates adapter LED.
5438 * @data : address of the private member of the device structure, which
5439 * is a pointer to the s2io_nic structure, provided as an u32.
5440 * Description: This is actually the timer function that alternates the
5441 * adapter LED bit of the adapter control bit to set/reset every time on
5442 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5443 * once every second.
5445 static void s2io_phy_id(unsigned long data)
5447 struct s2io_nic *sp = (struct s2io_nic *) data;
5448 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5452 subid = sp->pdev->subsystem_device;
5453 if ((sp->device_type == XFRAME_II_DEVICE) ||
5454 ((subid & 0xFF) >= 0x07)) {
5455 val64 = readq(&bar0->gpio_control);
5456 val64 ^= GPIO_CTRL_GPIO_0;
5457 writeq(val64, &bar0->gpio_control);
5459 val64 = readq(&bar0->adapter_control);
5460 val64 ^= ADAPTER_LED_ON;
5461 writeq(val64, &bar0->adapter_control);
5464 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5468 * s2io_ethtool_idnic - To physically identify the nic on the system.
5469 * @sp : private member of the device structure, which is a pointer to the
5470 * s2io_nic structure.
5471 * @id : pointer to the structure with identification parameters given by
5473 * Description: Used to physically identify the NIC on the system.
5474 * The Link LED will blink for a time specified by the user for
5476 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5477 * identification is possible only if it's link is up.
5479 * int , returns 0 on success
5482 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5484 u64 val64 = 0, last_gpio_ctrl_val;
5485 struct s2io_nic *sp = dev->priv;
5486 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5489 subid = sp->pdev->subsystem_device;
5490 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5491 if ((sp->device_type == XFRAME_I_DEVICE) &&
5492 ((subid & 0xFF) < 0x07)) {
5493 val64 = readq(&bar0->adapter_control);
5494 if (!(val64 & ADAPTER_CNTL_EN)) {
5496 "Adapter Link down, cannot blink LED\n");
5500 if (sp->id_timer.function == NULL) {
5501 init_timer(&sp->id_timer);
5502 sp->id_timer.function = s2io_phy_id;
5503 sp->id_timer.data = (unsigned long) sp;
5505 mod_timer(&sp->id_timer, jiffies);
5507 msleep_interruptible(data * HZ);
5509 msleep_interruptible(MAX_FLICKER_TIME);
5510 del_timer_sync(&sp->id_timer);
5512 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5513 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5514 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5520 static void s2io_ethtool_gringparam(struct net_device *dev,
5521 struct ethtool_ringparam *ering)
5523 struct s2io_nic *sp = dev->priv;
5524 int i,tx_desc_count=0,rx_desc_count=0;
5526 if (sp->rxd_mode == RXD_MODE_1)
5527 ering->rx_max_pending = MAX_RX_DESC_1;
5528 else if (sp->rxd_mode == RXD_MODE_3B)
5529 ering->rx_max_pending = MAX_RX_DESC_2;
5531 ering->tx_max_pending = MAX_TX_DESC;
5532 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5533 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5535 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5536 ering->tx_pending = tx_desc_count;
5538 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5539 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5541 ering->rx_pending = rx_desc_count;
5543 ering->rx_mini_max_pending = 0;
5544 ering->rx_mini_pending = 0;
5545 if(sp->rxd_mode == RXD_MODE_1)
5546 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5547 else if (sp->rxd_mode == RXD_MODE_3B)
5548 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5549 ering->rx_jumbo_pending = rx_desc_count;
5553 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5554 * @sp : private member of the device structure, which is a pointer to the
5555 * s2io_nic structure.
5556 * @ep : pointer to the structure with pause parameters given by ethtool.
5558 * Returns the Pause frame generation and reception capability of the NIC.
5562 static void s2io_ethtool_getpause_data(struct net_device *dev,
5563 struct ethtool_pauseparam *ep)
5566 struct s2io_nic *sp = dev->priv;
5567 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5569 val64 = readq(&bar0->rmac_pause_cfg);
5570 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5571 ep->tx_pause = TRUE;
5572 if (val64 & RMAC_PAUSE_RX_ENABLE)
5573 ep->rx_pause = TRUE;
5574 ep->autoneg = FALSE;
5578 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5579 * @sp : private member of the device structure, which is a pointer to the
5580 * s2io_nic structure.
5581 * @ep : pointer to the structure with pause parameters given by ethtool.
5583 * It can be used to set or reset Pause frame generation or reception
5584 * support of the NIC.
5586 * int, returns 0 on Success
5589 static int s2io_ethtool_setpause_data(struct net_device *dev,
5590 struct ethtool_pauseparam *ep)
5593 struct s2io_nic *sp = dev->priv;
5594 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5596 val64 = readq(&bar0->rmac_pause_cfg);
5598 val64 |= RMAC_PAUSE_GEN_ENABLE;
5600 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5602 val64 |= RMAC_PAUSE_RX_ENABLE;
5604 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5605 writeq(val64, &bar0->rmac_pause_cfg);
5610 * read_eeprom - reads 4 bytes of data from user given offset.
5611 * @sp : private member of the device structure, which is a pointer to the
5612 * s2io_nic structure.
5613 * @off : offset at which the data must be written
5614 * @data : Its an output parameter where the data read at the given
5617 * Will read 4 bytes of data from the user given offset and return the
5619 * NOTE: Will allow to read only part of the EEPROM visible through the
5622 * -1 on failure and 0 on success.
5625 #define S2IO_DEV_ID 5
5626 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5631 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5633 if (sp->device_type == XFRAME_I_DEVICE) {
5634 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5635 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5636 I2C_CONTROL_CNTL_START;
5637 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5639 while (exit_cnt < 5) {
5640 val64 = readq(&bar0->i2c_control);
5641 if (I2C_CONTROL_CNTL_END(val64)) {
5642 *data = I2C_CONTROL_GET_DATA(val64);
5651 if (sp->device_type == XFRAME_II_DEVICE) {
5652 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5653 SPI_CONTROL_BYTECNT(0x3) |
5654 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5655 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5656 val64 |= SPI_CONTROL_REQ;
5657 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5658 while (exit_cnt < 5) {
5659 val64 = readq(&bar0->spi_control);
5660 if (val64 & SPI_CONTROL_NACK) {
5663 } else if (val64 & SPI_CONTROL_DONE) {
5664 *data = readq(&bar0->spi_data);
5677 * write_eeprom - actually writes the relevant part of the data value.
5678 * @sp : private member of the device structure, which is a pointer to the
5679 * s2io_nic structure.
5680 * @off : offset at which the data must be written
5681 * @data : The data that is to be written
5682 * @cnt : Number of bytes of the data that are actually to be written into
5683 * the Eeprom. (max of 3)
5685 * Actually writes the relevant part of the data value into the Eeprom
5686 * through the I2C bus.
5688 * 0 on success, -1 on failure.
5691 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5693 int exit_cnt = 0, ret = -1;
5695 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5697 if (sp->device_type == XFRAME_I_DEVICE) {
5698 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5699 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5700 I2C_CONTROL_CNTL_START;
5701 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5703 while (exit_cnt < 5) {
5704 val64 = readq(&bar0->i2c_control);
5705 if (I2C_CONTROL_CNTL_END(val64)) {
5706 if (!(val64 & I2C_CONTROL_NACK))
5715 if (sp->device_type == XFRAME_II_DEVICE) {
5716 int write_cnt = (cnt == 8) ? 0 : cnt;
5717 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5719 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5720 SPI_CONTROL_BYTECNT(write_cnt) |
5721 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5722 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5723 val64 |= SPI_CONTROL_REQ;
5724 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5725 while (exit_cnt < 5) {
5726 val64 = readq(&bar0->spi_control);
5727 if (val64 & SPI_CONTROL_NACK) {
5730 } else if (val64 & SPI_CONTROL_DONE) {
5740 static void s2io_vpd_read(struct s2io_nic *nic)
5744 int i=0, cnt, fail = 0;
5745 int vpd_addr = 0x80;
5747 if (nic->device_type == XFRAME_II_DEVICE) {
5748 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5752 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5755 strcpy(nic->serial_num, "NOT AVAILABLE");
5757 vpd_data = kmalloc(256, GFP_KERNEL);
5759 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5762 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5764 for (i = 0; i < 256; i +=4 ) {
5765 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5766 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5767 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5768 for (cnt = 0; cnt <5; cnt++) {
5770 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5775 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5779 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5780 (u32 *)&vpd_data[i]);
5784 /* read serial number of adapter */
5785 for (cnt = 0; cnt < 256; cnt++) {
5786 if ((vpd_data[cnt] == 'S') &&
5787 (vpd_data[cnt+1] == 'N') &&
5788 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5789 memset(nic->serial_num, 0, VPD_STRING_LEN);
5790 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5797 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5798 memset(nic->product_name, 0, vpd_data[1]);
5799 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5802 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5806 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5807 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5808 * @eeprom : pointer to the user level structure provided by ethtool,
5809 * containing all relevant information.
5810 * @data_buf : user defined value to be written into Eeprom.
5811 * Description: Reads the values stored in the Eeprom at given offset
5812 * for a given length. Stores these values int the input argument data
5813 * buffer 'data_buf' and returns these to the caller (ethtool.)
5818 static int s2io_ethtool_geeprom(struct net_device *dev,
5819 struct ethtool_eeprom *eeprom, u8 * data_buf)
5823 struct s2io_nic *sp = dev->priv;
5825 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5827 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5828 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5830 for (i = 0; i < eeprom->len; i += 4) {
5831 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5832 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5836 memcpy((data_buf + i), &valid, 4);
5842 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5843 * @sp : private member of the device structure, which is a pointer to the
5844 * s2io_nic structure.
5845 * @eeprom : pointer to the user level structure provided by ethtool,
5846 * containing all relevant information.
5847 * @data_buf ; user defined value to be written into Eeprom.
5849 * Tries to write the user provided value in the Eeprom, at the offset
5850 * given by the user.
5852 * 0 on success, -EFAULT on failure.
5855 static int s2io_ethtool_seeprom(struct net_device *dev,
5856 struct ethtool_eeprom *eeprom,
5859 int len = eeprom->len, cnt = 0;
5860 u64 valid = 0, data;
5861 struct s2io_nic *sp = dev->priv;
5863 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5865 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5866 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5872 data = (u32) data_buf[cnt] & 0x000000FF;
5874 valid = (u32) (data << 24);
5878 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5880 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5882 "write into the specified offset\n");
5893 * s2io_register_test - reads and writes into all clock domains.
5894 * @sp : private member of the device structure, which is a pointer to the
5895 * s2io_nic structure.
5896 * @data : variable that returns the result of each of the test conducted b
5899 * Read and write into all clock domains. The NIC has 3 clock domains,
5900 * see that registers in all the three regions are accessible.
5905 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5907 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5908 u64 val64 = 0, exp_val;
5911 val64 = readq(&bar0->pif_rd_swapper_fb);
5912 if (val64 != 0x123456789abcdefULL) {
5914 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5917 val64 = readq(&bar0->rmac_pause_cfg);
5918 if (val64 != 0xc000ffff00000000ULL) {
5920 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5923 val64 = readq(&bar0->rx_queue_cfg);
5924 if (sp->device_type == XFRAME_II_DEVICE)
5925 exp_val = 0x0404040404040404ULL;
5927 exp_val = 0x0808080808080808ULL;
5928 if (val64 != exp_val) {
5930 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5933 val64 = readq(&bar0->xgxs_efifo_cfg);
5934 if (val64 != 0x000000001923141EULL) {
5936 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5939 val64 = 0x5A5A5A5A5A5A5A5AULL;
5940 writeq(val64, &bar0->xmsi_data);
5941 val64 = readq(&bar0->xmsi_data);
5942 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5944 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5947 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5948 writeq(val64, &bar0->xmsi_data);
5949 val64 = readq(&bar0->xmsi_data);
5950 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5952 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5960 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5961 * @sp : private member of the device structure, which is a pointer to the
5962 * s2io_nic structure.
5963 * @data:variable that returns the result of each of the test conducted by
5966 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5972 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5975 u64 ret_data, org_4F0, org_7F0;
5976 u8 saved_4F0 = 0, saved_7F0 = 0;
5977 struct net_device *dev = sp->dev;
5979 /* Test Write Error at offset 0 */
5980 /* Note that SPI interface allows write access to all areas
5981 * of EEPROM. Hence doing all negative testing only for Xframe I.
5983 if (sp->device_type == XFRAME_I_DEVICE)
5984 if (!write_eeprom(sp, 0, 0, 3))
5987 /* Save current values at offsets 0x4F0 and 0x7F0 */
5988 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5990 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5993 /* Test Write at offset 4f0 */
5994 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5996 if (read_eeprom(sp, 0x4F0, &ret_data))
5999 if (ret_data != 0x012345) {
6000 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6001 "Data written %llx Data read %llx\n",
6002 dev->name, (unsigned long long)0x12345,
6003 (unsigned long long)ret_data);
6007 /* Reset the EEPROM data go FFFF */
6008 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6010 /* Test Write Request Error at offset 0x7c */
6011 if (sp->device_type == XFRAME_I_DEVICE)
6012 if (!write_eeprom(sp, 0x07C, 0, 3))
6015 /* Test Write Request at offset 0x7f0 */
6016 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6018 if (read_eeprom(sp, 0x7F0, &ret_data))
6021 if (ret_data != 0x012345) {
6022 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6023 "Data written %llx Data read %llx\n",
6024 dev->name, (unsigned long long)0x12345,
6025 (unsigned long long)ret_data);
6029 /* Reset the EEPROM data go FFFF */
6030 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6032 if (sp->device_type == XFRAME_I_DEVICE) {
6033 /* Test Write Error at offset 0x80 */
6034 if (!write_eeprom(sp, 0x080, 0, 3))
6037 /* Test Write Error at offset 0xfc */
6038 if (!write_eeprom(sp, 0x0FC, 0, 3))
6041 /* Test Write Error at offset 0x100 */
6042 if (!write_eeprom(sp, 0x100, 0, 3))
6045 /* Test Write Error at offset 4ec */
6046 if (!write_eeprom(sp, 0x4EC, 0, 3))
6050 /* Restore values at offsets 0x4F0 and 0x7F0 */
6052 write_eeprom(sp, 0x4F0, org_4F0, 3);
6054 write_eeprom(sp, 0x7F0, org_7F0, 3);
6061 * s2io_bist_test - invokes the MemBist test of the card .
6062 * @sp : private member of the device structure, which is a pointer to the
6063 * s2io_nic structure.
6064 * @data:variable that returns the result of each of the test conducted by
6067 * This invokes the MemBist test of the card. We give around
6068 * 2 secs time for the Test to complete. If it's still not complete
6069 * within this peiod, we consider that the test failed.
6071 * 0 on success and -1 on failure.
6074 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
6077 int cnt = 0, ret = -1;
6079 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6080 bist |= PCI_BIST_START;
6081 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6084 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6085 if (!(bist & PCI_BIST_START)) {
6086 *data = (bist & PCI_BIST_CODE_MASK);
6098 * s2io-link_test - verifies the link state of the nic
6099 * @sp ; private member of the device structure, which is a pointer to the
6100 * s2io_nic structure.
6101 * @data: variable that returns the result of each of the test conducted by
6104 * The function verifies the link state of the NIC and updates the input
6105 * argument 'data' appropriately.
6110 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
6112 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6115 val64 = readq(&bar0->adapter_status);
6116 if(!(LINK_IS_UP(val64)))
6125 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6126 * @sp - private member of the device structure, which is a pointer to the
6127 * s2io_nic structure.
6128 * @data - variable that returns the result of each of the test
6129 * conducted by the driver.
6131 * This is one of the offline test that tests the read and write
6132 * access to the RldRam chip on the NIC.
6137 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
6139 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6141 int cnt, iteration = 0, test_fail = 0;
6143 val64 = readq(&bar0->adapter_control);
6144 val64 &= ~ADAPTER_ECC_EN;
6145 writeq(val64, &bar0->adapter_control);
6147 val64 = readq(&bar0->mc_rldram_test_ctrl);
6148 val64 |= MC_RLDRAM_TEST_MODE;
6149 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6151 val64 = readq(&bar0->mc_rldram_mrs);
6152 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6153 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6155 val64 |= MC_RLDRAM_MRS_ENABLE;
6156 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6158 while (iteration < 2) {
6159 val64 = 0x55555555aaaa0000ULL;
6160 if (iteration == 1) {
6161 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6163 writeq(val64, &bar0->mc_rldram_test_d0);
6165 val64 = 0xaaaa5a5555550000ULL;
6166 if (iteration == 1) {
6167 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6169 writeq(val64, &bar0->mc_rldram_test_d1);
6171 val64 = 0x55aaaaaaaa5a0000ULL;
6172 if (iteration == 1) {
6173 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6175 writeq(val64, &bar0->mc_rldram_test_d2);
6177 val64 = (u64) (0x0000003ffffe0100ULL);
6178 writeq(val64, &bar0->mc_rldram_test_add);
6180 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6182 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6184 for (cnt = 0; cnt < 5; cnt++) {
6185 val64 = readq(&bar0->mc_rldram_test_ctrl);
6186 if (val64 & MC_RLDRAM_TEST_DONE)
6194 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6195 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6197 for (cnt = 0; cnt < 5; cnt++) {
6198 val64 = readq(&bar0->mc_rldram_test_ctrl);
6199 if (val64 & MC_RLDRAM_TEST_DONE)
6207 val64 = readq(&bar0->mc_rldram_test_ctrl);
6208 if (!(val64 & MC_RLDRAM_TEST_PASS))
6216 /* Bring the adapter out of test mode */
6217 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6223 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6224 * @sp : private member of the device structure, which is a pointer to the
6225 * s2io_nic structure.
6226 * @ethtest : pointer to a ethtool command specific structure that will be
6227 * returned to the user.
6228 * @data : variable that returns the result of each of the test
6229 * conducted by the driver.
6231 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6232 * the health of the card.
6237 static void s2io_ethtool_test(struct net_device *dev,
6238 struct ethtool_test *ethtest,
6241 struct s2io_nic *sp = dev->priv;
6242 int orig_state = netif_running(sp->dev);
6244 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6245 /* Offline Tests. */
6247 s2io_close(sp->dev);
6249 if (s2io_register_test(sp, &data[0]))
6250 ethtest->flags |= ETH_TEST_FL_FAILED;
6254 if (s2io_rldram_test(sp, &data[3]))
6255 ethtest->flags |= ETH_TEST_FL_FAILED;
6259 if (s2io_eeprom_test(sp, &data[1]))
6260 ethtest->flags |= ETH_TEST_FL_FAILED;
6262 if (s2io_bist_test(sp, &data[4]))
6263 ethtest->flags |= ETH_TEST_FL_FAILED;
6273 "%s: is not up, cannot run test\n",
6282 if (s2io_link_test(sp, &data[2]))
6283 ethtest->flags |= ETH_TEST_FL_FAILED;
6292 static void s2io_get_ethtool_stats(struct net_device *dev,
6293 struct ethtool_stats *estats,
6297 struct s2io_nic *sp = dev->priv;
6298 struct stat_block *stat_info = sp->mac_control.stats_info;
6300 s2io_updt_stats(sp);
6302 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6303 le32_to_cpu(stat_info->tmac_frms);
6305 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6306 le32_to_cpu(stat_info->tmac_data_octets);
6307 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6309 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6310 le32_to_cpu(stat_info->tmac_mcst_frms);
6312 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6313 le32_to_cpu(stat_info->tmac_bcst_frms);
6314 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6316 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6317 le32_to_cpu(stat_info->tmac_ttl_octets);
6319 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6320 le32_to_cpu(stat_info->tmac_ucst_frms);
6322 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6323 le32_to_cpu(stat_info->tmac_nucst_frms);
6325 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6326 le32_to_cpu(stat_info->tmac_any_err_frms);
6327 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6328 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6330 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6331 le32_to_cpu(stat_info->tmac_vld_ip);
6333 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6334 le32_to_cpu(stat_info->tmac_drop_ip);
6336 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6337 le32_to_cpu(stat_info->tmac_icmp);
6339 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6340 le32_to_cpu(stat_info->tmac_rst_tcp);
6341 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6342 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6343 le32_to_cpu(stat_info->tmac_udp);
6345 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6346 le32_to_cpu(stat_info->rmac_vld_frms);
6348 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6349 le32_to_cpu(stat_info->rmac_data_octets);
6350 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6351 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6353 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6354 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6356 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6357 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6358 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6359 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6360 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6361 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6362 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6364 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6365 le32_to_cpu(stat_info->rmac_ttl_octets);
6367 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6368 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6370 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6371 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6373 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6374 le32_to_cpu(stat_info->rmac_discarded_frms);
6376 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6377 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6378 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6379 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6381 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6382 le32_to_cpu(stat_info->rmac_usized_frms);
6384 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6385 le32_to_cpu(stat_info->rmac_osized_frms);
6387 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6388 le32_to_cpu(stat_info->rmac_frag_frms);
6390 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6391 le32_to_cpu(stat_info->rmac_jabber_frms);
6392 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6393 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6394 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6395 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6396 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6397 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6399 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6400 le32_to_cpu(stat_info->rmac_ip);
6401 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6402 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6404 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6405 le32_to_cpu(stat_info->rmac_drop_ip);
6407 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6408 le32_to_cpu(stat_info->rmac_icmp);
6409 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6411 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6412 le32_to_cpu(stat_info->rmac_udp);
6414 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6415 le32_to_cpu(stat_info->rmac_err_drp_udp);
6416 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6417 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6418 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6419 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6420 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6421 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6422 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6423 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6424 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6425 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6426 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6427 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6428 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6429 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6430 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6431 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6432 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6434 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6435 le32_to_cpu(stat_info->rmac_pause_cnt);
6436 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6437 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6439 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6440 le32_to_cpu(stat_info->rmac_accepted_ip);
6441 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6442 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6443 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6444 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6445 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6446 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6447 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6448 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6449 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6450 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6451 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6452 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6453 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6454 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6455 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6456 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6457 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6458 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6459 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6461 /* Enhanced statistics exist only for Hercules */
6462 if(sp->device_type == XFRAME_II_DEVICE) {
6464 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6466 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6468 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6469 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6470 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6471 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6472 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6473 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6474 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6475 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6476 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6477 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6478 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6479 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6480 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6481 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6485 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6486 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6487 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6488 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6489 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6490 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6491 for (k = 0; k < MAX_RX_RINGS; k++)
6492 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6493 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6494 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6495 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6496 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6497 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6498 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6499 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6500 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6501 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6502 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6503 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6504 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6505 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6506 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6507 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6508 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6509 if (stat_info->sw_stat.num_aggregations) {
6510 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6513 * Since 64-bit divide does not work on all platforms,
6514 * do repeated subtraction.
6516 while (tmp >= stat_info->sw_stat.num_aggregations) {
6517 tmp -= stat_info->sw_stat.num_aggregations;
6520 tmp_stats[i++] = count;
6524 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6525 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6526 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6527 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6528 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6529 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6530 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6531 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6532 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6534 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6535 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6536 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6537 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6538 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6540 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6541 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6542 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6543 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6544 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6545 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6546 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6547 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6548 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6549 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6550 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6551 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6552 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6553 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6554 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6555 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6556 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6557 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6558 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6559 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6560 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6561 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6562 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6563 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6564 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6565 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6568 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6570 return (XENA_REG_SPACE);
6574 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6576 struct s2io_nic *sp = dev->priv;
6578 return (sp->rx_csum);
6581 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6583 struct s2io_nic *sp = dev->priv;
6593 static int s2io_get_eeprom_len(struct net_device *dev)
6595 return (XENA_EEPROM_SPACE);
6598 static int s2io_get_sset_count(struct net_device *dev, int sset)
6600 struct s2io_nic *sp = dev->priv;
6604 return S2IO_TEST_LEN;
6606 switch(sp->device_type) {
6607 case XFRAME_I_DEVICE:
6608 return XFRAME_I_STAT_LEN;
6609 case XFRAME_II_DEVICE:
6610 return XFRAME_II_STAT_LEN;
6619 static void s2io_ethtool_get_strings(struct net_device *dev,
6620 u32 stringset, u8 * data)
6623 struct s2io_nic *sp = dev->priv;
6625 switch (stringset) {
6627 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6630 stat_size = sizeof(ethtool_xena_stats_keys);
6631 memcpy(data, ðtool_xena_stats_keys,stat_size);
6632 if(sp->device_type == XFRAME_II_DEVICE) {
6633 memcpy(data + stat_size,
6634 ðtool_enhanced_stats_keys,
6635 sizeof(ethtool_enhanced_stats_keys));
6636 stat_size += sizeof(ethtool_enhanced_stats_keys);
6639 memcpy(data + stat_size, ðtool_driver_stats_keys,
6640 sizeof(ethtool_driver_stats_keys));
6644 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6647 dev->features |= NETIF_F_IP_CSUM;
6649 dev->features &= ~NETIF_F_IP_CSUM;
6654 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6656 return (dev->features & NETIF_F_TSO) != 0;
6658 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6661 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6663 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6668 static const struct ethtool_ops netdev_ethtool_ops = {
6669 .get_settings = s2io_ethtool_gset,
6670 .set_settings = s2io_ethtool_sset,
6671 .get_drvinfo = s2io_ethtool_gdrvinfo,
6672 .get_regs_len = s2io_ethtool_get_regs_len,
6673 .get_regs = s2io_ethtool_gregs,
6674 .get_link = ethtool_op_get_link,
6675 .get_eeprom_len = s2io_get_eeprom_len,
6676 .get_eeprom = s2io_ethtool_geeprom,
6677 .set_eeprom = s2io_ethtool_seeprom,
6678 .get_ringparam = s2io_ethtool_gringparam,
6679 .get_pauseparam = s2io_ethtool_getpause_data,
6680 .set_pauseparam = s2io_ethtool_setpause_data,
6681 .get_rx_csum = s2io_ethtool_get_rx_csum,
6682 .set_rx_csum = s2io_ethtool_set_rx_csum,
6683 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6684 .set_sg = ethtool_op_set_sg,
6685 .get_tso = s2io_ethtool_op_get_tso,
6686 .set_tso = s2io_ethtool_op_set_tso,
6687 .set_ufo = ethtool_op_set_ufo,
6688 .self_test = s2io_ethtool_test,
6689 .get_strings = s2io_ethtool_get_strings,
6690 .phys_id = s2io_ethtool_idnic,
6691 .get_ethtool_stats = s2io_get_ethtool_stats,
6692 .get_sset_count = s2io_get_sset_count,
6696 * s2io_ioctl - Entry point for the Ioctl
6697 * @dev : Device pointer.
6698 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6699 * a proprietary structure used to pass information to the driver.
6700 * @cmd : This is used to distinguish between the different commands that
6701 * can be passed to the IOCTL functions.
6703 * Currently there are no special functionality supported in IOCTL, hence
6704 * function always return EOPNOTSUPPORTED
6707 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6713 * s2io_change_mtu - entry point to change MTU size for the device.
6714 * @dev : device pointer.
6715 * @new_mtu : the new MTU size for the device.
6716 * Description: A driver entry point to change MTU size for the device.
6717 * Before changing the MTU the device must be stopped.
6719 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6723 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6725 struct s2io_nic *sp = dev->priv;
6728 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6729 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6735 if (netif_running(dev)) {
6736 s2io_stop_all_tx_queue(sp);
6738 ret = s2io_card_up(sp);
6740 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6744 s2io_wake_all_tx_queue(sp);
6745 } else { /* Device is down */
6746 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6747 u64 val64 = new_mtu;
6749 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6756 * s2io_set_link - Set the LInk status
6757 * @data: long pointer to device private structue
6758 * Description: Sets the link status for the adapter
6761 static void s2io_set_link(struct work_struct *work)
6763 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6764 struct net_device *dev = nic->dev;
6765 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6771 if (!netif_running(dev))
6774 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6775 /* The card is being reset, no point doing anything */
6779 subid = nic->pdev->subsystem_device;
6780 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6782 * Allow a small delay for the NICs self initiated
6783 * cleanup to complete.
6788 val64 = readq(&bar0->adapter_status);
6789 if (LINK_IS_UP(val64)) {
6790 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6791 if (verify_xena_quiescence(nic)) {
6792 val64 = readq(&bar0->adapter_control);
6793 val64 |= ADAPTER_CNTL_EN;
6794 writeq(val64, &bar0->adapter_control);
6795 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6796 nic->device_type, subid)) {
6797 val64 = readq(&bar0->gpio_control);
6798 val64 |= GPIO_CTRL_GPIO_0;
6799 writeq(val64, &bar0->gpio_control);
6800 val64 = readq(&bar0->gpio_control);
6802 val64 |= ADAPTER_LED_ON;
6803 writeq(val64, &bar0->adapter_control);
6805 nic->device_enabled_once = TRUE;
6807 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6808 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6809 s2io_stop_all_tx_queue(nic);
6812 val64 = readq(&bar0->adapter_control);
6813 val64 |= ADAPTER_LED_ON;
6814 writeq(val64, &bar0->adapter_control);
6815 s2io_link(nic, LINK_UP);
6817 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6819 val64 = readq(&bar0->gpio_control);
6820 val64 &= ~GPIO_CTRL_GPIO_0;
6821 writeq(val64, &bar0->gpio_control);
6822 val64 = readq(&bar0->gpio_control);
6825 val64 = readq(&bar0->adapter_control);
6826 val64 = val64 &(~ADAPTER_LED_ON);
6827 writeq(val64, &bar0->adapter_control);
6828 s2io_link(nic, LINK_DOWN);
6830 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6836 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6838 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6839 u64 *temp2, int size)
6841 struct net_device *dev = sp->dev;
6842 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6844 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6845 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6848 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6850 * As Rx frame are not going to be processed,
6851 * using same mapped address for the Rxd
6854 rxdp1->Buffer0_ptr = *temp0;
6856 *skb = dev_alloc_skb(size);
6858 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6859 DBG_PRINT(INFO_DBG, "memory to allocate ");
6860 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6861 sp->mac_control.stats_info->sw_stat. \
6862 mem_alloc_fail_cnt++;
6865 sp->mac_control.stats_info->sw_stat.mem_allocated
6866 += (*skb)->truesize;
6867 /* storing the mapped addr in a temp variable
6868 * such it will be used for next rxd whose
6869 * Host Control is NULL
6871 rxdp1->Buffer0_ptr = *temp0 =
6872 pci_map_single( sp->pdev, (*skb)->data,
6873 size - NET_IP_ALIGN,
6874 PCI_DMA_FROMDEVICE);
6875 if( (rxdp1->Buffer0_ptr == 0) ||
6876 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6877 goto memalloc_failed;
6879 rxdp->Host_Control = (unsigned long) (*skb);
6881 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6882 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6883 /* Two buffer Mode */
6885 rxdp3->Buffer2_ptr = *temp2;
6886 rxdp3->Buffer0_ptr = *temp0;
6887 rxdp3->Buffer1_ptr = *temp1;
6889 *skb = dev_alloc_skb(size);
6891 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6892 DBG_PRINT(INFO_DBG, "memory to allocate ");
6893 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6894 sp->mac_control.stats_info->sw_stat. \
6895 mem_alloc_fail_cnt++;
6898 sp->mac_control.stats_info->sw_stat.mem_allocated
6899 += (*skb)->truesize;
6900 rxdp3->Buffer2_ptr = *temp2 =
6901 pci_map_single(sp->pdev, (*skb)->data,
6903 PCI_DMA_FROMDEVICE);
6904 if( (rxdp3->Buffer2_ptr == 0) ||
6905 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6906 goto memalloc_failed;
6908 rxdp3->Buffer0_ptr = *temp0 =
6909 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6910 PCI_DMA_FROMDEVICE);
6911 if( (rxdp3->Buffer0_ptr == 0) ||
6912 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6913 pci_unmap_single (sp->pdev,
6914 (dma_addr_t)rxdp3->Buffer2_ptr,
6915 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6916 goto memalloc_failed;
6918 rxdp->Host_Control = (unsigned long) (*skb);
6920 /* Buffer-1 will be dummy buffer not used */
6921 rxdp3->Buffer1_ptr = *temp1 =
6922 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6923 PCI_DMA_FROMDEVICE);
6924 if( (rxdp3->Buffer1_ptr == 0) ||
6925 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6926 pci_unmap_single (sp->pdev,
6927 (dma_addr_t)rxdp3->Buffer0_ptr,
6928 BUF0_LEN, PCI_DMA_FROMDEVICE);
6929 pci_unmap_single (sp->pdev,
6930 (dma_addr_t)rxdp3->Buffer2_ptr,
6931 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6932 goto memalloc_failed;
6938 stats->pci_map_fail_cnt++;
6939 stats->mem_freed += (*skb)->truesize;
6940 dev_kfree_skb(*skb);
6944 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6947 struct net_device *dev = sp->dev;
6948 if (sp->rxd_mode == RXD_MODE_1) {
6949 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6950 } else if (sp->rxd_mode == RXD_MODE_3B) {
6951 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6952 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6953 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6957 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6959 int i, j, k, blk_cnt = 0, size;
6960 struct mac_info * mac_control = &sp->mac_control;
6961 struct config_param *config = &sp->config;
6962 struct net_device *dev = sp->dev;
6963 struct RxD_t *rxdp = NULL;
6964 struct sk_buff *skb = NULL;
6965 struct buffAdd *ba = NULL;
6966 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6968 /* Calculate the size based on ring mode */
6969 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6970 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6971 if (sp->rxd_mode == RXD_MODE_1)
6972 size += NET_IP_ALIGN;
6973 else if (sp->rxd_mode == RXD_MODE_3B)
6974 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6976 for (i = 0; i < config->rx_ring_num; i++) {
6977 blk_cnt = config->rx_cfg[i].num_rxd /
6978 (rxd_count[sp->rxd_mode] +1);
6980 for (j = 0; j < blk_cnt; j++) {
6981 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6982 rxdp = mac_control->rings[i].
6983 rx_blocks[j].rxds[k].virt_addr;
6984 if(sp->rxd_mode == RXD_MODE_3B)
6985 ba = &mac_control->rings[i].ba[j][k];
6986 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6987 &skb,(u64 *)&temp0_64,
6994 set_rxd_buffer_size(sp, rxdp, size);
6996 /* flip the Ownership bit to Hardware */
6997 rxdp->Control_1 |= RXD_OWN_XENA;
7005 static int s2io_add_isr(struct s2io_nic * sp)
7008 struct net_device *dev = sp->dev;
7011 if (sp->config.intr_type == MSI_X)
7012 ret = s2io_enable_msi_x(sp);
7014 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7015 sp->config.intr_type = INTA;
7018 /* Store the values of the MSIX table in the struct s2io_nic structure */
7019 store_xmsi_data(sp);
7021 /* After proper initialization of H/W, register ISR */
7022 if (sp->config.intr_type == MSI_X) {
7023 int i, msix_rx_cnt = 0;
7025 for (i = 0; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
7026 if (sp->s2io_entries[i].type ==
7028 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7030 err = request_irq(sp->entries[i].vector,
7031 s2io_msix_ring_handle, 0,
7033 sp->s2io_entries[i].arg);
7034 } else if (sp->s2io_entries[i].type ==
7036 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7038 err = request_irq(sp->entries[i].vector,
7039 s2io_msix_fifo_handle, 0,
7041 sp->s2io_entries[i].arg);
7044 /* if either data or addr is zero print it. */
7045 if (!(sp->msix_info[i].addr &&
7046 sp->msix_info[i].data)) {
7048 "%s @Addr:0x%llx Data:0x%llx\n",
7050 (unsigned long long)
7051 sp->msix_info[i].addr,
7052 (unsigned long long)
7053 ntohl(sp->msix_info[i].data));
7057 remove_msix_isr(sp);
7060 "%s:MSI-X-%d registration "
7061 "failed\n", dev->name, i);
7064 "%s: Defaulting to INTA\n",
7066 sp->config.intr_type = INTA;
7069 sp->s2io_entries[i].in_use =
7070 MSIX_REGISTERED_SUCCESS;
7074 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7076 DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
7077 " through alarm vector\n");
7080 if (sp->config.intr_type == INTA) {
7081 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7084 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7091 static void s2io_rem_isr(struct s2io_nic * sp)
7093 if (sp->config.intr_type == MSI_X)
7094 remove_msix_isr(sp);
7096 remove_inta_isr(sp);
7099 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
7102 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7103 register u64 val64 = 0;
7104 struct config_param *config;
7105 config = &sp->config;
7107 if (!is_s2io_card_up(sp))
7110 del_timer_sync(&sp->alarm_timer);
7111 /* If s2io_set_link task is executing, wait till it completes. */
7112 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7115 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7119 napi_disable(&sp->napi);
7121 /* disable Tx and Rx traffic on the NIC */
7127 /* Check if the device is Quiescent and then Reset the NIC */
7129 /* As per the HW requirement we need to replenish the
7130 * receive buffer to avoid the ring bump. Since there is
7131 * no intention of processing the Rx frame at this pointwe are
7132 * just settting the ownership bit of rxd in Each Rx
7133 * ring to HW and set the appropriate buffer size
7134 * based on the ring mode
7136 rxd_owner_bit_reset(sp);
7138 val64 = readq(&bar0->adapter_status);
7139 if (verify_xena_quiescence(sp)) {
7140 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7148 "s2io_close:Device not Quiescent ");
7149 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7150 (unsigned long long) val64);
7157 /* Free all Tx buffers */
7158 free_tx_buffers(sp);
7160 /* Free all Rx buffers */
7161 free_rx_buffers(sp);
7163 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7166 static void s2io_card_down(struct s2io_nic * sp)
7168 do_s2io_card_down(sp, 1);
7171 static int s2io_card_up(struct s2io_nic * sp)
7174 struct mac_info *mac_control;
7175 struct config_param *config;
7176 struct net_device *dev = (struct net_device *) sp->dev;
7179 /* Initialize the H/W I/O registers */
7182 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7190 * Initializing the Rx buffers. For now we are considering only 1
7191 * Rx ring and initializing buffers into 30 Rx blocks
7193 mac_control = &sp->mac_control;
7194 config = &sp->config;
7196 for (i = 0; i < config->rx_ring_num; i++) {
7197 mac_control->rings[i].mtu = dev->mtu;
7198 ret = fill_rx_buffers(&mac_control->rings[i]);
7200 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7203 free_rx_buffers(sp);
7206 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7207 mac_control->rings[i].rx_bufs_left);
7210 /* Initialise napi */
7212 napi_enable(&sp->napi);
7214 /* Maintain the state prior to the open */
7215 if (sp->promisc_flg)
7216 sp->promisc_flg = 0;
7217 if (sp->m_cast_flg) {
7219 sp->all_multi_pos= 0;
7222 /* Setting its receive mode */
7223 s2io_set_multicast(dev);
7226 /* Initialize max aggregatable pkts per session based on MTU */
7227 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7228 /* Check if we can use(if specified) user provided value */
7229 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7230 sp->lro_max_aggr_per_sess = lro_max_pkts;
7233 /* Enable Rx Traffic and interrupts on the NIC */
7234 if (start_nic(sp)) {
7235 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7237 free_rx_buffers(sp);
7241 /* Add interrupt service routine */
7242 if (s2io_add_isr(sp) != 0) {
7243 if (sp->config.intr_type == MSI_X)
7246 free_rx_buffers(sp);
7250 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7252 /* Enable select interrupts */
7253 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7254 if (sp->config.intr_type != INTA)
7255 en_dis_able_nic_intrs(sp, TX_TRAFFIC_INTR, ENABLE_INTRS);
7257 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7258 interruptible |= TX_PIC_INTR;
7259 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7262 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7267 * s2io_restart_nic - Resets the NIC.
7268 * @data : long pointer to the device private structure
7270 * This function is scheduled to be run by the s2io_tx_watchdog
7271 * function after 0.5 secs to reset the NIC. The idea is to reduce
7272 * the run time of the watch dog routine which is run holding a
7276 static void s2io_restart_nic(struct work_struct *work)
7278 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7279 struct net_device *dev = sp->dev;
7283 if (!netif_running(dev))
7287 if (s2io_card_up(sp)) {
7288 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7291 s2io_wake_all_tx_queue(sp);
7292 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7299 * s2io_tx_watchdog - Watchdog for transmit side.
7300 * @dev : Pointer to net device structure
7302 * This function is triggered if the Tx Queue is stopped
7303 * for a pre-defined amount of time when the Interface is still up.
7304 * If the Interface is jammed in such a situation, the hardware is
7305 * reset (by s2io_close) and restarted again (by s2io_open) to
7306 * overcome any problem that might have been caused in the hardware.
7311 static void s2io_tx_watchdog(struct net_device *dev)
7313 struct s2io_nic *sp = dev->priv;
7315 if (netif_carrier_ok(dev)) {
7316 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7317 schedule_work(&sp->rst_timer_task);
7318 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7323 * rx_osm_handler - To perform some OS related operations on SKB.
7324 * @sp: private member of the device structure,pointer to s2io_nic structure.
7325 * @skb : the socket buffer pointer.
7326 * @len : length of the packet
7327 * @cksum : FCS checksum of the frame.
7328 * @ring_no : the ring from which this RxD was extracted.
7330 * This function is called by the Rx interrupt serivce routine to perform
7331 * some OS related operations on the SKB before passing it to the upper
7332 * layers. It mainly checks if the checksum is OK, if so adds it to the
7333 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7334 * to the upper layer. If the checksum is wrong, it increments the Rx
7335 * packet error count, frees the SKB and returns error.
7337 * SUCCESS on success and -1 on failure.
7339 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7341 struct s2io_nic *sp = ring_data->nic;
7342 struct net_device *dev = (struct net_device *) ring_data->dev;
7343 struct sk_buff *skb = (struct sk_buff *)
7344 ((unsigned long) rxdp->Host_Control);
7345 int ring_no = ring_data->ring_no;
7346 u16 l3_csum, l4_csum;
7347 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7354 /* Check for parity error */
7356 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7358 err_mask = err >> 48;
7361 sp->mac_control.stats_info->sw_stat.
7362 rx_parity_err_cnt++;
7366 sp->mac_control.stats_info->sw_stat.
7371 sp->mac_control.stats_info->sw_stat.
7372 rx_parity_abort_cnt++;
7376 sp->mac_control.stats_info->sw_stat.
7381 sp->mac_control.stats_info->sw_stat.
7386 sp->mac_control.stats_info->sw_stat.
7391 sp->mac_control.stats_info->sw_stat.
7392 rx_buf_size_err_cnt++;
7396 sp->mac_control.stats_info->sw_stat.
7397 rx_rxd_corrupt_cnt++;
7401 sp->mac_control.stats_info->sw_stat.
7406 * Drop the packet if bad transfer code. Exception being
7407 * 0x5, which could be due to unsupported IPv6 extension header.
7408 * In this case, we let stack handle the packet.
7409 * Note that in this case, since checksum will be incorrect,
7410 * stack will validate the same.
7412 if (err_mask != 0x5) {
7413 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7414 dev->name, err_mask);
7415 sp->stats.rx_crc_errors++;
7416 sp->mac_control.stats_info->sw_stat.mem_freed
7419 ring_data->rx_bufs_left -= 1;
7420 rxdp->Host_Control = 0;
7425 /* Updating statistics */
7426 ring_data->rx_packets++;
7427 rxdp->Host_Control = 0;
7428 if (sp->rxd_mode == RXD_MODE_1) {
7429 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7431 ring_data->rx_bytes += len;
7434 } else if (sp->rxd_mode == RXD_MODE_3B) {
7435 int get_block = ring_data->rx_curr_get_info.block_index;
7436 int get_off = ring_data->rx_curr_get_info.offset;
7437 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7438 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7439 unsigned char *buff = skb_push(skb, buf0_len);
7441 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7442 ring_data->rx_bytes += buf0_len + buf2_len;
7443 memcpy(buff, ba->ba_0, buf0_len);
7444 skb_put(skb, buf2_len);
7447 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
7448 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7450 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7451 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7452 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7454 * NIC verifies if the Checksum of the received
7455 * frame is Ok or not and accordingly returns
7456 * a flag in the RxD.
7458 skb->ip_summed = CHECKSUM_UNNECESSARY;
7459 if (ring_data->lro) {
7464 ret = s2io_club_tcp_session(ring_data,
7465 skb->data, &tcp, &tcp_len, &lro,
7468 case 3: /* Begin anew */
7471 case 1: /* Aggregate */
7473 lro_append_pkt(sp, lro,
7477 case 4: /* Flush session */
7479 lro_append_pkt(sp, lro,
7481 queue_rx_frame(lro->parent,
7483 clear_lro_session(lro);
7484 sp->mac_control.stats_info->
7485 sw_stat.flush_max_pkts++;
7488 case 2: /* Flush both */
7489 lro->parent->data_len =
7491 sp->mac_control.stats_info->
7492 sw_stat.sending_both++;
7493 queue_rx_frame(lro->parent,
7495 clear_lro_session(lro);
7497 case 0: /* sessions exceeded */
7498 case -1: /* non-TCP or not
7502 * First pkt in session not
7503 * L3/L4 aggregatable
7508 "%s: Samadhana!!\n",
7515 * Packet with erroneous checksum, let the
7516 * upper layers deal with it.
7518 skb->ip_summed = CHECKSUM_NONE;
7521 skb->ip_summed = CHECKSUM_NONE;
7523 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7525 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7526 dev->last_rx = jiffies;
7528 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7533 * s2io_link - stops/starts the Tx queue.
7534 * @sp : private member of the device structure, which is a pointer to the
7535 * s2io_nic structure.
7536 * @link : inidicates whether link is UP/DOWN.
7538 * This function stops/starts the Tx queue depending on whether the link
7539 * status of the NIC is is down or up. This is called by the Alarm
7540 * interrupt handler whenever a link change interrupt comes up.
7545 static void s2io_link(struct s2io_nic * sp, int link)
7547 struct net_device *dev = (struct net_device *) sp->dev;
7549 if (link != sp->last_link_state) {
7551 if (link == LINK_DOWN) {
7552 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7553 s2io_stop_all_tx_queue(sp);
7554 netif_carrier_off(dev);
7555 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7556 sp->mac_control.stats_info->sw_stat.link_up_time =
7557 jiffies - sp->start_time;
7558 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7560 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7561 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7562 sp->mac_control.stats_info->sw_stat.link_down_time =
7563 jiffies - sp->start_time;
7564 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7565 netif_carrier_on(dev);
7566 s2io_wake_all_tx_queue(sp);
7569 sp->last_link_state = link;
7570 sp->start_time = jiffies;
7574 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7575 * @sp : private member of the device structure, which is a pointer to the
7576 * s2io_nic structure.
7578 * This function initializes a few of the PCI and PCI-X configuration registers
7579 * with recommended values.
7584 static void s2io_init_pci(struct s2io_nic * sp)
7586 u16 pci_cmd = 0, pcix_cmd = 0;
7588 /* Enable Data Parity Error Recovery in PCI-X command register. */
7589 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7591 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7593 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7596 /* Set the PErr Response bit in PCI command register. */
7597 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7598 pci_write_config_word(sp->pdev, PCI_COMMAND,
7599 (pci_cmd | PCI_COMMAND_PARITY));
7600 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7603 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7606 if ((tx_fifo_num > MAX_TX_FIFOS) ||
7607 (tx_fifo_num < 1)) {
7608 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7609 "(%d) not supported\n", tx_fifo_num);
7611 if (tx_fifo_num < 1)
7614 tx_fifo_num = MAX_TX_FIFOS;
7616 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7617 DBG_PRINT(ERR_DBG, "tx fifos\n");
7620 #ifndef CONFIG_NETDEVICES_MULTIQUEUE
7622 DBG_PRINT(ERR_DBG, "s2io: Multiqueue support not enabled\n");
7627 *dev_multiq = multiq;
7629 if (tx_steering_type && (1 == tx_fifo_num)) {
7630 if (tx_steering_type != TX_DEFAULT_STEERING)
7632 "s2io: Tx steering is not supported with "
7633 "one fifo. Disabling Tx steering.\n");
7634 tx_steering_type = NO_STEERING;
7637 if ((tx_steering_type < NO_STEERING) ||
7638 (tx_steering_type > TX_DEFAULT_STEERING)) {
7639 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7641 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7642 tx_steering_type = NO_STEERING;
7645 if (rx_ring_num > MAX_RX_RINGS) {
7646 DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
7648 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7650 rx_ring_num = MAX_RX_RINGS;
7653 if (*dev_intr_type != INTA)
7656 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7657 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7658 "Defaulting to INTA\n");
7659 *dev_intr_type = INTA;
7662 if ((*dev_intr_type == MSI_X) &&
7663 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7664 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7665 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7666 "Defaulting to INTA\n");
7667 *dev_intr_type = INTA;
7670 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7671 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7672 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7679 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7680 * or Traffic class respectively.
7681 * @nic: device private variable
7682 * Description: The function configures the receive steering to
7683 * desired receive ring.
7684 * Return Value: SUCCESS on success and
7685 * '-1' on failure (endian settings incorrect).
7687 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7689 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7690 register u64 val64 = 0;
7692 if (ds_codepoint > 63)
7695 val64 = RTS_DS_MEM_DATA(ring);
7696 writeq(val64, &bar0->rts_ds_mem_data);
7698 val64 = RTS_DS_MEM_CTRL_WE |
7699 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7700 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7702 writeq(val64, &bar0->rts_ds_mem_ctrl);
7704 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7705 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7710 * s2io_init_nic - Initialization of the adapter .
7711 * @pdev : structure containing the PCI related information of the device.
7712 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7714 * The function initializes an adapter identified by the pci_dec structure.
7715 * All OS related initialization including memory and device structure and
7716 * initlaization of the device private variable is done. Also the swapper
7717 * control register is initialized to enable read and write into the I/O
7718 * registers of the device.
7720 * returns 0 on success and negative on failure.
7723 static int __devinit
7724 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7726 struct s2io_nic *sp;
7727 struct net_device *dev;
7729 int dma_flag = FALSE;
7730 u32 mac_up, mac_down;
7731 u64 val64 = 0, tmp64 = 0;
7732 struct XENA_dev_config __iomem *bar0 = NULL;
7734 struct mac_info *mac_control;
7735 struct config_param *config;
7737 u8 dev_intr_type = intr_type;
7739 DECLARE_MAC_BUF(mac);
7741 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7745 if ((ret = pci_enable_device(pdev))) {
7747 "s2io_init_nic: pci_enable_device failed\n");
7751 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7752 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7754 if (pci_set_consistent_dma_mask
7755 (pdev, DMA_64BIT_MASK)) {
7757 "Unable to obtain 64bit DMA for \
7758 consistent allocations\n");
7759 pci_disable_device(pdev);
7762 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7763 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7765 pci_disable_device(pdev);
7768 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7769 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7770 pci_disable_device(pdev);
7773 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7775 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7778 dev = alloc_etherdev(sizeof(struct s2io_nic));
7780 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7781 pci_disable_device(pdev);
7782 pci_release_regions(pdev);
7786 pci_set_master(pdev);
7787 pci_set_drvdata(pdev, dev);
7788 SET_NETDEV_DEV(dev, &pdev->dev);
7790 /* Private member variable initialized to s2io NIC structure */
7792 memset(sp, 0, sizeof(struct s2io_nic));
7795 sp->high_dma_flag = dma_flag;
7796 sp->device_enabled_once = FALSE;
7797 if (rx_ring_mode == 1)
7798 sp->rxd_mode = RXD_MODE_1;
7799 if (rx_ring_mode == 2)
7800 sp->rxd_mode = RXD_MODE_3B;
7802 sp->config.intr_type = dev_intr_type;
7804 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7805 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7806 sp->device_type = XFRAME_II_DEVICE;
7808 sp->device_type = XFRAME_I_DEVICE;
7810 sp->lro = lro_enable;
7812 /* Initialize some PCI/PCI-X fields of the NIC. */
7816 * Setting the device configuration parameters.
7817 * Most of these parameters can be specified by the user during
7818 * module insertion as they are module loadable parameters. If
7819 * these parameters are not not specified during load time, they
7820 * are initialized with default values.
7822 mac_control = &sp->mac_control;
7823 config = &sp->config;
7825 config->napi = napi;
7826 config->tx_steering_type = tx_steering_type;
7828 /* Tx side parameters. */
7829 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7830 config->tx_fifo_num = MAX_TX_FIFOS;
7832 config->tx_fifo_num = tx_fifo_num;
7834 /* Initialize the fifos used for tx steering */
7835 if (config->tx_fifo_num < 5) {
7836 if (config->tx_fifo_num == 1)
7837 sp->total_tcp_fifos = 1;
7839 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7840 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7841 sp->total_udp_fifos = 1;
7842 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7844 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7845 FIFO_OTHER_MAX_NUM);
7846 sp->udp_fifo_idx = sp->total_tcp_fifos;
7847 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7848 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7851 config->multiq = dev_multiq;
7852 for (i = 0; i < config->tx_fifo_num; i++) {
7853 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7854 config->tx_cfg[i].fifo_priority = i;
7857 /* mapping the QoS priority to the configured fifos */
7858 for (i = 0; i < MAX_TX_FIFOS; i++)
7859 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7861 /* map the hashing selector table to the configured fifos */
7862 for (i = 0; i < config->tx_fifo_num; i++)
7863 sp->fifo_selector[i] = fifo_selector[i];
7866 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7867 for (i = 0; i < config->tx_fifo_num; i++) {
7868 config->tx_cfg[i].f_no_snoop =
7869 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7870 if (config->tx_cfg[i].fifo_len < 65) {
7871 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7875 /* + 2 because one Txd for skb->data and one Txd for UFO */
7876 config->max_txds = MAX_SKB_FRAGS + 2;
7878 /* Rx side parameters. */
7879 config->rx_ring_num = rx_ring_num;
7880 for (i = 0; i < config->rx_ring_num; i++) {
7881 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7882 (rxd_count[sp->rxd_mode] + 1);
7883 config->rx_cfg[i].ring_priority = i;
7884 mac_control->rings[i].rx_bufs_left = 0;
7885 mac_control->rings[i].rxd_mode = sp->rxd_mode;
7886 mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
7887 mac_control->rings[i].pdev = sp->pdev;
7888 mac_control->rings[i].dev = sp->dev;
7891 for (i = 0; i < rx_ring_num; i++) {
7892 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7893 config->rx_cfg[i].f_no_snoop =
7894 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7897 /* Setting Mac Control parameters */
7898 mac_control->rmac_pause_time = rmac_pause_time;
7899 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7900 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7903 /* initialize the shared memory used by the NIC and the host */
7904 if (init_shared_mem(sp)) {
7905 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7908 goto mem_alloc_failed;
7911 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7912 pci_resource_len(pdev, 0));
7914 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7917 goto bar0_remap_failed;
7920 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7921 pci_resource_len(pdev, 2));
7923 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7926 goto bar1_remap_failed;
7929 dev->irq = pdev->irq;
7930 dev->base_addr = (unsigned long) sp->bar0;
7932 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7933 for (j = 0; j < MAX_TX_FIFOS; j++) {
7934 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7935 (sp->bar1 + (j * 0x00020000));
7938 /* Driver entry points */
7939 dev->open = &s2io_open;
7940 dev->stop = &s2io_close;
7941 dev->hard_start_xmit = &s2io_xmit;
7942 dev->get_stats = &s2io_get_stats;
7943 dev->set_multicast_list = &s2io_set_multicast;
7944 dev->do_ioctl = &s2io_ioctl;
7945 dev->set_mac_address = &s2io_set_mac_addr;
7946 dev->change_mtu = &s2io_change_mtu;
7947 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7948 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7949 dev->vlan_rx_register = s2io_vlan_rx_register;
7950 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
7953 * will use eth_mac_addr() for dev->set_mac_address
7954 * mac address will be set every time dev->open() is called
7956 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
7958 #ifdef CONFIG_NET_POLL_CONTROLLER
7959 dev->poll_controller = s2io_netpoll;
7962 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7963 if (sp->high_dma_flag == TRUE)
7964 dev->features |= NETIF_F_HIGHDMA;
7965 dev->features |= NETIF_F_TSO;
7966 dev->features |= NETIF_F_TSO6;
7967 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7968 dev->features |= NETIF_F_UFO;
7969 dev->features |= NETIF_F_HW_CSUM;
7971 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7973 dev->features |= NETIF_F_MULTI_QUEUE;
7975 dev->tx_timeout = &s2io_tx_watchdog;
7976 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7977 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7978 INIT_WORK(&sp->set_link_task, s2io_set_link);
7980 pci_save_state(sp->pdev);
7982 /* Setting swapper control on the NIC, for proper reset operation */
7983 if (s2io_set_swapper(sp)) {
7984 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7987 goto set_swap_failed;
7990 /* Verify if the Herc works on the slot its placed into */
7991 if (sp->device_type & XFRAME_II_DEVICE) {
7992 mode = s2io_verify_pci_mode(sp);
7994 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7995 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7997 goto set_swap_failed;
8001 /* Not needed for Herc */
8002 if (sp->device_type & XFRAME_I_DEVICE) {
8004 * Fix for all "FFs" MAC address problems observed on
8007 fix_mac_address(sp);
8012 * MAC address initialization.
8013 * For now only one mac address will be read and used.
8016 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8017 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8018 writeq(val64, &bar0->rmac_addr_cmd_mem);
8019 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8020 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
8021 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8022 mac_down = (u32) tmp64;
8023 mac_up = (u32) (tmp64 >> 32);
8025 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8026 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8027 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8028 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8029 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8030 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8032 /* Set the factory defined MAC address initially */
8033 dev->addr_len = ETH_ALEN;
8034 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8035 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8037 /* initialize number of multicast & unicast MAC entries variables */
8038 if (sp->device_type == XFRAME_I_DEVICE) {
8039 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8040 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8041 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8042 } else if (sp->device_type == XFRAME_II_DEVICE) {
8043 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8044 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8045 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8048 /* store mac addresses from CAM to s2io_nic structure */
8049 do_s2io_store_unicast_mc(sp);
8051 /* Store the values of the MSIX table in the s2io_nic structure */
8052 store_xmsi_data(sp);
8053 /* reset Nic and bring it to known state */
8057 * Initialize link state flags
8058 * and the card state parameter
8062 /* Initialize spinlocks */
8063 for (i = 0; i < sp->config.tx_fifo_num; i++)
8064 spin_lock_init(&mac_control->fifos[i].tx_lock);
8067 * SXE-002: Configure link and activity LED to init state
8070 subid = sp->pdev->subsystem_device;
8071 if ((subid & 0xFF) >= 0x07) {
8072 val64 = readq(&bar0->gpio_control);
8073 val64 |= 0x0000800000000000ULL;
8074 writeq(val64, &bar0->gpio_control);
8075 val64 = 0x0411040400000000ULL;
8076 writeq(val64, (void __iomem *) bar0 + 0x2700);
8077 val64 = readq(&bar0->gpio_control);
8080 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8082 if (register_netdev(dev)) {
8083 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8085 goto register_failed;
8088 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8089 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
8090 sp->product_name, pdev->revision);
8091 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8092 s2io_driver_version);
8093 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
8094 dev->name, print_mac(mac, dev->dev_addr));
8095 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8096 if (sp->device_type & XFRAME_II_DEVICE) {
8097 mode = s2io_print_pci_mode(sp);
8099 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8101 unregister_netdev(dev);
8102 goto set_swap_failed;
8105 switch(sp->rxd_mode) {
8107 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8111 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8117 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8119 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8120 sp->config.tx_fifo_num);
8122 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8123 sp->config.rx_ring_num);
8125 switch(sp->config.intr_type) {
8127 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8130 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8133 if (sp->config.multiq) {
8134 for (i = 0; i < sp->config.tx_fifo_num; i++)
8135 mac_control->fifos[i].multiq = config->multiq;
8136 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8139 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8142 switch (sp->config.tx_steering_type) {
8144 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8145 " transmit\n", dev->name);
8147 case TX_PRIORITY_STEERING:
8148 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8149 " transmit\n", dev->name);
8151 case TX_DEFAULT_STEERING:
8152 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8153 " transmit\n", dev->name);
8157 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8160 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8161 " enabled\n", dev->name);
8162 /* Initialize device name */
8163 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8166 * Make Link state as off at this point, when the Link change
8167 * interrupt comes the state will be automatically changed to
8170 netif_carrier_off(dev);
8181 free_shared_mem(sp);
8182 pci_disable_device(pdev);
8183 pci_release_regions(pdev);
8184 pci_set_drvdata(pdev, NULL);
8191 * s2io_rem_nic - Free the PCI device
8192 * @pdev: structure containing the PCI related information of the device.
8193 * Description: This function is called by the Pci subsystem to release a
8194 * PCI device and free up all resource held up by the device. This could
8195 * be in response to a Hot plug event or when the driver is to be removed
8199 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8201 struct net_device *dev =
8202 (struct net_device *) pci_get_drvdata(pdev);
8203 struct s2io_nic *sp;
8206 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8210 flush_scheduled_work();
8213 unregister_netdev(dev);
8215 free_shared_mem(sp);
8218 pci_release_regions(pdev);
8219 pci_set_drvdata(pdev, NULL);
8221 pci_disable_device(pdev);
8225 * s2io_starter - Entry point for the driver
8226 * Description: This function is the entry point for the driver. It verifies
8227 * the module loadable parameters and initializes PCI configuration space.
8230 static int __init s2io_starter(void)
8232 return pci_register_driver(&s2io_driver);
8236 * s2io_closer - Cleanup routine for the driver
8237 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8240 static __exit void s2io_closer(void)
8242 pci_unregister_driver(&s2io_driver);
8243 DBG_PRINT(INIT_DBG, "cleanup done\n");
8246 module_init(s2io_starter);
8247 module_exit(s2io_closer);
8249 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8250 struct tcphdr **tcp, struct RxD_t *rxdp,
8251 struct s2io_nic *sp)
8254 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8256 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8257 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8262 /* Checking for DIX type or DIX type with VLAN */
8264 || (l2_type == 4)) {
8265 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8267 * If vlan stripping is disabled and the frame is VLAN tagged,
8268 * shift the offset by the VLAN header size bytes.
8270 if ((!vlan_strip_flag) &&
8271 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8272 ip_off += HEADER_VLAN_SIZE;
8274 /* LLC, SNAP etc are considered non-mergeable */
8278 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8279 ip_len = (u8)((*ip)->ihl);
8281 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8286 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8289 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8290 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8291 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8296 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8298 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8301 static void initiate_new_session(struct lro *lro, u8 *l2h,
8302 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
8304 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8308 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8309 lro->tcp_ack = tcp->ack_seq;
8311 lro->total_len = ntohs(ip->tot_len);
8313 lro->vlan_tag = vlan_tag;
8315 * check if we saw TCP timestamp. Other consistency checks have
8316 * already been done.
8318 if (tcp->doff == 8) {
8320 ptr = (__be32 *)(tcp+1);
8322 lro->cur_tsval = ntohl(*(ptr+1));
8323 lro->cur_tsecr = *(ptr+2);
8328 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8330 struct iphdr *ip = lro->iph;
8331 struct tcphdr *tcp = lro->tcph;
8333 struct stat_block *statinfo = sp->mac_control.stats_info;
8334 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8336 /* Update L3 header */
8337 ip->tot_len = htons(lro->total_len);
8339 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8342 /* Update L4 header */
8343 tcp->ack_seq = lro->tcp_ack;
8344 tcp->window = lro->window;
8346 /* Update tsecr field if this session has timestamps enabled */
8348 __be32 *ptr = (__be32 *)(tcp + 1);
8349 *(ptr+2) = lro->cur_tsecr;
8352 /* Update counters required for calculation of
8353 * average no. of packets aggregated.
8355 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8356 statinfo->sw_stat.num_aggregations++;
8359 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8360 struct tcphdr *tcp, u32 l4_pyld)
8362 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8363 lro->total_len += l4_pyld;
8364 lro->frags_len += l4_pyld;
8365 lro->tcp_next_seq += l4_pyld;
8368 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8369 lro->tcp_ack = tcp->ack_seq;
8370 lro->window = tcp->window;
8374 /* Update tsecr and tsval from this packet */
8375 ptr = (__be32 *)(tcp+1);
8376 lro->cur_tsval = ntohl(*(ptr+1));
8377 lro->cur_tsecr = *(ptr + 2);
8381 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8382 struct tcphdr *tcp, u32 tcp_pyld_len)
8386 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8388 if (!tcp_pyld_len) {
8389 /* Runt frame or a pure ack */
8393 if (ip->ihl != 5) /* IP has options */
8396 /* If we see CE codepoint in IP header, packet is not mergeable */
8397 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8400 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8401 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8402 tcp->ece || tcp->cwr || !tcp->ack) {
8404 * Currently recognize only the ack control word and
8405 * any other control field being set would result in
8406 * flushing the LRO session
8412 * Allow only one TCP timestamp option. Don't aggregate if
8413 * any other options are detected.
8415 if (tcp->doff != 5 && tcp->doff != 8)
8418 if (tcp->doff == 8) {
8419 ptr = (u8 *)(tcp + 1);
8420 while (*ptr == TCPOPT_NOP)
8422 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8425 /* Ensure timestamp value increases monotonically */
8427 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8430 /* timestamp echo reply should be non-zero */
8431 if (*((__be32 *)(ptr+6)) == 0)
8439 s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
8440 u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
8441 struct s2io_nic *sp)
8444 struct tcphdr *tcph;
8448 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8450 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8451 ip->saddr, ip->daddr);
8455 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8456 tcph = (struct tcphdr *)*tcp;
8457 *tcp_len = get_l4_pyld_length(ip, tcph);
8458 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8459 struct lro *l_lro = &ring_data->lro0_n[i];
8460 if (l_lro->in_use) {
8461 if (check_for_socket_match(l_lro, ip, tcph))
8463 /* Sock pair matched */
8466 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8467 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8468 "0x%x, actual 0x%x\n", __FUNCTION__,
8469 (*lro)->tcp_next_seq,
8472 sp->mac_control.stats_info->
8473 sw_stat.outof_sequence_pkts++;
8478 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8479 ret = 1; /* Aggregate */
8481 ret = 2; /* Flush both */
8487 /* Before searching for available LRO objects,
8488 * check if the pkt is L3/L4 aggregatable. If not
8489 * don't create new LRO session. Just send this
8492 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8496 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8497 struct lro *l_lro = &ring_data->lro0_n[i];
8498 if (!(l_lro->in_use)) {
8500 ret = 3; /* Begin anew */
8506 if (ret == 0) { /* sessions exceeded */
8507 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8515 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8519 update_L3L4_header(sp, *lro);
8522 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8523 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8524 update_L3L4_header(sp, *lro);
8525 ret = 4; /* Flush the LRO */
8529 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8537 static void clear_lro_session(struct lro *lro)
8539 static u16 lro_struct_size = sizeof(struct lro);
8541 memset(lro, 0, lro_struct_size);
8544 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8546 struct net_device *dev = skb->dev;
8547 struct s2io_nic *sp = dev->priv;
8549 skb->protocol = eth_type_trans(skb, dev);
8550 if (sp->vlgrp && vlan_tag
8551 && (vlan_strip_flag)) {
8552 /* Queueing the vlan frame to the upper layer */
8553 if (sp->config.napi)
8554 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8556 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8558 if (sp->config.napi)
8559 netif_receive_skb(skb);
8565 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8566 struct sk_buff *skb,
8569 struct sk_buff *first = lro->parent;
8571 first->len += tcp_len;
8572 first->data_len = lro->frags_len;
8573 skb_pull(skb, (skb->len - tcp_len));
8574 if (skb_shinfo(first)->frag_list)
8575 lro->last_frag->next = skb;
8577 skb_shinfo(first)->frag_list = skb;
8578 first->truesize += skb->truesize;
8579 lro->last_frag = skb;
8580 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8585 * s2io_io_error_detected - called when PCI error is detected
8586 * @pdev: Pointer to PCI device
8587 * @state: The current pci connection state
8589 * This function is called after a PCI bus error affecting
8590 * this device has been detected.
8592 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8593 pci_channel_state_t state)
8595 struct net_device *netdev = pci_get_drvdata(pdev);
8596 struct s2io_nic *sp = netdev->priv;
8598 netif_device_detach(netdev);
8600 if (netif_running(netdev)) {
8601 /* Bring down the card, while avoiding PCI I/O */
8602 do_s2io_card_down(sp, 0);
8604 pci_disable_device(pdev);
8606 return PCI_ERS_RESULT_NEED_RESET;
8610 * s2io_io_slot_reset - called after the pci bus has been reset.
8611 * @pdev: Pointer to PCI device
8613 * Restart the card from scratch, as if from a cold-boot.
8614 * At this point, the card has exprienced a hard reset,
8615 * followed by fixups by BIOS, and has its config space
8616 * set up identically to what it was at cold boot.
8618 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8620 struct net_device *netdev = pci_get_drvdata(pdev);
8621 struct s2io_nic *sp = netdev->priv;
8623 if (pci_enable_device(pdev)) {
8624 printk(KERN_ERR "s2io: "
8625 "Cannot re-enable PCI device after reset.\n");
8626 return PCI_ERS_RESULT_DISCONNECT;
8629 pci_set_master(pdev);
8632 return PCI_ERS_RESULT_RECOVERED;
8636 * s2io_io_resume - called when traffic can start flowing again.
8637 * @pdev: Pointer to PCI device
8639 * This callback is called when the error recovery driver tells
8640 * us that its OK to resume normal operation.
8642 static void s2io_io_resume(struct pci_dev *pdev)
8644 struct net_device *netdev = pci_get_drvdata(pdev);
8645 struct s2io_nic *sp = netdev->priv;
8647 if (netif_running(netdev)) {
8648 if (s2io_card_up(sp)) {
8649 printk(KERN_ERR "s2io: "
8650 "Can't bring device back up after reset.\n");
8654 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8656 printk(KERN_ERR "s2io: "
8657 "Can't resetore mac addr after reset.\n");
8662 netif_device_attach(netdev);
8663 netif_wake_queue(netdev);