2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/memory.h>
25 #include <linux/math64.h>
32 * The slab_lock protects operations on the object of a particular
33 * slab and its metadata in the page struct. If the slab lock
34 * has been taken then no allocations nor frees can be performed
35 * on the objects in the slab nor can the slab be added or removed
36 * from the partial or full lists since this would mean modifying
37 * the page_struct of the slab.
39 * The list_lock protects the partial and full list on each node and
40 * the partial slab counter. If taken then no new slabs may be added or
41 * removed from the lists nor make the number of partial slabs be modified.
42 * (Note that the total number of slabs is an atomic value that may be
43 * modified without taking the list lock).
45 * The list_lock is a centralized lock and thus we avoid taking it as
46 * much as possible. As long as SLUB does not have to handle partial
47 * slabs, operations can continue without any centralized lock. F.e.
48 * allocating a long series of objects that fill up slabs does not require
51 * The lock order is sometimes inverted when we are trying to get a slab
52 * off a list. We take the list_lock and then look for a page on the list
53 * to use. While we do that objects in the slabs may be freed. We can
54 * only operate on the slab if we have also taken the slab_lock. So we use
55 * a slab_trylock() on the slab. If trylock was successful then no frees
56 * can occur anymore and we can use the slab for allocations etc. If the
57 * slab_trylock() does not succeed then frees are in progress in the slab and
58 * we must stay away from it for a while since we may cause a bouncing
59 * cacheline if we try to acquire the lock. So go onto the next slab.
60 * If all pages are busy then we may allocate a new slab instead of reusing
61 * a partial slab. A new slab has noone operating on it and thus there is
62 * no danger of cacheline contention.
64 * Interrupts are disabled during allocation and deallocation in order to
65 * make the slab allocator safe to use in the context of an irq. In addition
66 * interrupts are disabled to ensure that the processor does not change
67 * while handling per_cpu slabs, due to kernel preemption.
69 * SLUB assigns one slab for allocation to each processor.
70 * Allocations only occur from these slabs called cpu slabs.
72 * Slabs with free elements are kept on a partial list and during regular
73 * operations no list for full slabs is used. If an object in a full slab is
74 * freed then the slab will show up again on the partial lists.
75 * We track full slabs for debugging purposes though because otherwise we
76 * cannot scan all objects.
78 * Slabs are freed when they become empty. Teardown and setup is
79 * minimal so we rely on the page allocators per cpu caches for
80 * fast frees and allocs.
82 * Overloading of page flags that are otherwise used for LRU management.
84 * PageActive The slab is frozen and exempt from list processing.
85 * This means that the slab is dedicated to a purpose
86 * such as satisfying allocations for a specific
87 * processor. Objects may be freed in the slab while
88 * it is frozen but slab_free will then skip the usual
89 * list operations. It is up to the processor holding
90 * the slab to integrate the slab into the slab lists
91 * when the slab is no longer needed.
93 * One use of this flag is to mark slabs that are
94 * used for allocations. Then such a slab becomes a cpu
95 * slab. The cpu slab may be equipped with an additional
96 * freelist that allows lockless access to
97 * free objects in addition to the regular freelist
98 * that requires the slab lock.
100 * PageError Slab requires special handling due to debug
101 * options set. This moves slab handling out of
102 * the fast path and disables lockless freelists.
105 #ifdef CONFIG_SLUB_DEBUG
112 * Issues still to be resolved:
114 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
116 * - Variable sizing of the per node arrays
119 /* Enable to test recovery from slab corruption on boot */
120 #undef SLUB_RESILIENCY_TEST
123 * Mininum number of partial slabs. These will be left on the partial
124 * lists even if they are empty. kmem_cache_shrink may reclaim them.
126 #define MIN_PARTIAL 5
129 * Maximum number of desirable partial slabs.
130 * The existence of more partial slabs makes kmem_cache_shrink
131 * sort the partial list by the number of objects in the.
133 #define MAX_PARTIAL 10
135 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
136 SLAB_POISON | SLAB_STORE_USER)
139 * Set of flags that will prevent slab merging
141 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
142 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
144 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
147 #ifndef ARCH_KMALLOC_MINALIGN
148 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
151 #ifndef ARCH_SLAB_MINALIGN
152 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
155 /* Internal SLUB flags */
156 #define __OBJECT_POISON 0x80000000 /* Poison object */
157 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
159 static int kmem_size = sizeof(struct kmem_cache);
162 static struct notifier_block slab_notifier;
166 DOWN, /* No slab functionality available */
167 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
168 UP, /* Everything works but does not show up in sysfs */
172 /* A list of all slab caches on the system */
173 static DECLARE_RWSEM(slub_lock);
174 static LIST_HEAD(slab_caches);
177 * Tracking user of a slab.
180 void *addr; /* Called from address */
181 int cpu; /* Was running on cpu */
182 int pid; /* Pid context */
183 unsigned long when; /* When did the operation occur */
186 enum track_item { TRACK_ALLOC, TRACK_FREE };
188 #ifdef CONFIG_SLUB_DEBUG
189 static int sysfs_slab_add(struct kmem_cache *);
190 static int sysfs_slab_alias(struct kmem_cache *, const char *);
191 static void sysfs_slab_remove(struct kmem_cache *);
194 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
195 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
197 static inline void sysfs_slab_remove(struct kmem_cache *s)
204 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
206 #ifdef CONFIG_SLUB_STATS
211 /********************************************************************
212 * Core slab cache functions
213 *******************************************************************/
215 int slab_is_available(void)
217 return slab_state >= UP;
220 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
223 return s->node[node];
225 return &s->local_node;
229 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
232 return s->cpu_slab[cpu];
238 /* Verify that a pointer has an address that is valid within a slab page */
239 static inline int check_valid_pointer(struct kmem_cache *s,
240 struct page *page, const void *object)
247 base = page_address(page);
248 if (object < base || object >= base + page->objects * s->size ||
249 (object - base) % s->size) {
257 * Slow version of get and set free pointer.
259 * This version requires touching the cache lines of kmem_cache which
260 * we avoid to do in the fast alloc free paths. There we obtain the offset
261 * from the page struct.
263 static inline void *get_freepointer(struct kmem_cache *s, void *object)
265 return *(void **)(object + s->offset);
268 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
270 *(void **)(object + s->offset) = fp;
273 /* Loop over all objects in a slab */
274 #define for_each_object(__p, __s, __addr, __objects) \
275 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
279 #define for_each_free_object(__p, __s, __free) \
280 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
282 /* Determine object index from a given position */
283 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
285 return (p - addr) / s->size;
288 static inline struct kmem_cache_order_objects oo_make(int order,
291 struct kmem_cache_order_objects x = {
292 (order << 16) + (PAGE_SIZE << order) / size
298 static inline int oo_order(struct kmem_cache_order_objects x)
303 static inline int oo_objects(struct kmem_cache_order_objects x)
305 return x.x & ((1 << 16) - 1);
308 #ifdef CONFIG_SLUB_DEBUG
312 #ifdef CONFIG_SLUB_DEBUG_ON
313 static int slub_debug = DEBUG_DEFAULT_FLAGS;
315 static int slub_debug;
318 static char *slub_debug_slabs;
323 static void print_section(char *text, u8 *addr, unsigned int length)
331 for (i = 0; i < length; i++) {
333 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
336 printk(KERN_CONT " %02x", addr[i]);
338 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
340 printk(KERN_CONT " %s\n", ascii);
347 printk(KERN_CONT " ");
351 printk(KERN_CONT " %s\n", ascii);
355 static struct track *get_track(struct kmem_cache *s, void *object,
356 enum track_item alloc)
361 p = object + s->offset + sizeof(void *);
363 p = object + s->inuse;
368 static void set_track(struct kmem_cache *s, void *object,
369 enum track_item alloc, void *addr)
374 p = object + s->offset + sizeof(void *);
376 p = object + s->inuse;
381 p->cpu = smp_processor_id();
382 p->pid = current->pid;
385 memset(p, 0, sizeof(struct track));
388 static void init_tracking(struct kmem_cache *s, void *object)
390 if (!(s->flags & SLAB_STORE_USER))
393 set_track(s, object, TRACK_FREE, NULL);
394 set_track(s, object, TRACK_ALLOC, NULL);
397 static void print_track(const char *s, struct track *t)
402 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
403 s, t->addr, jiffies - t->when, t->cpu, t->pid);
406 static void print_tracking(struct kmem_cache *s, void *object)
408 if (!(s->flags & SLAB_STORE_USER))
411 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
412 print_track("Freed", get_track(s, object, TRACK_FREE));
415 static void print_page_info(struct page *page)
417 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
418 page, page->objects, page->inuse, page->freelist, page->flags);
422 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
428 vsnprintf(buf, sizeof(buf), fmt, args);
430 printk(KERN_ERR "========================================"
431 "=====================================\n");
432 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
433 printk(KERN_ERR "----------------------------------------"
434 "-------------------------------------\n\n");
437 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
443 vsnprintf(buf, sizeof(buf), fmt, args);
445 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
448 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
450 unsigned int off; /* Offset of last byte */
451 u8 *addr = page_address(page);
453 print_tracking(s, p);
455 print_page_info(page);
457 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
458 p, p - addr, get_freepointer(s, p));
461 print_section("Bytes b4", p - 16, 16);
463 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
465 if (s->flags & SLAB_RED_ZONE)
466 print_section("Redzone", p + s->objsize,
467 s->inuse - s->objsize);
470 off = s->offset + sizeof(void *);
474 if (s->flags & SLAB_STORE_USER)
475 off += 2 * sizeof(struct track);
478 /* Beginning of the filler is the free pointer */
479 print_section("Padding", p + off, s->size - off);
484 static void object_err(struct kmem_cache *s, struct page *page,
485 u8 *object, char *reason)
487 slab_bug(s, "%s", reason);
488 print_trailer(s, page, object);
491 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
497 vsnprintf(buf, sizeof(buf), fmt, args);
499 slab_bug(s, "%s", buf);
500 print_page_info(page);
504 static void init_object(struct kmem_cache *s, void *object, int active)
508 if (s->flags & __OBJECT_POISON) {
509 memset(p, POISON_FREE, s->objsize - 1);
510 p[s->objsize - 1] = POISON_END;
513 if (s->flags & SLAB_RED_ZONE)
514 memset(p + s->objsize,
515 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
516 s->inuse - s->objsize);
519 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
522 if (*start != (u8)value)
530 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
531 void *from, void *to)
533 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
534 memset(from, data, to - from);
537 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
538 u8 *object, char *what,
539 u8 *start, unsigned int value, unsigned int bytes)
544 fault = check_bytes(start, value, bytes);
549 while (end > fault && end[-1] == value)
552 slab_bug(s, "%s overwritten", what);
553 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
554 fault, end - 1, fault[0], value);
555 print_trailer(s, page, object);
557 restore_bytes(s, what, value, fault, end);
565 * Bytes of the object to be managed.
566 * If the freepointer may overlay the object then the free
567 * pointer is the first word of the object.
569 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
572 * object + s->objsize
573 * Padding to reach word boundary. This is also used for Redzoning.
574 * Padding is extended by another word if Redzoning is enabled and
577 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
578 * 0xcc (RED_ACTIVE) for objects in use.
581 * Meta data starts here.
583 * A. Free pointer (if we cannot overwrite object on free)
584 * B. Tracking data for SLAB_STORE_USER
585 * C. Padding to reach required alignment boundary or at mininum
586 * one word if debugging is on to be able to detect writes
587 * before the word boundary.
589 * Padding is done using 0x5a (POISON_INUSE)
592 * Nothing is used beyond s->size.
594 * If slabcaches are merged then the objsize and inuse boundaries are mostly
595 * ignored. And therefore no slab options that rely on these boundaries
596 * may be used with merged slabcaches.
599 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
601 unsigned long off = s->inuse; /* The end of info */
604 /* Freepointer is placed after the object. */
605 off += sizeof(void *);
607 if (s->flags & SLAB_STORE_USER)
608 /* We also have user information there */
609 off += 2 * sizeof(struct track);
614 return check_bytes_and_report(s, page, p, "Object padding",
615 p + off, POISON_INUSE, s->size - off);
618 /* Check the pad bytes at the end of a slab page */
619 static int slab_pad_check(struct kmem_cache *s, struct page *page)
627 if (!(s->flags & SLAB_POISON))
630 start = page_address(page);
631 length = (PAGE_SIZE << compound_order(page));
632 end = start + length;
633 remainder = length % s->size;
637 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
640 while (end > fault && end[-1] == POISON_INUSE)
643 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
644 print_section("Padding", end - remainder, remainder);
646 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
650 static int check_object(struct kmem_cache *s, struct page *page,
651 void *object, int active)
654 u8 *endobject = object + s->objsize;
656 if (s->flags & SLAB_RED_ZONE) {
658 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
660 if (!check_bytes_and_report(s, page, object, "Redzone",
661 endobject, red, s->inuse - s->objsize))
664 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
665 check_bytes_and_report(s, page, p, "Alignment padding",
666 endobject, POISON_INUSE, s->inuse - s->objsize);
670 if (s->flags & SLAB_POISON) {
671 if (!active && (s->flags & __OBJECT_POISON) &&
672 (!check_bytes_and_report(s, page, p, "Poison", p,
673 POISON_FREE, s->objsize - 1) ||
674 !check_bytes_and_report(s, page, p, "Poison",
675 p + s->objsize - 1, POISON_END, 1)))
678 * check_pad_bytes cleans up on its own.
680 check_pad_bytes(s, page, p);
683 if (!s->offset && active)
685 * Object and freepointer overlap. Cannot check
686 * freepointer while object is allocated.
690 /* Check free pointer validity */
691 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
692 object_err(s, page, p, "Freepointer corrupt");
694 * No choice but to zap it and thus loose the remainder
695 * of the free objects in this slab. May cause
696 * another error because the object count is now wrong.
698 set_freepointer(s, p, NULL);
704 static int check_slab(struct kmem_cache *s, struct page *page)
708 VM_BUG_ON(!irqs_disabled());
710 if (!PageSlab(page)) {
711 slab_err(s, page, "Not a valid slab page");
715 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
716 if (page->objects > maxobj) {
717 slab_err(s, page, "objects %u > max %u",
718 s->name, page->objects, maxobj);
721 if (page->inuse > page->objects) {
722 slab_err(s, page, "inuse %u > max %u",
723 s->name, page->inuse, page->objects);
726 /* Slab_pad_check fixes things up after itself */
727 slab_pad_check(s, page);
732 * Determine if a certain object on a page is on the freelist. Must hold the
733 * slab lock to guarantee that the chains are in a consistent state.
735 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
738 void *fp = page->freelist;
740 unsigned long max_objects;
742 while (fp && nr <= page->objects) {
745 if (!check_valid_pointer(s, page, fp)) {
747 object_err(s, page, object,
748 "Freechain corrupt");
749 set_freepointer(s, object, NULL);
752 slab_err(s, page, "Freepointer corrupt");
753 page->freelist = NULL;
754 page->inuse = page->objects;
755 slab_fix(s, "Freelist cleared");
761 fp = get_freepointer(s, object);
765 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
766 if (max_objects > 65535)
769 if (page->objects != max_objects) {
770 slab_err(s, page, "Wrong number of objects. Found %d but "
771 "should be %d", page->objects, max_objects);
772 page->objects = max_objects;
773 slab_fix(s, "Number of objects adjusted.");
775 if (page->inuse != page->objects - nr) {
776 slab_err(s, page, "Wrong object count. Counter is %d but "
777 "counted were %d", page->inuse, page->objects - nr);
778 page->inuse = page->objects - nr;
779 slab_fix(s, "Object count adjusted.");
781 return search == NULL;
784 static void trace(struct kmem_cache *s, struct page *page, void *object,
787 if (s->flags & SLAB_TRACE) {
788 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
790 alloc ? "alloc" : "free",
795 print_section("Object", (void *)object, s->objsize);
802 * Tracking of fully allocated slabs for debugging purposes.
804 static void add_full(struct kmem_cache_node *n, struct page *page)
806 spin_lock(&n->list_lock);
807 list_add(&page->lru, &n->full);
808 spin_unlock(&n->list_lock);
811 static void remove_full(struct kmem_cache *s, struct page *page)
813 struct kmem_cache_node *n;
815 if (!(s->flags & SLAB_STORE_USER))
818 n = get_node(s, page_to_nid(page));
820 spin_lock(&n->list_lock);
821 list_del(&page->lru);
822 spin_unlock(&n->list_lock);
825 /* Tracking of the number of slabs for debugging purposes */
826 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
828 struct kmem_cache_node *n = get_node(s, node);
830 return atomic_long_read(&n->nr_slabs);
833 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
835 struct kmem_cache_node *n = get_node(s, node);
838 * May be called early in order to allocate a slab for the
839 * kmem_cache_node structure. Solve the chicken-egg
840 * dilemma by deferring the increment of the count during
841 * bootstrap (see early_kmem_cache_node_alloc).
843 if (!NUMA_BUILD || n) {
844 atomic_long_inc(&n->nr_slabs);
845 atomic_long_add(objects, &n->total_objects);
848 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
850 struct kmem_cache_node *n = get_node(s, node);
852 atomic_long_dec(&n->nr_slabs);
853 atomic_long_sub(objects, &n->total_objects);
856 /* Object debug checks for alloc/free paths */
857 static void setup_object_debug(struct kmem_cache *s, struct page *page,
860 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
863 init_object(s, object, 0);
864 init_tracking(s, object);
867 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
868 void *object, void *addr)
870 if (!check_slab(s, page))
873 if (!on_freelist(s, page, object)) {
874 object_err(s, page, object, "Object already allocated");
878 if (!check_valid_pointer(s, page, object)) {
879 object_err(s, page, object, "Freelist Pointer check fails");
883 if (!check_object(s, page, object, 0))
886 /* Success perform special debug activities for allocs */
887 if (s->flags & SLAB_STORE_USER)
888 set_track(s, object, TRACK_ALLOC, addr);
889 trace(s, page, object, 1);
890 init_object(s, object, 1);
894 if (PageSlab(page)) {
896 * If this is a slab page then lets do the best we can
897 * to avoid issues in the future. Marking all objects
898 * as used avoids touching the remaining objects.
900 slab_fix(s, "Marking all objects used");
901 page->inuse = page->objects;
902 page->freelist = NULL;
907 static int free_debug_processing(struct kmem_cache *s, struct page *page,
908 void *object, void *addr)
910 if (!check_slab(s, page))
913 if (!check_valid_pointer(s, page, object)) {
914 slab_err(s, page, "Invalid object pointer 0x%p", object);
918 if (on_freelist(s, page, object)) {
919 object_err(s, page, object, "Object already free");
923 if (!check_object(s, page, object, 1))
926 if (unlikely(s != page->slab)) {
927 if (!PageSlab(page)) {
928 slab_err(s, page, "Attempt to free object(0x%p) "
929 "outside of slab", object);
930 } else if (!page->slab) {
932 "SLUB <none>: no slab for object 0x%p.\n",
936 object_err(s, page, object,
937 "page slab pointer corrupt.");
941 /* Special debug activities for freeing objects */
942 if (!PageSlubFrozen(page) && !page->freelist)
943 remove_full(s, page);
944 if (s->flags & SLAB_STORE_USER)
945 set_track(s, object, TRACK_FREE, addr);
946 trace(s, page, object, 0);
947 init_object(s, object, 0);
951 slab_fix(s, "Object at 0x%p not freed", object);
955 static int __init setup_slub_debug(char *str)
957 slub_debug = DEBUG_DEFAULT_FLAGS;
958 if (*str++ != '=' || !*str)
960 * No options specified. Switch on full debugging.
966 * No options but restriction on slabs. This means full
967 * debugging for slabs matching a pattern.
974 * Switch off all debugging measures.
979 * Determine which debug features should be switched on
981 for (; *str && *str != ','; str++) {
982 switch (tolower(*str)) {
984 slub_debug |= SLAB_DEBUG_FREE;
987 slub_debug |= SLAB_RED_ZONE;
990 slub_debug |= SLAB_POISON;
993 slub_debug |= SLAB_STORE_USER;
996 slub_debug |= SLAB_TRACE;
999 printk(KERN_ERR "slub_debug option '%c' "
1000 "unknown. skipped\n", *str);
1006 slub_debug_slabs = str + 1;
1011 __setup("slub_debug", setup_slub_debug);
1013 static unsigned long kmem_cache_flags(unsigned long objsize,
1014 unsigned long flags, const char *name,
1015 void (*ctor)(struct kmem_cache *, void *))
1018 * Enable debugging if selected on the kernel commandline.
1020 if (slub_debug && (!slub_debug_slabs ||
1021 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1022 flags |= slub_debug;
1027 static inline void setup_object_debug(struct kmem_cache *s,
1028 struct page *page, void *object) {}
1030 static inline int alloc_debug_processing(struct kmem_cache *s,
1031 struct page *page, void *object, void *addr) { return 0; }
1033 static inline int free_debug_processing(struct kmem_cache *s,
1034 struct page *page, void *object, void *addr) { return 0; }
1036 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1038 static inline int check_object(struct kmem_cache *s, struct page *page,
1039 void *object, int active) { return 1; }
1040 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1041 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1042 unsigned long flags, const char *name,
1043 void (*ctor)(struct kmem_cache *, void *))
1047 #define slub_debug 0
1049 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1051 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1053 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1058 * Slab allocation and freeing
1060 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1061 struct kmem_cache_order_objects oo)
1063 int order = oo_order(oo);
1066 return alloc_pages(flags, order);
1068 return alloc_pages_node(node, flags, order);
1071 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1074 struct kmem_cache_order_objects oo = s->oo;
1076 flags |= s->allocflags;
1078 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1080 if (unlikely(!page)) {
1083 * Allocation may have failed due to fragmentation.
1084 * Try a lower order alloc if possible
1086 page = alloc_slab_page(flags, node, oo);
1090 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1092 page->objects = oo_objects(oo);
1093 mod_zone_page_state(page_zone(page),
1094 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1095 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1101 static void setup_object(struct kmem_cache *s, struct page *page,
1104 setup_object_debug(s, page, object);
1105 if (unlikely(s->ctor))
1109 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1116 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1118 page = allocate_slab(s,
1119 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1123 inc_slabs_node(s, page_to_nid(page), page->objects);
1125 page->flags |= 1 << PG_slab;
1126 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1127 SLAB_STORE_USER | SLAB_TRACE))
1128 __SetPageSlubDebug(page);
1130 start = page_address(page);
1132 if (unlikely(s->flags & SLAB_POISON))
1133 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1136 for_each_object(p, s, start, page->objects) {
1137 setup_object(s, page, last);
1138 set_freepointer(s, last, p);
1141 setup_object(s, page, last);
1142 set_freepointer(s, last, NULL);
1144 page->freelist = start;
1150 static void __free_slab(struct kmem_cache *s, struct page *page)
1152 int order = compound_order(page);
1153 int pages = 1 << order;
1155 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1158 slab_pad_check(s, page);
1159 for_each_object(p, s, page_address(page),
1161 check_object(s, page, p, 0);
1162 __ClearPageSlubDebug(page);
1165 mod_zone_page_state(page_zone(page),
1166 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1167 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1170 __ClearPageSlab(page);
1171 reset_page_mapcount(page);
1172 __free_pages(page, order);
1175 static void rcu_free_slab(struct rcu_head *h)
1179 page = container_of((struct list_head *)h, struct page, lru);
1180 __free_slab(page->slab, page);
1183 static void free_slab(struct kmem_cache *s, struct page *page)
1185 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1187 * RCU free overloads the RCU head over the LRU
1189 struct rcu_head *head = (void *)&page->lru;
1191 call_rcu(head, rcu_free_slab);
1193 __free_slab(s, page);
1196 static void discard_slab(struct kmem_cache *s, struct page *page)
1198 dec_slabs_node(s, page_to_nid(page), page->objects);
1203 * Per slab locking using the pagelock
1205 static __always_inline void slab_lock(struct page *page)
1207 bit_spin_lock(PG_locked, &page->flags);
1210 static __always_inline void slab_unlock(struct page *page)
1212 __bit_spin_unlock(PG_locked, &page->flags);
1215 static __always_inline int slab_trylock(struct page *page)
1219 rc = bit_spin_trylock(PG_locked, &page->flags);
1224 * Management of partially allocated slabs
1226 static void add_partial(struct kmem_cache_node *n,
1227 struct page *page, int tail)
1229 spin_lock(&n->list_lock);
1232 list_add_tail(&page->lru, &n->partial);
1234 list_add(&page->lru, &n->partial);
1235 spin_unlock(&n->list_lock);
1238 static void remove_partial(struct kmem_cache *s, struct page *page)
1240 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1242 spin_lock(&n->list_lock);
1243 list_del(&page->lru);
1245 spin_unlock(&n->list_lock);
1249 * Lock slab and remove from the partial list.
1251 * Must hold list_lock.
1253 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1256 if (slab_trylock(page)) {
1257 list_del(&page->lru);
1259 __SetPageSlubFrozen(page);
1266 * Try to allocate a partial slab from a specific node.
1268 static struct page *get_partial_node(struct kmem_cache_node *n)
1273 * Racy check. If we mistakenly see no partial slabs then we
1274 * just allocate an empty slab. If we mistakenly try to get a
1275 * partial slab and there is none available then get_partials()
1278 if (!n || !n->nr_partial)
1281 spin_lock(&n->list_lock);
1282 list_for_each_entry(page, &n->partial, lru)
1283 if (lock_and_freeze_slab(n, page))
1287 spin_unlock(&n->list_lock);
1292 * Get a page from somewhere. Search in increasing NUMA distances.
1294 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1297 struct zonelist *zonelist;
1300 enum zone_type high_zoneidx = gfp_zone(flags);
1304 * The defrag ratio allows a configuration of the tradeoffs between
1305 * inter node defragmentation and node local allocations. A lower
1306 * defrag_ratio increases the tendency to do local allocations
1307 * instead of attempting to obtain partial slabs from other nodes.
1309 * If the defrag_ratio is set to 0 then kmalloc() always
1310 * returns node local objects. If the ratio is higher then kmalloc()
1311 * may return off node objects because partial slabs are obtained
1312 * from other nodes and filled up.
1314 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1315 * defrag_ratio = 1000) then every (well almost) allocation will
1316 * first attempt to defrag slab caches on other nodes. This means
1317 * scanning over all nodes to look for partial slabs which may be
1318 * expensive if we do it every time we are trying to find a slab
1319 * with available objects.
1321 if (!s->remote_node_defrag_ratio ||
1322 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1325 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1326 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1327 struct kmem_cache_node *n;
1329 n = get_node(s, zone_to_nid(zone));
1331 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1332 n->nr_partial > MIN_PARTIAL) {
1333 page = get_partial_node(n);
1343 * Get a partial page, lock it and return it.
1345 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1348 int searchnode = (node == -1) ? numa_node_id() : node;
1350 page = get_partial_node(get_node(s, searchnode));
1351 if (page || (flags & __GFP_THISNODE))
1354 return get_any_partial(s, flags);
1358 * Move a page back to the lists.
1360 * Must be called with the slab lock held.
1362 * On exit the slab lock will have been dropped.
1364 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1366 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1367 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1369 __ClearPageSlubFrozen(page);
1372 if (page->freelist) {
1373 add_partial(n, page, tail);
1374 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1376 stat(c, DEACTIVATE_FULL);
1377 if (SLABDEBUG && PageSlubDebug(page) &&
1378 (s->flags & SLAB_STORE_USER))
1383 stat(c, DEACTIVATE_EMPTY);
1384 if (n->nr_partial < MIN_PARTIAL) {
1386 * Adding an empty slab to the partial slabs in order
1387 * to avoid page allocator overhead. This slab needs
1388 * to come after the other slabs with objects in
1389 * so that the others get filled first. That way the
1390 * size of the partial list stays small.
1392 * kmem_cache_shrink can reclaim any empty slabs from
1395 add_partial(n, page, 1);
1399 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1400 discard_slab(s, page);
1406 * Remove the cpu slab
1408 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1410 struct page *page = c->page;
1414 stat(c, DEACTIVATE_REMOTE_FREES);
1416 * Merge cpu freelist into slab freelist. Typically we get here
1417 * because both freelists are empty. So this is unlikely
1420 while (unlikely(c->freelist)) {
1423 tail = 0; /* Hot objects. Put the slab first */
1425 /* Retrieve object from cpu_freelist */
1426 object = c->freelist;
1427 c->freelist = c->freelist[c->offset];
1429 /* And put onto the regular freelist */
1430 object[c->offset] = page->freelist;
1431 page->freelist = object;
1435 unfreeze_slab(s, page, tail);
1438 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1440 stat(c, CPUSLAB_FLUSH);
1442 deactivate_slab(s, c);
1448 * Called from IPI handler with interrupts disabled.
1450 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1452 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1454 if (likely(c && c->page))
1458 static void flush_cpu_slab(void *d)
1460 struct kmem_cache *s = d;
1462 __flush_cpu_slab(s, smp_processor_id());
1465 static void flush_all(struct kmem_cache *s)
1467 on_each_cpu(flush_cpu_slab, s, 1);
1471 * Check if the objects in a per cpu structure fit numa
1472 * locality expectations.
1474 static inline int node_match(struct kmem_cache_cpu *c, int node)
1477 if (node != -1 && c->node != node)
1484 * Slow path. The lockless freelist is empty or we need to perform
1487 * Interrupts are disabled.
1489 * Processing is still very fast if new objects have been freed to the
1490 * regular freelist. In that case we simply take over the regular freelist
1491 * as the lockless freelist and zap the regular freelist.
1493 * If that is not working then we fall back to the partial lists. We take the
1494 * first element of the freelist as the object to allocate now and move the
1495 * rest of the freelist to the lockless freelist.
1497 * And if we were unable to get a new slab from the partial slab lists then
1498 * we need to allocate a new slab. This is the slowest path since it involves
1499 * a call to the page allocator and the setup of a new slab.
1501 static void *__slab_alloc(struct kmem_cache *s,
1502 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1507 /* We handle __GFP_ZERO in the caller */
1508 gfpflags &= ~__GFP_ZERO;
1514 if (unlikely(!node_match(c, node)))
1517 stat(c, ALLOC_REFILL);
1520 object = c->page->freelist;
1521 if (unlikely(!object))
1523 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1526 c->freelist = object[c->offset];
1527 c->page->inuse = c->page->objects;
1528 c->page->freelist = NULL;
1529 c->node = page_to_nid(c->page);
1531 slab_unlock(c->page);
1532 stat(c, ALLOC_SLOWPATH);
1536 deactivate_slab(s, c);
1539 new = get_partial(s, gfpflags, node);
1542 stat(c, ALLOC_FROM_PARTIAL);
1546 if (gfpflags & __GFP_WAIT)
1549 new = new_slab(s, gfpflags, node);
1551 if (gfpflags & __GFP_WAIT)
1552 local_irq_disable();
1555 c = get_cpu_slab(s, smp_processor_id());
1556 stat(c, ALLOC_SLAB);
1560 __SetPageSlubFrozen(new);
1566 if (!alloc_debug_processing(s, c->page, object, addr))
1570 c->page->freelist = object[c->offset];
1576 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1577 * have the fastpath folded into their functions. So no function call
1578 * overhead for requests that can be satisfied on the fastpath.
1580 * The fastpath works by first checking if the lockless freelist can be used.
1581 * If not then __slab_alloc is called for slow processing.
1583 * Otherwise we can simply pick the next object from the lockless free list.
1585 static __always_inline void *slab_alloc(struct kmem_cache *s,
1586 gfp_t gfpflags, int node, void *addr)
1589 struct kmem_cache_cpu *c;
1590 unsigned long flags;
1591 unsigned int objsize;
1593 local_irq_save(flags);
1594 c = get_cpu_slab(s, smp_processor_id());
1595 objsize = c->objsize;
1596 if (unlikely(!c->freelist || !node_match(c, node)))
1598 object = __slab_alloc(s, gfpflags, node, addr, c);
1601 object = c->freelist;
1602 c->freelist = object[c->offset];
1603 stat(c, ALLOC_FASTPATH);
1605 local_irq_restore(flags);
1607 if (unlikely((gfpflags & __GFP_ZERO) && object))
1608 memset(object, 0, objsize);
1613 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1615 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1617 EXPORT_SYMBOL(kmem_cache_alloc);
1620 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1622 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1624 EXPORT_SYMBOL(kmem_cache_alloc_node);
1628 * Slow patch handling. This may still be called frequently since objects
1629 * have a longer lifetime than the cpu slabs in most processing loads.
1631 * So we still attempt to reduce cache line usage. Just take the slab
1632 * lock and free the item. If there is no additional partial page
1633 * handling required then we can return immediately.
1635 static void __slab_free(struct kmem_cache *s, struct page *page,
1636 void *x, void *addr, unsigned int offset)
1639 void **object = (void *)x;
1640 struct kmem_cache_cpu *c;
1642 c = get_cpu_slab(s, raw_smp_processor_id());
1643 stat(c, FREE_SLOWPATH);
1646 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1650 prior = object[offset] = page->freelist;
1651 page->freelist = object;
1654 if (unlikely(PageSlubFrozen(page))) {
1655 stat(c, FREE_FROZEN);
1659 if (unlikely(!page->inuse))
1663 * Objects left in the slab. If it was not on the partial list before
1666 if (unlikely(!prior)) {
1667 add_partial(get_node(s, page_to_nid(page)), page, 1);
1668 stat(c, FREE_ADD_PARTIAL);
1678 * Slab still on the partial list.
1680 remove_partial(s, page);
1681 stat(c, FREE_REMOVE_PARTIAL);
1685 discard_slab(s, page);
1689 if (!free_debug_processing(s, page, x, addr))
1695 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1696 * can perform fastpath freeing without additional function calls.
1698 * The fastpath is only possible if we are freeing to the current cpu slab
1699 * of this processor. This typically the case if we have just allocated
1702 * If fastpath is not possible then fall back to __slab_free where we deal
1703 * with all sorts of special processing.
1705 static __always_inline void slab_free(struct kmem_cache *s,
1706 struct page *page, void *x, void *addr)
1708 void **object = (void *)x;
1709 struct kmem_cache_cpu *c;
1710 unsigned long flags;
1712 local_irq_save(flags);
1713 c = get_cpu_slab(s, smp_processor_id());
1714 debug_check_no_locks_freed(object, c->objsize);
1715 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1716 debug_check_no_obj_freed(object, s->objsize);
1717 if (likely(page == c->page && c->node >= 0)) {
1718 object[c->offset] = c->freelist;
1719 c->freelist = object;
1720 stat(c, FREE_FASTPATH);
1722 __slab_free(s, page, x, addr, c->offset);
1724 local_irq_restore(flags);
1727 void kmem_cache_free(struct kmem_cache *s, void *x)
1731 page = virt_to_head_page(x);
1733 slab_free(s, page, x, __builtin_return_address(0));
1735 EXPORT_SYMBOL(kmem_cache_free);
1737 /* Figure out on which slab object the object resides */
1738 static struct page *get_object_page(const void *x)
1740 struct page *page = virt_to_head_page(x);
1742 if (!PageSlab(page))
1749 * Object placement in a slab is made very easy because we always start at
1750 * offset 0. If we tune the size of the object to the alignment then we can
1751 * get the required alignment by putting one properly sized object after
1754 * Notice that the allocation order determines the sizes of the per cpu
1755 * caches. Each processor has always one slab available for allocations.
1756 * Increasing the allocation order reduces the number of times that slabs
1757 * must be moved on and off the partial lists and is therefore a factor in
1762 * Mininum / Maximum order of slab pages. This influences locking overhead
1763 * and slab fragmentation. A higher order reduces the number of partial slabs
1764 * and increases the number of allocations possible without having to
1765 * take the list_lock.
1767 static int slub_min_order;
1768 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1769 static int slub_min_objects;
1772 * Merge control. If this is set then no merging of slab caches will occur.
1773 * (Could be removed. This was introduced to pacify the merge skeptics.)
1775 static int slub_nomerge;
1778 * Calculate the order of allocation given an slab object size.
1780 * The order of allocation has significant impact on performance and other
1781 * system components. Generally order 0 allocations should be preferred since
1782 * order 0 does not cause fragmentation in the page allocator. Larger objects
1783 * be problematic to put into order 0 slabs because there may be too much
1784 * unused space left. We go to a higher order if more than 1/16th of the slab
1787 * In order to reach satisfactory performance we must ensure that a minimum
1788 * number of objects is in one slab. Otherwise we may generate too much
1789 * activity on the partial lists which requires taking the list_lock. This is
1790 * less a concern for large slabs though which are rarely used.
1792 * slub_max_order specifies the order where we begin to stop considering the
1793 * number of objects in a slab as critical. If we reach slub_max_order then
1794 * we try to keep the page order as low as possible. So we accept more waste
1795 * of space in favor of a small page order.
1797 * Higher order allocations also allow the placement of more objects in a
1798 * slab and thereby reduce object handling overhead. If the user has
1799 * requested a higher mininum order then we start with that one instead of
1800 * the smallest order which will fit the object.
1802 static inline int slab_order(int size, int min_objects,
1803 int max_order, int fract_leftover)
1807 int min_order = slub_min_order;
1809 if ((PAGE_SIZE << min_order) / size > 65535)
1810 return get_order(size * 65535) - 1;
1812 for (order = max(min_order,
1813 fls(min_objects * size - 1) - PAGE_SHIFT);
1814 order <= max_order; order++) {
1816 unsigned long slab_size = PAGE_SIZE << order;
1818 if (slab_size < min_objects * size)
1821 rem = slab_size % size;
1823 if (rem <= slab_size / fract_leftover)
1831 static inline int calculate_order(int size)
1838 * Attempt to find best configuration for a slab. This
1839 * works by first attempting to generate a layout with
1840 * the best configuration and backing off gradually.
1842 * First we reduce the acceptable waste in a slab. Then
1843 * we reduce the minimum objects required in a slab.
1845 min_objects = slub_min_objects;
1847 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1848 while (min_objects > 1) {
1850 while (fraction >= 4) {
1851 order = slab_order(size, min_objects,
1852 slub_max_order, fraction);
1853 if (order <= slub_max_order)
1861 * We were unable to place multiple objects in a slab. Now
1862 * lets see if we can place a single object there.
1864 order = slab_order(size, 1, slub_max_order, 1);
1865 if (order <= slub_max_order)
1869 * Doh this slab cannot be placed using slub_max_order.
1871 order = slab_order(size, 1, MAX_ORDER, 1);
1872 if (order <= MAX_ORDER)
1878 * Figure out what the alignment of the objects will be.
1880 static unsigned long calculate_alignment(unsigned long flags,
1881 unsigned long align, unsigned long size)
1884 * If the user wants hardware cache aligned objects then follow that
1885 * suggestion if the object is sufficiently large.
1887 * The hardware cache alignment cannot override the specified
1888 * alignment though. If that is greater then use it.
1890 if (flags & SLAB_HWCACHE_ALIGN) {
1891 unsigned long ralign = cache_line_size();
1892 while (size <= ralign / 2)
1894 align = max(align, ralign);
1897 if (align < ARCH_SLAB_MINALIGN)
1898 align = ARCH_SLAB_MINALIGN;
1900 return ALIGN(align, sizeof(void *));
1903 static void init_kmem_cache_cpu(struct kmem_cache *s,
1904 struct kmem_cache_cpu *c)
1909 c->offset = s->offset / sizeof(void *);
1910 c->objsize = s->objsize;
1911 #ifdef CONFIG_SLUB_STATS
1912 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1916 static void init_kmem_cache_node(struct kmem_cache_node *n)
1919 spin_lock_init(&n->list_lock);
1920 INIT_LIST_HEAD(&n->partial);
1921 #ifdef CONFIG_SLUB_DEBUG
1922 atomic_long_set(&n->nr_slabs, 0);
1923 INIT_LIST_HEAD(&n->full);
1929 * Per cpu array for per cpu structures.
1931 * The per cpu array places all kmem_cache_cpu structures from one processor
1932 * close together meaning that it becomes possible that multiple per cpu
1933 * structures are contained in one cacheline. This may be particularly
1934 * beneficial for the kmalloc caches.
1936 * A desktop system typically has around 60-80 slabs. With 100 here we are
1937 * likely able to get per cpu structures for all caches from the array defined
1938 * here. We must be able to cover all kmalloc caches during bootstrap.
1940 * If the per cpu array is exhausted then fall back to kmalloc
1941 * of individual cachelines. No sharing is possible then.
1943 #define NR_KMEM_CACHE_CPU 100
1945 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1946 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1948 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1949 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1951 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1952 int cpu, gfp_t flags)
1954 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1957 per_cpu(kmem_cache_cpu_free, cpu) =
1958 (void *)c->freelist;
1960 /* Table overflow: So allocate ourselves */
1962 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1963 flags, cpu_to_node(cpu));
1968 init_kmem_cache_cpu(s, c);
1972 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1974 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1975 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1979 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1980 per_cpu(kmem_cache_cpu_free, cpu) = c;
1983 static void free_kmem_cache_cpus(struct kmem_cache *s)
1987 for_each_online_cpu(cpu) {
1988 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1991 s->cpu_slab[cpu] = NULL;
1992 free_kmem_cache_cpu(c, cpu);
1997 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2001 for_each_online_cpu(cpu) {
2002 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2007 c = alloc_kmem_cache_cpu(s, cpu, flags);
2009 free_kmem_cache_cpus(s);
2012 s->cpu_slab[cpu] = c;
2018 * Initialize the per cpu array.
2020 static void init_alloc_cpu_cpu(int cpu)
2024 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2027 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2028 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2030 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2033 static void __init init_alloc_cpu(void)
2037 for_each_online_cpu(cpu)
2038 init_alloc_cpu_cpu(cpu);
2042 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2043 static inline void init_alloc_cpu(void) {}
2045 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2047 init_kmem_cache_cpu(s, &s->cpu_slab);
2054 * No kmalloc_node yet so do it by hand. We know that this is the first
2055 * slab on the node for this slabcache. There are no concurrent accesses
2058 * Note that this function only works on the kmalloc_node_cache
2059 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2060 * memory on a fresh node that has no slab structures yet.
2062 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2066 struct kmem_cache_node *n;
2067 unsigned long flags;
2069 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2071 page = new_slab(kmalloc_caches, gfpflags, node);
2074 if (page_to_nid(page) != node) {
2075 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2077 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2078 "in order to be able to continue\n");
2083 page->freelist = get_freepointer(kmalloc_caches, n);
2085 kmalloc_caches->node[node] = n;
2086 #ifdef CONFIG_SLUB_DEBUG
2087 init_object(kmalloc_caches, n, 1);
2088 init_tracking(kmalloc_caches, n);
2090 init_kmem_cache_node(n);
2091 inc_slabs_node(kmalloc_caches, node, page->objects);
2094 * lockdep requires consistent irq usage for each lock
2095 * so even though there cannot be a race this early in
2096 * the boot sequence, we still disable irqs.
2098 local_irq_save(flags);
2099 add_partial(n, page, 0);
2100 local_irq_restore(flags);
2104 static void free_kmem_cache_nodes(struct kmem_cache *s)
2108 for_each_node_state(node, N_NORMAL_MEMORY) {
2109 struct kmem_cache_node *n = s->node[node];
2110 if (n && n != &s->local_node)
2111 kmem_cache_free(kmalloc_caches, n);
2112 s->node[node] = NULL;
2116 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2121 if (slab_state >= UP)
2122 local_node = page_to_nid(virt_to_page(s));
2126 for_each_node_state(node, N_NORMAL_MEMORY) {
2127 struct kmem_cache_node *n;
2129 if (local_node == node)
2132 if (slab_state == DOWN) {
2133 n = early_kmem_cache_node_alloc(gfpflags,
2137 n = kmem_cache_alloc_node(kmalloc_caches,
2141 free_kmem_cache_nodes(s);
2147 init_kmem_cache_node(n);
2152 static void free_kmem_cache_nodes(struct kmem_cache *s)
2156 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2158 init_kmem_cache_node(&s->local_node);
2164 * calculate_sizes() determines the order and the distribution of data within
2167 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2169 unsigned long flags = s->flags;
2170 unsigned long size = s->objsize;
2171 unsigned long align = s->align;
2175 * Round up object size to the next word boundary. We can only
2176 * place the free pointer at word boundaries and this determines
2177 * the possible location of the free pointer.
2179 size = ALIGN(size, sizeof(void *));
2181 #ifdef CONFIG_SLUB_DEBUG
2183 * Determine if we can poison the object itself. If the user of
2184 * the slab may touch the object after free or before allocation
2185 * then we should never poison the object itself.
2187 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2189 s->flags |= __OBJECT_POISON;
2191 s->flags &= ~__OBJECT_POISON;
2195 * If we are Redzoning then check if there is some space between the
2196 * end of the object and the free pointer. If not then add an
2197 * additional word to have some bytes to store Redzone information.
2199 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2200 size += sizeof(void *);
2204 * With that we have determined the number of bytes in actual use
2205 * by the object. This is the potential offset to the free pointer.
2209 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2212 * Relocate free pointer after the object if it is not
2213 * permitted to overwrite the first word of the object on
2216 * This is the case if we do RCU, have a constructor or
2217 * destructor or are poisoning the objects.
2220 size += sizeof(void *);
2223 #ifdef CONFIG_SLUB_DEBUG
2224 if (flags & SLAB_STORE_USER)
2226 * Need to store information about allocs and frees after
2229 size += 2 * sizeof(struct track);
2231 if (flags & SLAB_RED_ZONE)
2233 * Add some empty padding so that we can catch
2234 * overwrites from earlier objects rather than let
2235 * tracking information or the free pointer be
2236 * corrupted if an user writes before the start
2239 size += sizeof(void *);
2243 * Determine the alignment based on various parameters that the
2244 * user specified and the dynamic determination of cache line size
2247 align = calculate_alignment(flags, align, s->objsize);
2250 * SLUB stores one object immediately after another beginning from
2251 * offset 0. In order to align the objects we have to simply size
2252 * each object to conform to the alignment.
2254 size = ALIGN(size, align);
2256 if (forced_order >= 0)
2257 order = forced_order;
2259 order = calculate_order(size);
2266 s->allocflags |= __GFP_COMP;
2268 if (s->flags & SLAB_CACHE_DMA)
2269 s->allocflags |= SLUB_DMA;
2271 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2272 s->allocflags |= __GFP_RECLAIMABLE;
2275 * Determine the number of objects per slab
2277 s->oo = oo_make(order, size);
2278 s->min = oo_make(get_order(size), size);
2279 if (oo_objects(s->oo) > oo_objects(s->max))
2282 return !!oo_objects(s->oo);
2286 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2287 const char *name, size_t size,
2288 size_t align, unsigned long flags,
2289 void (*ctor)(struct kmem_cache *, void *))
2291 memset(s, 0, kmem_size);
2296 s->flags = kmem_cache_flags(size, flags, name, ctor);
2298 if (!calculate_sizes(s, -1))
2303 s->remote_node_defrag_ratio = 100;
2305 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2308 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2310 free_kmem_cache_nodes(s);
2312 if (flags & SLAB_PANIC)
2313 panic("Cannot create slab %s size=%lu realsize=%u "
2314 "order=%u offset=%u flags=%lx\n",
2315 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2321 * Check if a given pointer is valid
2323 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2327 page = get_object_page(object);
2329 if (!page || s != page->slab)
2330 /* No slab or wrong slab */
2333 if (!check_valid_pointer(s, page, object))
2337 * We could also check if the object is on the slabs freelist.
2338 * But this would be too expensive and it seems that the main
2339 * purpose of kmem_ptr_valid() is to check if the object belongs
2340 * to a certain slab.
2344 EXPORT_SYMBOL(kmem_ptr_validate);
2347 * Determine the size of a slab object
2349 unsigned int kmem_cache_size(struct kmem_cache *s)
2353 EXPORT_SYMBOL(kmem_cache_size);
2355 const char *kmem_cache_name(struct kmem_cache *s)
2359 EXPORT_SYMBOL(kmem_cache_name);
2361 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2364 #ifdef CONFIG_SLUB_DEBUG
2365 void *addr = page_address(page);
2367 DECLARE_BITMAP(map, page->objects);
2369 bitmap_zero(map, page->objects);
2370 slab_err(s, page, "%s", text);
2372 for_each_free_object(p, s, page->freelist)
2373 set_bit(slab_index(p, s, addr), map);
2375 for_each_object(p, s, addr, page->objects) {
2377 if (!test_bit(slab_index(p, s, addr), map)) {
2378 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2380 print_tracking(s, p);
2388 * Attempt to free all partial slabs on a node.
2390 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2392 unsigned long flags;
2393 struct page *page, *h;
2395 spin_lock_irqsave(&n->list_lock, flags);
2396 list_for_each_entry_safe(page, h, &n->partial, lru) {
2398 list_del(&page->lru);
2399 discard_slab(s, page);
2402 list_slab_objects(s, page,
2403 "Objects remaining on kmem_cache_close()");
2406 spin_unlock_irqrestore(&n->list_lock, flags);
2410 * Release all resources used by a slab cache.
2412 static inline int kmem_cache_close(struct kmem_cache *s)
2418 /* Attempt to free all objects */
2419 free_kmem_cache_cpus(s);
2420 for_each_node_state(node, N_NORMAL_MEMORY) {
2421 struct kmem_cache_node *n = get_node(s, node);
2424 if (n->nr_partial || slabs_node(s, node))
2427 free_kmem_cache_nodes(s);
2432 * Close a cache and release the kmem_cache structure
2433 * (must be used for caches created using kmem_cache_create)
2435 void kmem_cache_destroy(struct kmem_cache *s)
2437 down_write(&slub_lock);
2441 up_write(&slub_lock);
2442 if (kmem_cache_close(s)) {
2443 printk(KERN_ERR "SLUB %s: %s called for cache that "
2444 "still has objects.\n", s->name, __func__);
2447 sysfs_slab_remove(s);
2449 up_write(&slub_lock);
2451 EXPORT_SYMBOL(kmem_cache_destroy);
2453 /********************************************************************
2455 *******************************************************************/
2457 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2458 EXPORT_SYMBOL(kmalloc_caches);
2460 static int __init setup_slub_min_order(char *str)
2462 get_option(&str, &slub_min_order);
2467 __setup("slub_min_order=", setup_slub_min_order);
2469 static int __init setup_slub_max_order(char *str)
2471 get_option(&str, &slub_max_order);
2476 __setup("slub_max_order=", setup_slub_max_order);
2478 static int __init setup_slub_min_objects(char *str)
2480 get_option(&str, &slub_min_objects);
2485 __setup("slub_min_objects=", setup_slub_min_objects);
2487 static int __init setup_slub_nomerge(char *str)
2493 __setup("slub_nomerge", setup_slub_nomerge);
2495 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2496 const char *name, int size, gfp_t gfp_flags)
2498 unsigned int flags = 0;
2500 if (gfp_flags & SLUB_DMA)
2501 flags = SLAB_CACHE_DMA;
2503 down_write(&slub_lock);
2504 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2508 list_add(&s->list, &slab_caches);
2509 up_write(&slub_lock);
2510 if (sysfs_slab_add(s))
2515 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2518 #ifdef CONFIG_ZONE_DMA
2519 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2521 static void sysfs_add_func(struct work_struct *w)
2523 struct kmem_cache *s;
2525 down_write(&slub_lock);
2526 list_for_each_entry(s, &slab_caches, list) {
2527 if (s->flags & __SYSFS_ADD_DEFERRED) {
2528 s->flags &= ~__SYSFS_ADD_DEFERRED;
2532 up_write(&slub_lock);
2535 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2537 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2539 struct kmem_cache *s;
2543 s = kmalloc_caches_dma[index];
2547 /* Dynamically create dma cache */
2548 if (flags & __GFP_WAIT)
2549 down_write(&slub_lock);
2551 if (!down_write_trylock(&slub_lock))
2555 if (kmalloc_caches_dma[index])
2558 realsize = kmalloc_caches[index].objsize;
2559 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2560 (unsigned int)realsize);
2561 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2563 if (!s || !text || !kmem_cache_open(s, flags, text,
2564 realsize, ARCH_KMALLOC_MINALIGN,
2565 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2571 list_add(&s->list, &slab_caches);
2572 kmalloc_caches_dma[index] = s;
2574 schedule_work(&sysfs_add_work);
2577 up_write(&slub_lock);
2579 return kmalloc_caches_dma[index];
2584 * Conversion table for small slabs sizes / 8 to the index in the
2585 * kmalloc array. This is necessary for slabs < 192 since we have non power
2586 * of two cache sizes there. The size of larger slabs can be determined using
2589 static s8 size_index[24] = {
2616 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2622 return ZERO_SIZE_PTR;
2624 index = size_index[(size - 1) / 8];
2626 index = fls(size - 1);
2628 #ifdef CONFIG_ZONE_DMA
2629 if (unlikely((flags & SLUB_DMA)))
2630 return dma_kmalloc_cache(index, flags);
2633 return &kmalloc_caches[index];
2636 void *__kmalloc(size_t size, gfp_t flags)
2638 struct kmem_cache *s;
2640 if (unlikely(size > PAGE_SIZE))
2641 return kmalloc_large(size, flags);
2643 s = get_slab(size, flags);
2645 if (unlikely(ZERO_OR_NULL_PTR(s)))
2648 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2650 EXPORT_SYMBOL(__kmalloc);
2652 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2654 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2658 return page_address(page);
2664 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2666 struct kmem_cache *s;
2668 if (unlikely(size > PAGE_SIZE))
2669 return kmalloc_large_node(size, flags, node);
2671 s = get_slab(size, flags);
2673 if (unlikely(ZERO_OR_NULL_PTR(s)))
2676 return slab_alloc(s, flags, node, __builtin_return_address(0));
2678 EXPORT_SYMBOL(__kmalloc_node);
2681 size_t ksize(const void *object)
2684 struct kmem_cache *s;
2686 if (unlikely(object == ZERO_SIZE_PTR))
2689 page = virt_to_head_page(object);
2691 if (unlikely(!PageSlab(page))) {
2692 WARN_ON(!PageCompound(page));
2693 return PAGE_SIZE << compound_order(page);
2697 #ifdef CONFIG_SLUB_DEBUG
2699 * Debugging requires use of the padding between object
2700 * and whatever may come after it.
2702 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2707 * If we have the need to store the freelist pointer
2708 * back there or track user information then we can
2709 * only use the space before that information.
2711 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2714 * Else we can use all the padding etc for the allocation
2718 EXPORT_SYMBOL(ksize);
2720 void kfree(const void *x)
2723 void *object = (void *)x;
2725 if (unlikely(ZERO_OR_NULL_PTR(x)))
2728 page = virt_to_head_page(x);
2729 if (unlikely(!PageSlab(page))) {
2730 BUG_ON(!PageCompound(page));
2734 slab_free(page->slab, page, object, __builtin_return_address(0));
2736 EXPORT_SYMBOL(kfree);
2739 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2740 * the remaining slabs by the number of items in use. The slabs with the
2741 * most items in use come first. New allocations will then fill those up
2742 * and thus they can be removed from the partial lists.
2744 * The slabs with the least items are placed last. This results in them
2745 * being allocated from last increasing the chance that the last objects
2746 * are freed in them.
2748 int kmem_cache_shrink(struct kmem_cache *s)
2752 struct kmem_cache_node *n;
2755 int objects = oo_objects(s->max);
2756 struct list_head *slabs_by_inuse =
2757 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2758 unsigned long flags;
2760 if (!slabs_by_inuse)
2764 for_each_node_state(node, N_NORMAL_MEMORY) {
2765 n = get_node(s, node);
2770 for (i = 0; i < objects; i++)
2771 INIT_LIST_HEAD(slabs_by_inuse + i);
2773 spin_lock_irqsave(&n->list_lock, flags);
2776 * Build lists indexed by the items in use in each slab.
2778 * Note that concurrent frees may occur while we hold the
2779 * list_lock. page->inuse here is the upper limit.
2781 list_for_each_entry_safe(page, t, &n->partial, lru) {
2782 if (!page->inuse && slab_trylock(page)) {
2784 * Must hold slab lock here because slab_free
2785 * may have freed the last object and be
2786 * waiting to release the slab.
2788 list_del(&page->lru);
2791 discard_slab(s, page);
2793 list_move(&page->lru,
2794 slabs_by_inuse + page->inuse);
2799 * Rebuild the partial list with the slabs filled up most
2800 * first and the least used slabs at the end.
2802 for (i = objects - 1; i >= 0; i--)
2803 list_splice(slabs_by_inuse + i, n->partial.prev);
2805 spin_unlock_irqrestore(&n->list_lock, flags);
2808 kfree(slabs_by_inuse);
2811 EXPORT_SYMBOL(kmem_cache_shrink);
2813 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2814 static int slab_mem_going_offline_callback(void *arg)
2816 struct kmem_cache *s;
2818 down_read(&slub_lock);
2819 list_for_each_entry(s, &slab_caches, list)
2820 kmem_cache_shrink(s);
2821 up_read(&slub_lock);
2826 static void slab_mem_offline_callback(void *arg)
2828 struct kmem_cache_node *n;
2829 struct kmem_cache *s;
2830 struct memory_notify *marg = arg;
2833 offline_node = marg->status_change_nid;
2836 * If the node still has available memory. we need kmem_cache_node
2839 if (offline_node < 0)
2842 down_read(&slub_lock);
2843 list_for_each_entry(s, &slab_caches, list) {
2844 n = get_node(s, offline_node);
2847 * if n->nr_slabs > 0, slabs still exist on the node
2848 * that is going down. We were unable to free them,
2849 * and offline_pages() function shoudn't call this
2850 * callback. So, we must fail.
2852 BUG_ON(slabs_node(s, offline_node));
2854 s->node[offline_node] = NULL;
2855 kmem_cache_free(kmalloc_caches, n);
2858 up_read(&slub_lock);
2861 static int slab_mem_going_online_callback(void *arg)
2863 struct kmem_cache_node *n;
2864 struct kmem_cache *s;
2865 struct memory_notify *marg = arg;
2866 int nid = marg->status_change_nid;
2870 * If the node's memory is already available, then kmem_cache_node is
2871 * already created. Nothing to do.
2877 * We are bringing a node online. No memory is available yet. We must
2878 * allocate a kmem_cache_node structure in order to bring the node
2881 down_read(&slub_lock);
2882 list_for_each_entry(s, &slab_caches, list) {
2884 * XXX: kmem_cache_alloc_node will fallback to other nodes
2885 * since memory is not yet available from the node that
2888 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2893 init_kmem_cache_node(n);
2897 up_read(&slub_lock);
2901 static int slab_memory_callback(struct notifier_block *self,
2902 unsigned long action, void *arg)
2907 case MEM_GOING_ONLINE:
2908 ret = slab_mem_going_online_callback(arg);
2910 case MEM_GOING_OFFLINE:
2911 ret = slab_mem_going_offline_callback(arg);
2914 case MEM_CANCEL_ONLINE:
2915 slab_mem_offline_callback(arg);
2918 case MEM_CANCEL_OFFLINE:
2922 ret = notifier_from_errno(ret);
2926 #endif /* CONFIG_MEMORY_HOTPLUG */
2928 /********************************************************************
2929 * Basic setup of slabs
2930 *******************************************************************/
2932 void __init kmem_cache_init(void)
2941 * Must first have the slab cache available for the allocations of the
2942 * struct kmem_cache_node's. There is special bootstrap code in
2943 * kmem_cache_open for slab_state == DOWN.
2945 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2946 sizeof(struct kmem_cache_node), GFP_KERNEL);
2947 kmalloc_caches[0].refcount = -1;
2950 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2953 /* Able to allocate the per node structures */
2954 slab_state = PARTIAL;
2956 /* Caches that are not of the two-to-the-power-of size */
2957 if (KMALLOC_MIN_SIZE <= 64) {
2958 create_kmalloc_cache(&kmalloc_caches[1],
2959 "kmalloc-96", 96, GFP_KERNEL);
2961 create_kmalloc_cache(&kmalloc_caches[2],
2962 "kmalloc-192", 192, GFP_KERNEL);
2966 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2967 create_kmalloc_cache(&kmalloc_caches[i],
2968 "kmalloc", 1 << i, GFP_KERNEL);
2974 * Patch up the size_index table if we have strange large alignment
2975 * requirements for the kmalloc array. This is only the case for
2976 * MIPS it seems. The standard arches will not generate any code here.
2978 * Largest permitted alignment is 256 bytes due to the way we
2979 * handle the index determination for the smaller caches.
2981 * Make sure that nothing crazy happens if someone starts tinkering
2982 * around with ARCH_KMALLOC_MINALIGN
2984 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2985 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2987 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2988 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2990 if (KMALLOC_MIN_SIZE == 128) {
2992 * The 192 byte sized cache is not used if the alignment
2993 * is 128 byte. Redirect kmalloc to use the 256 byte cache
2996 for (i = 128 + 8; i <= 192; i += 8)
2997 size_index[(i - 1) / 8] = 8;
3002 /* Provide the correct kmalloc names now that the caches are up */
3003 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3004 kmalloc_caches[i]. name =
3005 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3008 register_cpu_notifier(&slab_notifier);
3009 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3010 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3012 kmem_size = sizeof(struct kmem_cache);
3016 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3017 " CPUs=%d, Nodes=%d\n",
3018 caches, cache_line_size(),
3019 slub_min_order, slub_max_order, slub_min_objects,
3020 nr_cpu_ids, nr_node_ids);
3024 * Find a mergeable slab cache
3026 static int slab_unmergeable(struct kmem_cache *s)
3028 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3035 * We may have set a slab to be unmergeable during bootstrap.
3037 if (s->refcount < 0)
3043 static struct kmem_cache *find_mergeable(size_t size,
3044 size_t align, unsigned long flags, const char *name,
3045 void (*ctor)(struct kmem_cache *, void *))
3047 struct kmem_cache *s;
3049 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3055 size = ALIGN(size, sizeof(void *));
3056 align = calculate_alignment(flags, align, size);
3057 size = ALIGN(size, align);
3058 flags = kmem_cache_flags(size, flags, name, NULL);
3060 list_for_each_entry(s, &slab_caches, list) {
3061 if (slab_unmergeable(s))
3067 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3070 * Check if alignment is compatible.
3071 * Courtesy of Adrian Drzewiecki
3073 if ((s->size & ~(align - 1)) != s->size)
3076 if (s->size - size >= sizeof(void *))
3084 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3085 size_t align, unsigned long flags,
3086 void (*ctor)(struct kmem_cache *, void *))
3088 struct kmem_cache *s;
3090 down_write(&slub_lock);
3091 s = find_mergeable(size, align, flags, name, ctor);
3097 * Adjust the object sizes so that we clear
3098 * the complete object on kzalloc.
3100 s->objsize = max(s->objsize, (int)size);
3103 * And then we need to update the object size in the
3104 * per cpu structures
3106 for_each_online_cpu(cpu)
3107 get_cpu_slab(s, cpu)->objsize = s->objsize;
3109 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3110 up_write(&slub_lock);
3112 if (sysfs_slab_alias(s, name))
3117 s = kmalloc(kmem_size, GFP_KERNEL);
3119 if (kmem_cache_open(s, GFP_KERNEL, name,
3120 size, align, flags, ctor)) {
3121 list_add(&s->list, &slab_caches);
3122 up_write(&slub_lock);
3123 if (sysfs_slab_add(s))
3129 up_write(&slub_lock);
3132 if (flags & SLAB_PANIC)
3133 panic("Cannot create slabcache %s\n", name);
3138 EXPORT_SYMBOL(kmem_cache_create);
3142 * Use the cpu notifier to insure that the cpu slabs are flushed when
3145 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3146 unsigned long action, void *hcpu)
3148 long cpu = (long)hcpu;
3149 struct kmem_cache *s;
3150 unsigned long flags;
3153 case CPU_UP_PREPARE:
3154 case CPU_UP_PREPARE_FROZEN:
3155 init_alloc_cpu_cpu(cpu);
3156 down_read(&slub_lock);
3157 list_for_each_entry(s, &slab_caches, list)
3158 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3160 up_read(&slub_lock);
3163 case CPU_UP_CANCELED:
3164 case CPU_UP_CANCELED_FROZEN:
3166 case CPU_DEAD_FROZEN:
3167 down_read(&slub_lock);
3168 list_for_each_entry(s, &slab_caches, list) {
3169 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3171 local_irq_save(flags);
3172 __flush_cpu_slab(s, cpu);
3173 local_irq_restore(flags);
3174 free_kmem_cache_cpu(c, cpu);
3175 s->cpu_slab[cpu] = NULL;
3177 up_read(&slub_lock);
3185 static struct notifier_block __cpuinitdata slab_notifier = {
3186 .notifier_call = slab_cpuup_callback
3191 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3193 struct kmem_cache *s;
3195 if (unlikely(size > PAGE_SIZE))
3196 return kmalloc_large(size, gfpflags);
3198 s = get_slab(size, gfpflags);
3200 if (unlikely(ZERO_OR_NULL_PTR(s)))
3203 return slab_alloc(s, gfpflags, -1, caller);
3206 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3207 int node, void *caller)
3209 struct kmem_cache *s;
3211 if (unlikely(size > PAGE_SIZE))
3212 return kmalloc_large_node(size, gfpflags, node);
3214 s = get_slab(size, gfpflags);
3216 if (unlikely(ZERO_OR_NULL_PTR(s)))
3219 return slab_alloc(s, gfpflags, node, caller);
3222 #ifdef CONFIG_SLUB_DEBUG
3223 static unsigned long count_partial(struct kmem_cache_node *n,
3224 int (*get_count)(struct page *))
3226 unsigned long flags;
3227 unsigned long x = 0;
3230 spin_lock_irqsave(&n->list_lock, flags);
3231 list_for_each_entry(page, &n->partial, lru)
3232 x += get_count(page);
3233 spin_unlock_irqrestore(&n->list_lock, flags);
3237 static int count_inuse(struct page *page)
3242 static int count_total(struct page *page)
3244 return page->objects;
3247 static int count_free(struct page *page)
3249 return page->objects - page->inuse;
3252 static int validate_slab(struct kmem_cache *s, struct page *page,
3256 void *addr = page_address(page);
3258 if (!check_slab(s, page) ||
3259 !on_freelist(s, page, NULL))
3262 /* Now we know that a valid freelist exists */
3263 bitmap_zero(map, page->objects);
3265 for_each_free_object(p, s, page->freelist) {
3266 set_bit(slab_index(p, s, addr), map);
3267 if (!check_object(s, page, p, 0))
3271 for_each_object(p, s, addr, page->objects)
3272 if (!test_bit(slab_index(p, s, addr), map))
3273 if (!check_object(s, page, p, 1))
3278 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3281 if (slab_trylock(page)) {
3282 validate_slab(s, page, map);
3285 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3288 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3289 if (!PageSlubDebug(page))
3290 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3291 "on slab 0x%p\n", s->name, page);
3293 if (PageSlubDebug(page))
3294 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3295 "slab 0x%p\n", s->name, page);
3299 static int validate_slab_node(struct kmem_cache *s,
3300 struct kmem_cache_node *n, unsigned long *map)
3302 unsigned long count = 0;
3304 unsigned long flags;
3306 spin_lock_irqsave(&n->list_lock, flags);
3308 list_for_each_entry(page, &n->partial, lru) {
3309 validate_slab_slab(s, page, map);
3312 if (count != n->nr_partial)
3313 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3314 "counter=%ld\n", s->name, count, n->nr_partial);
3316 if (!(s->flags & SLAB_STORE_USER))
3319 list_for_each_entry(page, &n->full, lru) {
3320 validate_slab_slab(s, page, map);
3323 if (count != atomic_long_read(&n->nr_slabs))
3324 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3325 "counter=%ld\n", s->name, count,
3326 atomic_long_read(&n->nr_slabs));
3329 spin_unlock_irqrestore(&n->list_lock, flags);
3333 static long validate_slab_cache(struct kmem_cache *s)
3336 unsigned long count = 0;
3337 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3338 sizeof(unsigned long), GFP_KERNEL);
3344 for_each_node_state(node, N_NORMAL_MEMORY) {
3345 struct kmem_cache_node *n = get_node(s, node);
3347 count += validate_slab_node(s, n, map);
3353 #ifdef SLUB_RESILIENCY_TEST
3354 static void resiliency_test(void)
3358 printk(KERN_ERR "SLUB resiliency testing\n");
3359 printk(KERN_ERR "-----------------------\n");
3360 printk(KERN_ERR "A. Corruption after allocation\n");
3362 p = kzalloc(16, GFP_KERNEL);
3364 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3365 " 0x12->0x%p\n\n", p + 16);
3367 validate_slab_cache(kmalloc_caches + 4);
3369 /* Hmmm... The next two are dangerous */
3370 p = kzalloc(32, GFP_KERNEL);
3371 p[32 + sizeof(void *)] = 0x34;
3372 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3373 " 0x34 -> -0x%p\n", p);
3375 "If allocated object is overwritten then not detectable\n\n");
3377 validate_slab_cache(kmalloc_caches + 5);
3378 p = kzalloc(64, GFP_KERNEL);
3379 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3381 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3384 "If allocated object is overwritten then not detectable\n\n");
3385 validate_slab_cache(kmalloc_caches + 6);
3387 printk(KERN_ERR "\nB. Corruption after free\n");
3388 p = kzalloc(128, GFP_KERNEL);
3391 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3392 validate_slab_cache(kmalloc_caches + 7);
3394 p = kzalloc(256, GFP_KERNEL);
3397 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3399 validate_slab_cache(kmalloc_caches + 8);
3401 p = kzalloc(512, GFP_KERNEL);
3404 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3405 validate_slab_cache(kmalloc_caches + 9);
3408 static void resiliency_test(void) {};
3412 * Generate lists of code addresses where slabcache objects are allocated
3417 unsigned long count;
3430 unsigned long count;
3431 struct location *loc;
3434 static void free_loc_track(struct loc_track *t)
3437 free_pages((unsigned long)t->loc,
3438 get_order(sizeof(struct location) * t->max));
3441 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3446 order = get_order(sizeof(struct location) * max);
3448 l = (void *)__get_free_pages(flags, order);
3453 memcpy(l, t->loc, sizeof(struct location) * t->count);
3461 static int add_location(struct loc_track *t, struct kmem_cache *s,
3462 const struct track *track)
3464 long start, end, pos;
3467 unsigned long age = jiffies - track->when;
3473 pos = start + (end - start + 1) / 2;
3476 * There is nothing at "end". If we end up there
3477 * we need to add something to before end.
3482 caddr = t->loc[pos].addr;
3483 if (track->addr == caddr) {
3489 if (age < l->min_time)
3491 if (age > l->max_time)
3494 if (track->pid < l->min_pid)
3495 l->min_pid = track->pid;
3496 if (track->pid > l->max_pid)
3497 l->max_pid = track->pid;
3499 cpu_set(track->cpu, l->cpus);
3501 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3505 if (track->addr < caddr)
3512 * Not found. Insert new tracking element.
3514 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3520 (t->count - pos) * sizeof(struct location));
3523 l->addr = track->addr;
3527 l->min_pid = track->pid;
3528 l->max_pid = track->pid;
3529 cpus_clear(l->cpus);
3530 cpu_set(track->cpu, l->cpus);
3531 nodes_clear(l->nodes);
3532 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3536 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3537 struct page *page, enum track_item alloc)
3539 void *addr = page_address(page);
3540 DECLARE_BITMAP(map, page->objects);
3543 bitmap_zero(map, page->objects);
3544 for_each_free_object(p, s, page->freelist)
3545 set_bit(slab_index(p, s, addr), map);
3547 for_each_object(p, s, addr, page->objects)
3548 if (!test_bit(slab_index(p, s, addr), map))
3549 add_location(t, s, get_track(s, p, alloc));
3552 static int list_locations(struct kmem_cache *s, char *buf,
3553 enum track_item alloc)
3557 struct loc_track t = { 0, 0, NULL };
3560 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3562 return sprintf(buf, "Out of memory\n");
3564 /* Push back cpu slabs */
3567 for_each_node_state(node, N_NORMAL_MEMORY) {
3568 struct kmem_cache_node *n = get_node(s, node);
3569 unsigned long flags;
3572 if (!atomic_long_read(&n->nr_slabs))
3575 spin_lock_irqsave(&n->list_lock, flags);
3576 list_for_each_entry(page, &n->partial, lru)
3577 process_slab(&t, s, page, alloc);
3578 list_for_each_entry(page, &n->full, lru)
3579 process_slab(&t, s, page, alloc);
3580 spin_unlock_irqrestore(&n->list_lock, flags);
3583 for (i = 0; i < t.count; i++) {
3584 struct location *l = &t.loc[i];
3586 if (len > PAGE_SIZE - 100)
3588 len += sprintf(buf + len, "%7ld ", l->count);
3591 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3593 len += sprintf(buf + len, "<not-available>");
3595 if (l->sum_time != l->min_time) {
3596 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3598 (long)div_u64(l->sum_time, l->count),
3601 len += sprintf(buf + len, " age=%ld",
3604 if (l->min_pid != l->max_pid)
3605 len += sprintf(buf + len, " pid=%ld-%ld",
3606 l->min_pid, l->max_pid);
3608 len += sprintf(buf + len, " pid=%ld",
3611 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3612 len < PAGE_SIZE - 60) {
3613 len += sprintf(buf + len, " cpus=");
3614 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3618 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3619 len < PAGE_SIZE - 60) {
3620 len += sprintf(buf + len, " nodes=");
3621 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3625 len += sprintf(buf + len, "\n");
3630 len += sprintf(buf, "No data\n");
3634 enum slab_stat_type {
3635 SL_ALL, /* All slabs */
3636 SL_PARTIAL, /* Only partially allocated slabs */
3637 SL_CPU, /* Only slabs used for cpu caches */
3638 SL_OBJECTS, /* Determine allocated objects not slabs */
3639 SL_TOTAL /* Determine object capacity not slabs */
3642 #define SO_ALL (1 << SL_ALL)
3643 #define SO_PARTIAL (1 << SL_PARTIAL)
3644 #define SO_CPU (1 << SL_CPU)
3645 #define SO_OBJECTS (1 << SL_OBJECTS)
3646 #define SO_TOTAL (1 << SL_TOTAL)
3648 static ssize_t show_slab_objects(struct kmem_cache *s,
3649 char *buf, unsigned long flags)
3651 unsigned long total = 0;
3654 unsigned long *nodes;
3655 unsigned long *per_cpu;
3657 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3660 per_cpu = nodes + nr_node_ids;
3662 if (flags & SO_CPU) {
3665 for_each_possible_cpu(cpu) {
3666 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3668 if (!c || c->node < 0)
3672 if (flags & SO_TOTAL)
3673 x = c->page->objects;
3674 else if (flags & SO_OBJECTS)
3680 nodes[c->node] += x;
3686 if (flags & SO_ALL) {
3687 for_each_node_state(node, N_NORMAL_MEMORY) {
3688 struct kmem_cache_node *n = get_node(s, node);
3690 if (flags & SO_TOTAL)
3691 x = atomic_long_read(&n->total_objects);
3692 else if (flags & SO_OBJECTS)
3693 x = atomic_long_read(&n->total_objects) -
3694 count_partial(n, count_free);
3697 x = atomic_long_read(&n->nr_slabs);
3702 } else if (flags & SO_PARTIAL) {
3703 for_each_node_state(node, N_NORMAL_MEMORY) {
3704 struct kmem_cache_node *n = get_node(s, node);
3706 if (flags & SO_TOTAL)
3707 x = count_partial(n, count_total);
3708 else if (flags & SO_OBJECTS)
3709 x = count_partial(n, count_inuse);
3716 x = sprintf(buf, "%lu", total);
3718 for_each_node_state(node, N_NORMAL_MEMORY)
3720 x += sprintf(buf + x, " N%d=%lu",
3724 return x + sprintf(buf + x, "\n");
3727 static int any_slab_objects(struct kmem_cache *s)
3731 for_each_online_node(node) {
3732 struct kmem_cache_node *n = get_node(s, node);
3737 if (atomic_long_read(&n->total_objects))
3743 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3744 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3746 struct slab_attribute {
3747 struct attribute attr;
3748 ssize_t (*show)(struct kmem_cache *s, char *buf);
3749 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3752 #define SLAB_ATTR_RO(_name) \
3753 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3755 #define SLAB_ATTR(_name) \
3756 static struct slab_attribute _name##_attr = \
3757 __ATTR(_name, 0644, _name##_show, _name##_store)
3759 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3761 return sprintf(buf, "%d\n", s->size);
3763 SLAB_ATTR_RO(slab_size);
3765 static ssize_t align_show(struct kmem_cache *s, char *buf)
3767 return sprintf(buf, "%d\n", s->align);
3769 SLAB_ATTR_RO(align);
3771 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3773 return sprintf(buf, "%d\n", s->objsize);
3775 SLAB_ATTR_RO(object_size);
3777 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3779 return sprintf(buf, "%d\n", oo_objects(s->oo));
3781 SLAB_ATTR_RO(objs_per_slab);
3783 static ssize_t order_store(struct kmem_cache *s,
3784 const char *buf, size_t length)
3786 unsigned long order;
3789 err = strict_strtoul(buf, 10, &order);
3793 if (order > slub_max_order || order < slub_min_order)
3796 calculate_sizes(s, order);
3800 static ssize_t order_show(struct kmem_cache *s, char *buf)
3802 return sprintf(buf, "%d\n", oo_order(s->oo));
3806 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3809 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3811 return n + sprintf(buf + n, "\n");
3817 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3819 return sprintf(buf, "%d\n", s->refcount - 1);
3821 SLAB_ATTR_RO(aliases);
3823 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3825 return show_slab_objects(s, buf, SO_ALL);
3827 SLAB_ATTR_RO(slabs);
3829 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3831 return show_slab_objects(s, buf, SO_PARTIAL);
3833 SLAB_ATTR_RO(partial);
3835 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3837 return show_slab_objects(s, buf, SO_CPU);
3839 SLAB_ATTR_RO(cpu_slabs);
3841 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3843 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3845 SLAB_ATTR_RO(objects);
3847 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3849 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3851 SLAB_ATTR_RO(objects_partial);
3853 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3855 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3857 SLAB_ATTR_RO(total_objects);
3859 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3861 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3864 static ssize_t sanity_checks_store(struct kmem_cache *s,
3865 const char *buf, size_t length)
3867 s->flags &= ~SLAB_DEBUG_FREE;
3869 s->flags |= SLAB_DEBUG_FREE;
3872 SLAB_ATTR(sanity_checks);
3874 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3876 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3879 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3882 s->flags &= ~SLAB_TRACE;
3884 s->flags |= SLAB_TRACE;
3889 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3891 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3894 static ssize_t reclaim_account_store(struct kmem_cache *s,
3895 const char *buf, size_t length)
3897 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3899 s->flags |= SLAB_RECLAIM_ACCOUNT;
3902 SLAB_ATTR(reclaim_account);
3904 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3906 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3908 SLAB_ATTR_RO(hwcache_align);
3910 #ifdef CONFIG_ZONE_DMA
3911 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3913 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3915 SLAB_ATTR_RO(cache_dma);
3918 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3920 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3922 SLAB_ATTR_RO(destroy_by_rcu);
3924 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3926 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3929 static ssize_t red_zone_store(struct kmem_cache *s,
3930 const char *buf, size_t length)
3932 if (any_slab_objects(s))
3935 s->flags &= ~SLAB_RED_ZONE;
3937 s->flags |= SLAB_RED_ZONE;
3938 calculate_sizes(s, -1);
3941 SLAB_ATTR(red_zone);
3943 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3945 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3948 static ssize_t poison_store(struct kmem_cache *s,
3949 const char *buf, size_t length)
3951 if (any_slab_objects(s))
3954 s->flags &= ~SLAB_POISON;
3956 s->flags |= SLAB_POISON;
3957 calculate_sizes(s, -1);
3962 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3964 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3967 static ssize_t store_user_store(struct kmem_cache *s,
3968 const char *buf, size_t length)
3970 if (any_slab_objects(s))
3973 s->flags &= ~SLAB_STORE_USER;
3975 s->flags |= SLAB_STORE_USER;
3976 calculate_sizes(s, -1);
3979 SLAB_ATTR(store_user);
3981 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3986 static ssize_t validate_store(struct kmem_cache *s,
3987 const char *buf, size_t length)
3991 if (buf[0] == '1') {
3992 ret = validate_slab_cache(s);
3998 SLAB_ATTR(validate);
4000 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4005 static ssize_t shrink_store(struct kmem_cache *s,
4006 const char *buf, size_t length)
4008 if (buf[0] == '1') {
4009 int rc = kmem_cache_shrink(s);
4019 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4021 if (!(s->flags & SLAB_STORE_USER))
4023 return list_locations(s, buf, TRACK_ALLOC);
4025 SLAB_ATTR_RO(alloc_calls);
4027 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4029 if (!(s->flags & SLAB_STORE_USER))
4031 return list_locations(s, buf, TRACK_FREE);
4033 SLAB_ATTR_RO(free_calls);
4036 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4038 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4041 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4042 const char *buf, size_t length)
4044 unsigned long ratio;
4047 err = strict_strtoul(buf, 10, &ratio);
4052 s->remote_node_defrag_ratio = ratio * 10;
4056 SLAB_ATTR(remote_node_defrag_ratio);
4059 #ifdef CONFIG_SLUB_STATS
4060 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4062 unsigned long sum = 0;
4065 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4070 for_each_online_cpu(cpu) {
4071 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4077 len = sprintf(buf, "%lu", sum);
4080 for_each_online_cpu(cpu) {
4081 if (data[cpu] && len < PAGE_SIZE - 20)
4082 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4086 return len + sprintf(buf + len, "\n");
4089 #define STAT_ATTR(si, text) \
4090 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4092 return show_stat(s, buf, si); \
4094 SLAB_ATTR_RO(text); \
4096 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4097 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4098 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4099 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4100 STAT_ATTR(FREE_FROZEN, free_frozen);
4101 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4102 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4103 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4104 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4105 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4106 STAT_ATTR(FREE_SLAB, free_slab);
4107 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4108 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4109 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4110 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4111 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4112 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4113 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4116 static struct attribute *slab_attrs[] = {
4117 &slab_size_attr.attr,
4118 &object_size_attr.attr,
4119 &objs_per_slab_attr.attr,
4122 &objects_partial_attr.attr,
4123 &total_objects_attr.attr,
4126 &cpu_slabs_attr.attr,
4130 &sanity_checks_attr.attr,
4132 &hwcache_align_attr.attr,
4133 &reclaim_account_attr.attr,
4134 &destroy_by_rcu_attr.attr,
4135 &red_zone_attr.attr,
4137 &store_user_attr.attr,
4138 &validate_attr.attr,
4140 &alloc_calls_attr.attr,
4141 &free_calls_attr.attr,
4142 #ifdef CONFIG_ZONE_DMA
4143 &cache_dma_attr.attr,
4146 &remote_node_defrag_ratio_attr.attr,
4148 #ifdef CONFIG_SLUB_STATS
4149 &alloc_fastpath_attr.attr,
4150 &alloc_slowpath_attr.attr,
4151 &free_fastpath_attr.attr,
4152 &free_slowpath_attr.attr,
4153 &free_frozen_attr.attr,
4154 &free_add_partial_attr.attr,
4155 &free_remove_partial_attr.attr,
4156 &alloc_from_partial_attr.attr,
4157 &alloc_slab_attr.attr,
4158 &alloc_refill_attr.attr,
4159 &free_slab_attr.attr,
4160 &cpuslab_flush_attr.attr,
4161 &deactivate_full_attr.attr,
4162 &deactivate_empty_attr.attr,
4163 &deactivate_to_head_attr.attr,
4164 &deactivate_to_tail_attr.attr,
4165 &deactivate_remote_frees_attr.attr,
4166 &order_fallback_attr.attr,
4171 static struct attribute_group slab_attr_group = {
4172 .attrs = slab_attrs,
4175 static ssize_t slab_attr_show(struct kobject *kobj,
4176 struct attribute *attr,
4179 struct slab_attribute *attribute;
4180 struct kmem_cache *s;
4183 attribute = to_slab_attr(attr);
4186 if (!attribute->show)
4189 err = attribute->show(s, buf);
4194 static ssize_t slab_attr_store(struct kobject *kobj,
4195 struct attribute *attr,
4196 const char *buf, size_t len)
4198 struct slab_attribute *attribute;
4199 struct kmem_cache *s;
4202 attribute = to_slab_attr(attr);
4205 if (!attribute->store)
4208 err = attribute->store(s, buf, len);
4213 static void kmem_cache_release(struct kobject *kobj)
4215 struct kmem_cache *s = to_slab(kobj);
4220 static struct sysfs_ops slab_sysfs_ops = {
4221 .show = slab_attr_show,
4222 .store = slab_attr_store,
4225 static struct kobj_type slab_ktype = {
4226 .sysfs_ops = &slab_sysfs_ops,
4227 .release = kmem_cache_release
4230 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4232 struct kobj_type *ktype = get_ktype(kobj);
4234 if (ktype == &slab_ktype)
4239 static struct kset_uevent_ops slab_uevent_ops = {
4240 .filter = uevent_filter,
4243 static struct kset *slab_kset;
4245 #define ID_STR_LENGTH 64
4247 /* Create a unique string id for a slab cache:
4249 * Format :[flags-]size
4251 static char *create_unique_id(struct kmem_cache *s)
4253 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4260 * First flags affecting slabcache operations. We will only
4261 * get here for aliasable slabs so we do not need to support
4262 * too many flags. The flags here must cover all flags that
4263 * are matched during merging to guarantee that the id is
4266 if (s->flags & SLAB_CACHE_DMA)
4268 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4270 if (s->flags & SLAB_DEBUG_FREE)
4274 p += sprintf(p, "%07d", s->size);
4275 BUG_ON(p > name + ID_STR_LENGTH - 1);
4279 static int sysfs_slab_add(struct kmem_cache *s)
4285 if (slab_state < SYSFS)
4286 /* Defer until later */
4289 unmergeable = slab_unmergeable(s);
4292 * Slabcache can never be merged so we can use the name proper.
4293 * This is typically the case for debug situations. In that
4294 * case we can catch duplicate names easily.
4296 sysfs_remove_link(&slab_kset->kobj, s->name);
4300 * Create a unique name for the slab as a target
4303 name = create_unique_id(s);
4306 s->kobj.kset = slab_kset;
4307 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4309 kobject_put(&s->kobj);
4313 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4316 kobject_uevent(&s->kobj, KOBJ_ADD);
4318 /* Setup first alias */
4319 sysfs_slab_alias(s, s->name);
4325 static void sysfs_slab_remove(struct kmem_cache *s)
4327 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4328 kobject_del(&s->kobj);
4329 kobject_put(&s->kobj);
4333 * Need to buffer aliases during bootup until sysfs becomes
4334 * available lest we loose that information.
4336 struct saved_alias {
4337 struct kmem_cache *s;
4339 struct saved_alias *next;
4342 static struct saved_alias *alias_list;
4344 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4346 struct saved_alias *al;
4348 if (slab_state == SYSFS) {
4350 * If we have a leftover link then remove it.
4352 sysfs_remove_link(&slab_kset->kobj, name);
4353 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4356 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4362 al->next = alias_list;
4367 static int __init slab_sysfs_init(void)
4369 struct kmem_cache *s;
4372 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4374 printk(KERN_ERR "Cannot register slab subsystem.\n");
4380 list_for_each_entry(s, &slab_caches, list) {
4381 err = sysfs_slab_add(s);
4383 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4384 " to sysfs\n", s->name);
4387 while (alias_list) {
4388 struct saved_alias *al = alias_list;
4390 alias_list = alias_list->next;
4391 err = sysfs_slab_alias(al->s, al->name);
4393 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4394 " %s to sysfs\n", s->name);
4402 __initcall(slab_sysfs_init);
4406 * The /proc/slabinfo ABI
4408 #ifdef CONFIG_SLABINFO
4410 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4411 size_t count, loff_t *ppos)
4417 static void print_slabinfo_header(struct seq_file *m)
4419 seq_puts(m, "slabinfo - version: 2.1\n");
4420 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4421 "<objperslab> <pagesperslab>");
4422 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4423 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4427 static void *s_start(struct seq_file *m, loff_t *pos)
4431 down_read(&slub_lock);
4433 print_slabinfo_header(m);
4435 return seq_list_start(&slab_caches, *pos);
4438 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4440 return seq_list_next(p, &slab_caches, pos);
4443 static void s_stop(struct seq_file *m, void *p)
4445 up_read(&slub_lock);
4448 static int s_show(struct seq_file *m, void *p)
4450 unsigned long nr_partials = 0;
4451 unsigned long nr_slabs = 0;
4452 unsigned long nr_inuse = 0;
4453 unsigned long nr_objs = 0;
4454 unsigned long nr_free = 0;
4455 struct kmem_cache *s;
4458 s = list_entry(p, struct kmem_cache, list);
4460 for_each_online_node(node) {
4461 struct kmem_cache_node *n = get_node(s, node);
4466 nr_partials += n->nr_partial;
4467 nr_slabs += atomic_long_read(&n->nr_slabs);
4468 nr_objs += atomic_long_read(&n->total_objects);
4469 nr_free += count_partial(n, count_free);
4472 nr_inuse = nr_objs - nr_free;
4474 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4475 nr_objs, s->size, oo_objects(s->oo),
4476 (1 << oo_order(s->oo)));
4477 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4478 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4484 const struct seq_operations slabinfo_op = {
4491 #endif /* CONFIG_SLABINFO */