2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
21 #include <linux/sched.h>
23 #include <linux/file.h>
25 #include <linux/mman.h>
26 #include <linux/slab.h>
27 #include <linux/timer.h>
28 #include <linux/aio.h>
29 #include <linux/highmem.h>
30 #include <linux/workqueue.h>
31 #include <linux/security.h>
32 #include <linux/rcuref.h>
34 #include <asm/kmap_types.h>
35 #include <asm/uaccess.h>
36 #include <asm/mmu_context.h>
39 #define dprintk printk
41 #define dprintk(x...) do { ; } while (0)
44 /*------ sysctl variables----*/
45 atomic_t aio_nr = ATOMIC_INIT(0); /* current system wide number of aio requests */
46 unsigned aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
47 /*----end sysctl variables---*/
49 static kmem_cache_t *kiocb_cachep;
50 static kmem_cache_t *kioctx_cachep;
52 static struct workqueue_struct *aio_wq;
54 /* Used for rare fput completion. */
55 static void aio_fput_routine(void *);
56 static DECLARE_WORK(fput_work, aio_fput_routine, NULL);
58 static DEFINE_SPINLOCK(fput_lock);
59 static LIST_HEAD(fput_head);
61 static void aio_kick_handler(void *);
62 static void aio_queue_work(struct kioctx *);
65 * Creates the slab caches used by the aio routines, panic on
66 * failure as this is done early during the boot sequence.
68 static int __init aio_setup(void)
70 kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb),
71 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
72 kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx),
73 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
75 aio_wq = create_workqueue("aio");
77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
82 static void aio_free_ring(struct kioctx *ctx)
84 struct aio_ring_info *info = &ctx->ring_info;
87 for (i=0; i<info->nr_pages; i++)
88 put_page(info->ring_pages[i]);
90 if (info->mmap_size) {
91 down_write(&ctx->mm->mmap_sem);
92 do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
93 up_write(&ctx->mm->mmap_sem);
96 if (info->ring_pages && info->ring_pages != info->internal_pages)
97 kfree(info->ring_pages);
98 info->ring_pages = NULL;
102 static int aio_setup_ring(struct kioctx *ctx)
104 struct aio_ring *ring;
105 struct aio_ring_info *info = &ctx->ring_info;
106 unsigned nr_events = ctx->max_reqs;
110 /* Compensate for the ring buffer's head/tail overlap entry */
111 nr_events += 2; /* 1 is required, 2 for good luck */
113 size = sizeof(struct aio_ring);
114 size += sizeof(struct io_event) * nr_events;
115 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
120 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
123 info->ring_pages = info->internal_pages;
124 if (nr_pages > AIO_RING_PAGES) {
125 info->ring_pages = kmalloc(sizeof(struct page *) * nr_pages, GFP_KERNEL);
126 if (!info->ring_pages)
128 memset(info->ring_pages, 0, sizeof(struct page *) * nr_pages);
131 info->mmap_size = nr_pages * PAGE_SIZE;
132 dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
133 down_write(&ctx->mm->mmap_sem);
134 info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
135 PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
137 if (IS_ERR((void *)info->mmap_base)) {
138 up_write(&ctx->mm->mmap_sem);
139 printk("mmap err: %ld\n", -info->mmap_base);
145 dprintk("mmap address: 0x%08lx\n", info->mmap_base);
146 info->nr_pages = get_user_pages(current, ctx->mm,
147 info->mmap_base, nr_pages,
148 1, 0, info->ring_pages, NULL);
149 up_write(&ctx->mm->mmap_sem);
151 if (unlikely(info->nr_pages != nr_pages)) {
156 ctx->user_id = info->mmap_base;
158 info->nr = nr_events; /* trusted copy */
160 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
161 ring->nr = nr_events; /* user copy */
162 ring->id = ctx->user_id;
163 ring->head = ring->tail = 0;
164 ring->magic = AIO_RING_MAGIC;
165 ring->compat_features = AIO_RING_COMPAT_FEATURES;
166 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
167 ring->header_length = sizeof(struct aio_ring);
168 kunmap_atomic(ring, KM_USER0);
174 /* aio_ring_event: returns a pointer to the event at the given index from
175 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
177 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
178 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
179 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
181 #define aio_ring_event(info, nr, km) ({ \
182 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
183 struct io_event *__event; \
184 __event = kmap_atomic( \
185 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
186 __event += pos % AIO_EVENTS_PER_PAGE; \
190 #define put_aio_ring_event(event, km) do { \
191 struct io_event *__event = (event); \
193 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
197 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
199 static struct kioctx *ioctx_alloc(unsigned nr_events)
201 struct mm_struct *mm;
204 /* Prevent overflows */
205 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
206 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
207 pr_debug("ENOMEM: nr_events too high\n");
208 return ERR_PTR(-EINVAL);
211 if (nr_events > aio_max_nr)
212 return ERR_PTR(-EAGAIN);
214 ctx = kmem_cache_alloc(kioctx_cachep, GFP_KERNEL);
216 return ERR_PTR(-ENOMEM);
218 memset(ctx, 0, sizeof(*ctx));
219 ctx->max_reqs = nr_events;
220 mm = ctx->mm = current->mm;
221 atomic_inc(&mm->mm_count);
223 atomic_set(&ctx->users, 1);
224 spin_lock_init(&ctx->ctx_lock);
225 spin_lock_init(&ctx->ring_info.ring_lock);
226 init_waitqueue_head(&ctx->wait);
228 INIT_LIST_HEAD(&ctx->active_reqs);
229 INIT_LIST_HEAD(&ctx->run_list);
230 INIT_WORK(&ctx->wq, aio_kick_handler, ctx);
232 if (aio_setup_ring(ctx) < 0)
235 /* limit the number of system wide aios */
236 atomic_add(ctx->max_reqs, &aio_nr); /* undone by __put_ioctx */
237 if (unlikely(atomic_read(&aio_nr) > aio_max_nr))
240 /* now link into global list. kludge. FIXME */
241 write_lock(&mm->ioctx_list_lock);
242 ctx->next = mm->ioctx_list;
243 mm->ioctx_list = ctx;
244 write_unlock(&mm->ioctx_list_lock);
246 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
247 ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
251 atomic_sub(ctx->max_reqs, &aio_nr);
252 ctx->max_reqs = 0; /* prevent __put_ioctx from sub'ing aio_nr */
254 return ERR_PTR(-EAGAIN);
258 kmem_cache_free(kioctx_cachep, ctx);
259 ctx = ERR_PTR(-ENOMEM);
261 dprintk("aio: error allocating ioctx %p\n", ctx);
266 * Cancels all outstanding aio requests on an aio context. Used
267 * when the processes owning a context have all exited to encourage
268 * the rapid destruction of the kioctx.
270 static void aio_cancel_all(struct kioctx *ctx)
272 int (*cancel)(struct kiocb *, struct io_event *);
274 spin_lock_irq(&ctx->ctx_lock);
276 while (!list_empty(&ctx->active_reqs)) {
277 struct list_head *pos = ctx->active_reqs.next;
278 struct kiocb *iocb = list_kiocb(pos);
279 list_del_init(&iocb->ki_list);
280 cancel = iocb->ki_cancel;
281 kiocbSetCancelled(iocb);
284 spin_unlock_irq(&ctx->ctx_lock);
286 spin_lock_irq(&ctx->ctx_lock);
289 spin_unlock_irq(&ctx->ctx_lock);
292 static void wait_for_all_aios(struct kioctx *ctx)
294 struct task_struct *tsk = current;
295 DECLARE_WAITQUEUE(wait, tsk);
297 if (!ctx->reqs_active)
300 add_wait_queue(&ctx->wait, &wait);
301 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
302 while (ctx->reqs_active) {
304 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
306 __set_task_state(tsk, TASK_RUNNING);
307 remove_wait_queue(&ctx->wait, &wait);
310 /* wait_on_sync_kiocb:
311 * Waits on the given sync kiocb to complete.
313 ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb)
315 while (iocb->ki_users) {
316 set_current_state(TASK_UNINTERRUPTIBLE);
321 __set_current_state(TASK_RUNNING);
322 return iocb->ki_user_data;
325 /* exit_aio: called when the last user of mm goes away. At this point,
326 * there is no way for any new requests to be submited or any of the
327 * io_* syscalls to be called on the context. However, there may be
328 * outstanding requests which hold references to the context; as they
329 * go away, they will call put_ioctx and release any pinned memory
330 * associated with the request (held via struct page * references).
332 void fastcall exit_aio(struct mm_struct *mm)
334 struct kioctx *ctx = mm->ioctx_list;
335 mm->ioctx_list = NULL;
337 struct kioctx *next = ctx->next;
341 wait_for_all_aios(ctx);
343 * this is an overkill, but ensures we don't leave
344 * the ctx on the aio_wq
346 flush_workqueue(aio_wq);
348 if (1 != atomic_read(&ctx->users))
350 "exit_aio:ioctx still alive: %d %d %d\n",
351 atomic_read(&ctx->users), ctx->dead,
359 * Called when the last user of an aio context has gone away,
360 * and the struct needs to be freed.
362 void fastcall __put_ioctx(struct kioctx *ctx)
364 unsigned nr_events = ctx->max_reqs;
366 if (unlikely(ctx->reqs_active))
369 cancel_delayed_work(&ctx->wq);
370 flush_workqueue(aio_wq);
374 pr_debug("__put_ioctx: freeing %p\n", ctx);
375 kmem_cache_free(kioctx_cachep, ctx);
377 atomic_sub(nr_events, &aio_nr);
381 * Allocate a slot for an aio request. Increments the users count
382 * of the kioctx so that the kioctx stays around until all requests are
383 * complete. Returns NULL if no requests are free.
385 * Returns with kiocb->users set to 2. The io submit code path holds
386 * an extra reference while submitting the i/o.
387 * This prevents races between the aio code path referencing the
388 * req (after submitting it) and aio_complete() freeing the req.
390 static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx));
391 static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx)
393 struct kiocb *req = NULL;
394 struct aio_ring *ring;
397 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
405 req->ki_cancel = NULL;
406 req->ki_retry = NULL;
409 INIT_LIST_HEAD(&req->ki_run_list);
411 /* Check if the completion queue has enough free space to
412 * accept an event from this io.
414 spin_lock_irq(&ctx->ctx_lock);
415 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
416 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
417 list_add(&req->ki_list, &ctx->active_reqs);
422 kunmap_atomic(ring, KM_USER0);
423 spin_unlock_irq(&ctx->ctx_lock);
426 kmem_cache_free(kiocb_cachep, req);
433 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
436 /* Handle a potential starvation case -- should be exceedingly rare as
437 * requests will be stuck on fput_head only if the aio_fput_routine is
438 * delayed and the requests were the last user of the struct file.
440 req = __aio_get_req(ctx);
441 if (unlikely(NULL == req)) {
442 aio_fput_routine(NULL);
443 req = __aio_get_req(ctx);
448 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
452 kmem_cache_free(kiocb_cachep, req);
455 if (unlikely(!ctx->reqs_active && ctx->dead))
459 static void aio_fput_routine(void *data)
461 spin_lock_irq(&fput_lock);
462 while (likely(!list_empty(&fput_head))) {
463 struct kiocb *req = list_kiocb(fput_head.next);
464 struct kioctx *ctx = req->ki_ctx;
466 list_del(&req->ki_list);
467 spin_unlock_irq(&fput_lock);
469 /* Complete the fput */
470 __fput(req->ki_filp);
472 /* Link the iocb into the context's free list */
473 spin_lock_irq(&ctx->ctx_lock);
474 really_put_req(ctx, req);
475 spin_unlock_irq(&ctx->ctx_lock);
478 spin_lock_irq(&fput_lock);
480 spin_unlock_irq(&fput_lock);
484 * Returns true if this put was the last user of the request.
486 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
488 dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
489 req, atomic_read(&req->ki_filp->f_count));
492 if (unlikely(req->ki_users < 0))
494 if (likely(req->ki_users))
496 list_del(&req->ki_list); /* remove from active_reqs */
497 req->ki_cancel = NULL;
498 req->ki_retry = NULL;
500 /* Must be done under the lock to serialise against cancellation.
501 * Call this aio_fput as it duplicates fput via the fput_work.
503 if (unlikely(rcuref_dec_and_test(&req->ki_filp->f_count))) {
505 spin_lock(&fput_lock);
506 list_add(&req->ki_list, &fput_head);
507 spin_unlock(&fput_lock);
508 queue_work(aio_wq, &fput_work);
510 really_put_req(ctx, req);
515 * Returns true if this put was the last user of the kiocb,
516 * false if the request is still in use.
518 int fastcall aio_put_req(struct kiocb *req)
520 struct kioctx *ctx = req->ki_ctx;
522 spin_lock_irq(&ctx->ctx_lock);
523 ret = __aio_put_req(ctx, req);
524 spin_unlock_irq(&ctx->ctx_lock);
530 /* Lookup an ioctx id. ioctx_list is lockless for reads.
531 * FIXME: this is O(n) and is only suitable for development.
533 struct kioctx *lookup_ioctx(unsigned long ctx_id)
535 struct kioctx *ioctx;
536 struct mm_struct *mm;
539 read_lock(&mm->ioctx_list_lock);
540 for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
541 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
545 read_unlock(&mm->ioctx_list_lock);
552 * Makes the calling kernel thread take on the specified
554 * Called by the retry thread execute retries within the
555 * iocb issuer's mm context, so that copy_from/to_user
556 * operations work seamlessly for aio.
557 * (Note: this routine is intended to be called only
558 * from a kernel thread context)
560 static void use_mm(struct mm_struct *mm)
562 struct mm_struct *active_mm;
563 struct task_struct *tsk = current;
566 tsk->flags |= PF_BORROWED_MM;
567 active_mm = tsk->active_mm;
568 atomic_inc(&mm->mm_count);
572 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
573 * it won't work. Update it accordingly if you change it here
575 activate_mm(active_mm, mm);
583 * Reverses the effect of use_mm, i.e. releases the
584 * specified mm context which was earlier taken on
585 * by the calling kernel thread
586 * (Note: this routine is intended to be called only
587 * from a kernel thread context)
589 * Comments: Called with ctx->ctx_lock held. This nests
590 * task_lock instead ctx_lock.
592 static void unuse_mm(struct mm_struct *mm)
594 struct task_struct *tsk = current;
597 tsk->flags &= ~PF_BORROWED_MM;
599 /* active_mm is still 'mm' */
600 enter_lazy_tlb(mm, tsk);
605 * Queue up a kiocb to be retried. Assumes that the kiocb
606 * has already been marked as kicked, and places it on
607 * the retry run list for the corresponding ioctx, if it
608 * isn't already queued. Returns 1 if it actually queued
609 * the kiocb (to tell the caller to activate the work
610 * queue to process it), or 0, if it found that it was
613 * Should be called with the spin lock iocb->ki_ctx->ctx_lock
616 static inline int __queue_kicked_iocb(struct kiocb *iocb)
618 struct kioctx *ctx = iocb->ki_ctx;
620 if (list_empty(&iocb->ki_run_list)) {
621 list_add_tail(&iocb->ki_run_list,
629 * This is the core aio execution routine. It is
630 * invoked both for initial i/o submission and
631 * subsequent retries via the aio_kick_handler.
632 * Expects to be invoked with iocb->ki_ctx->lock
633 * already held. The lock is released and reaquired
634 * as needed during processing.
636 * Calls the iocb retry method (already setup for the
637 * iocb on initial submission) for operation specific
638 * handling, but takes care of most of common retry
639 * execution details for a given iocb. The retry method
640 * needs to be non-blocking as far as possible, to avoid
641 * holding up other iocbs waiting to be serviced by the
642 * retry kernel thread.
644 * The trickier parts in this code have to do with
645 * ensuring that only one retry instance is in progress
646 * for a given iocb at any time. Providing that guarantee
647 * simplifies the coding of individual aio operations as
648 * it avoids various potential races.
650 static ssize_t aio_run_iocb(struct kiocb *iocb)
652 struct kioctx *ctx = iocb->ki_ctx;
653 ssize_t (*retry)(struct kiocb *);
656 if (iocb->ki_retried++ > 1024*1024) {
657 printk("Maximal retry count. Bytes done %Zd\n",
658 iocb->ki_nbytes - iocb->ki_left);
662 if (!(iocb->ki_retried & 0xff)) {
663 pr_debug("%ld retry: %d of %d\n", iocb->ki_retried,
664 iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes);
667 if (!(retry = iocb->ki_retry)) {
668 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
673 * We don't want the next retry iteration for this
674 * operation to start until this one has returned and
675 * updated the iocb state. However, wait_queue functions
676 * can trigger a kick_iocb from interrupt context in the
677 * meantime, indicating that data is available for the next
678 * iteration. We want to remember that and enable the
679 * next retry iteration _after_ we are through with
682 * So, in order to be able to register a "kick", but
683 * prevent it from being queued now, we clear the kick
684 * flag, but make the kick code *think* that the iocb is
685 * still on the run list until we are actually done.
686 * When we are done with this iteration, we check if
687 * the iocb was kicked in the meantime and if so, queue
691 kiocbClearKicked(iocb);
694 * This is so that aio_complete knows it doesn't need to
695 * pull the iocb off the run list (We can't just call
696 * INIT_LIST_HEAD because we don't want a kick_iocb to
697 * queue this on the run list yet)
699 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
700 spin_unlock_irq(&ctx->ctx_lock);
702 /* Quit retrying if the i/o has been cancelled */
703 if (kiocbIsCancelled(iocb)) {
705 aio_complete(iocb, ret, 0);
706 /* must not access the iocb after this */
711 * Now we are all set to call the retry method in async
712 * context. By setting this thread's io_wait context
713 * to point to the wait queue entry inside the currently
714 * running iocb for the duration of the retry, we ensure
715 * that async notification wakeups are queued by the
716 * operation instead of blocking waits, and when notified,
717 * cause the iocb to be kicked for continuation (through
718 * the aio_wake_function callback).
720 BUG_ON(current->io_wait != NULL);
721 current->io_wait = &iocb->ki_wait;
723 current->io_wait = NULL;
725 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
726 BUG_ON(!list_empty(&iocb->ki_wait.task_list));
727 aio_complete(iocb, ret, 0);
730 spin_lock_irq(&ctx->ctx_lock);
732 if (-EIOCBRETRY == ret) {
734 * OK, now that we are done with this iteration
735 * and know that there is more left to go,
736 * this is where we let go so that a subsequent
737 * "kick" can start the next iteration
740 /* will make __queue_kicked_iocb succeed from here on */
741 INIT_LIST_HEAD(&iocb->ki_run_list);
742 /* we must queue the next iteration ourselves, if it
743 * has already been kicked */
744 if (kiocbIsKicked(iocb)) {
745 __queue_kicked_iocb(iocb);
748 * __queue_kicked_iocb will always return 1 here, because
749 * iocb->ki_run_list is empty at this point so it should
750 * be safe to unconditionally queue the context into the
761 * Process all pending retries queued on the ioctx
763 * Assumes it is operating within the aio issuer's mm
764 * context. Expects to be called with ctx->ctx_lock held
766 static int __aio_run_iocbs(struct kioctx *ctx)
771 list_splice_init(&ctx->run_list, &run_list);
772 while (!list_empty(&run_list)) {
773 iocb = list_entry(run_list.next, struct kiocb,
775 list_del(&iocb->ki_run_list);
777 * Hold an extra reference while retrying i/o.
779 iocb->ki_users++; /* grab extra reference */
781 if (__aio_put_req(ctx, iocb)) /* drop extra ref */
784 if (!list_empty(&ctx->run_list))
789 static void aio_queue_work(struct kioctx * ctx)
791 unsigned long timeout;
793 * if someone is waiting, get the work started right
794 * away, otherwise, use a longer delay
797 if (waitqueue_active(&ctx->wait))
801 queue_delayed_work(aio_wq, &ctx->wq, timeout);
807 * Process all pending retries queued on the ioctx
809 * Assumes it is operating within the aio issuer's mm
812 static inline void aio_run_iocbs(struct kioctx *ctx)
816 spin_lock_irq(&ctx->ctx_lock);
818 requeue = __aio_run_iocbs(ctx);
819 spin_unlock_irq(&ctx->ctx_lock);
825 * just like aio_run_iocbs, but keeps running them until
826 * the list stays empty
828 static inline void aio_run_all_iocbs(struct kioctx *ctx)
830 spin_lock_irq(&ctx->ctx_lock);
831 while (__aio_run_iocbs(ctx))
833 spin_unlock_irq(&ctx->ctx_lock);
838 * Work queue handler triggered to process pending
839 * retries on an ioctx. Takes on the aio issuer's
840 * mm context before running the iocbs, so that
841 * copy_xxx_user operates on the issuer's address
843 * Run on aiod's context.
845 static void aio_kick_handler(void *data)
847 struct kioctx *ctx = data;
848 mm_segment_t oldfs = get_fs();
853 spin_lock_irq(&ctx->ctx_lock);
854 requeue =__aio_run_iocbs(ctx);
856 spin_unlock_irq(&ctx->ctx_lock);
859 * we're in a worker thread already, don't use queue_delayed_work,
862 queue_work(aio_wq, &ctx->wq);
867 * Called by kick_iocb to queue the kiocb for retry
868 * and if required activate the aio work queue to process
871 static void try_queue_kicked_iocb(struct kiocb *iocb)
873 struct kioctx *ctx = iocb->ki_ctx;
877 /* We're supposed to be the only path putting the iocb back on the run
878 * list. If we find that the iocb is *back* on a wait queue already
879 * than retry has happened before we could queue the iocb. This also
880 * means that the retry could have completed and freed our iocb, no
882 BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
884 spin_lock_irqsave(&ctx->ctx_lock, flags);
885 /* set this inside the lock so that we can't race with aio_run_iocb()
886 * testing it and putting the iocb on the run list under the lock */
887 if (!kiocbTryKick(iocb))
888 run = __queue_kicked_iocb(iocb);
889 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
896 * Called typically from a wait queue callback context
897 * (aio_wake_function) to trigger a retry of the iocb.
898 * The retry is usually executed by aio workqueue
899 * threads (See aio_kick_handler).
901 void fastcall kick_iocb(struct kiocb *iocb)
903 /* sync iocbs are easy: they can only ever be executing from a
905 if (is_sync_kiocb(iocb)) {
906 kiocbSetKicked(iocb);
907 wake_up_process(iocb->ki_obj.tsk);
911 try_queue_kicked_iocb(iocb);
913 EXPORT_SYMBOL(kick_iocb);
916 * Called when the io request on the given iocb is complete.
917 * Returns true if this is the last user of the request. The
918 * only other user of the request can be the cancellation code.
920 int fastcall aio_complete(struct kiocb *iocb, long res, long res2)
922 struct kioctx *ctx = iocb->ki_ctx;
923 struct aio_ring_info *info;
924 struct aio_ring *ring;
925 struct io_event *event;
930 /* Special case handling for sync iocbs: events go directly
931 * into the iocb for fast handling. Note that this will not
932 * work if we allow sync kiocbs to be cancelled. in which
933 * case the usage count checks will have to move under ctx_lock
936 if (is_sync_kiocb(iocb)) {
939 iocb->ki_user_data = res;
940 if (iocb->ki_users == 1) {
944 spin_lock_irq(&ctx->ctx_lock);
946 ret = (0 == iocb->ki_users);
947 spin_unlock_irq(&ctx->ctx_lock);
949 /* sync iocbs put the task here for us */
950 wake_up_process(iocb->ki_obj.tsk);
954 info = &ctx->ring_info;
956 /* add a completion event to the ring buffer.
957 * must be done holding ctx->ctx_lock to prevent
958 * other code from messing with the tail
959 * pointer since we might be called from irq
962 spin_lock_irqsave(&ctx->ctx_lock, flags);
964 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
965 list_del_init(&iocb->ki_run_list);
968 * cancelled requests don't get events, userland was given one
969 * when the event got cancelled.
971 if (kiocbIsCancelled(iocb))
974 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
977 event = aio_ring_event(info, tail, KM_IRQ0);
978 if (++tail >= info->nr)
981 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
982 event->data = iocb->ki_user_data;
986 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
987 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
990 /* after flagging the request as done, we
991 * must never even look at it again
993 smp_wmb(); /* make event visible before updating tail */
998 put_aio_ring_event(event, KM_IRQ0);
999 kunmap_atomic(ring, KM_IRQ1);
1001 pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1003 pr_debug("%ld retries: %d of %d\n", iocb->ki_retried,
1004 iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes);
1006 /* everything turned out well, dispose of the aiocb. */
1007 ret = __aio_put_req(ctx, iocb);
1009 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1011 if (waitqueue_active(&ctx->wait))
1012 wake_up(&ctx->wait);
1021 * Pull an event off of the ioctx's event ring. Returns the number of
1022 * events fetched (0 or 1 ;-)
1023 * FIXME: make this use cmpxchg.
1024 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1026 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1028 struct aio_ring_info *info = &ioctx->ring_info;
1029 struct aio_ring *ring;
1033 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1034 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1035 (unsigned long)ring->head, (unsigned long)ring->tail,
1036 (unsigned long)ring->nr);
1038 if (ring->head == ring->tail)
1041 spin_lock(&info->ring_lock);
1043 head = ring->head % info->nr;
1044 if (head != ring->tail) {
1045 struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1047 head = (head + 1) % info->nr;
1048 smp_mb(); /* finish reading the event before updatng the head */
1051 put_aio_ring_event(evp, KM_USER1);
1053 spin_unlock(&info->ring_lock);
1056 kunmap_atomic(ring, KM_USER0);
1057 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
1058 (unsigned long)ring->head, (unsigned long)ring->tail);
1062 struct aio_timeout {
1063 struct timer_list timer;
1065 struct task_struct *p;
1068 static void timeout_func(unsigned long data)
1070 struct aio_timeout *to = (struct aio_timeout *)data;
1073 wake_up_process(to->p);
1076 static inline void init_timeout(struct aio_timeout *to)
1078 init_timer(&to->timer);
1079 to->timer.data = (unsigned long)to;
1080 to->timer.function = timeout_func;
1085 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1086 const struct timespec *ts)
1088 to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1089 if (time_after(to->timer.expires, jiffies))
1090 add_timer(&to->timer);
1095 static inline void clear_timeout(struct aio_timeout *to)
1097 del_singleshot_timer_sync(&to->timer);
1100 static int read_events(struct kioctx *ctx,
1101 long min_nr, long nr,
1102 struct io_event __user *event,
1103 struct timespec __user *timeout)
1105 long start_jiffies = jiffies;
1106 struct task_struct *tsk = current;
1107 DECLARE_WAITQUEUE(wait, tsk);
1110 struct io_event ent;
1111 struct aio_timeout to;
1114 /* needed to zero any padding within an entry (there shouldn't be
1115 * any, but C is fun!
1117 memset(&ent, 0, sizeof(ent));
1120 while (likely(i < nr)) {
1121 ret = aio_read_evt(ctx, &ent);
1122 if (unlikely(ret <= 0))
1125 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1126 ent.data, ent.obj, ent.res, ent.res2);
1128 /* Could we split the check in two? */
1130 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1131 dprintk("aio: lost an event due to EFAULT.\n");
1136 /* Good, event copied to userland, update counts. */
1148 /* racey check, but it gets redone */
1149 if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1151 aio_run_all_iocbs(ctx);
1159 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1162 set_timeout(start_jiffies, &to, &ts);
1165 while (likely(i < nr)) {
1166 add_wait_queue_exclusive(&ctx->wait, &wait);
1168 set_task_state(tsk, TASK_INTERRUPTIBLE);
1169 ret = aio_read_evt(ctx, &ent);
1175 if (to.timed_out) /* Only check after read evt */
1178 if (signal_pending(tsk)) {
1182 /*ret = aio_read_evt(ctx, &ent);*/
1185 set_task_state(tsk, TASK_RUNNING);
1186 remove_wait_queue(&ctx->wait, &wait);
1188 if (unlikely(ret <= 0))
1192 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1193 dprintk("aio: lost an event due to EFAULT.\n");
1197 /* Good, event copied to userland, update counts. */
1208 /* Take an ioctx and remove it from the list of ioctx's. Protects
1209 * against races with itself via ->dead.
1211 static void io_destroy(struct kioctx *ioctx)
1213 struct mm_struct *mm = current->mm;
1214 struct kioctx **tmp;
1217 /* delete the entry from the list is someone else hasn't already */
1218 write_lock(&mm->ioctx_list_lock);
1219 was_dead = ioctx->dead;
1221 for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1222 tmp = &(*tmp)->next)
1226 write_unlock(&mm->ioctx_list_lock);
1228 dprintk("aio_release(%p)\n", ioctx);
1229 if (likely(!was_dead))
1230 put_ioctx(ioctx); /* twice for the list */
1232 aio_cancel_all(ioctx);
1233 wait_for_all_aios(ioctx);
1234 put_ioctx(ioctx); /* once for the lookup */
1238 * Create an aio_context capable of receiving at least nr_events.
1239 * ctxp must not point to an aio_context that already exists, and
1240 * must be initialized to 0 prior to the call. On successful
1241 * creation of the aio_context, *ctxp is filled in with the resulting
1242 * handle. May fail with -EINVAL if *ctxp is not initialized,
1243 * if the specified nr_events exceeds internal limits. May fail
1244 * with -EAGAIN if the specified nr_events exceeds the user's limit
1245 * of available events. May fail with -ENOMEM if insufficient kernel
1246 * resources are available. May fail with -EFAULT if an invalid
1247 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1250 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1252 struct kioctx *ioctx = NULL;
1256 ret = get_user(ctx, ctxp);
1261 if (unlikely(ctx || (int)nr_events <= 0)) {
1262 pr_debug("EINVAL: io_setup: ctx or nr_events > max\n");
1266 ioctx = ioctx_alloc(nr_events);
1267 ret = PTR_ERR(ioctx);
1268 if (!IS_ERR(ioctx)) {
1269 ret = put_user(ioctx->user_id, ctxp);
1273 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1282 * Destroy the aio_context specified. May cancel any outstanding
1283 * AIOs and block on completion. Will fail with -ENOSYS if not
1284 * implemented. May fail with -EFAULT if the context pointed to
1287 asmlinkage long sys_io_destroy(aio_context_t ctx)
1289 struct kioctx *ioctx = lookup_ioctx(ctx);
1290 if (likely(NULL != ioctx)) {
1294 pr_debug("EINVAL: io_destroy: invalid context id\n");
1299 * aio_p{read,write} are the default ki_retry methods for
1300 * IO_CMD_P{READ,WRITE}. They maintains kiocb retry state around potentially
1301 * multiple calls to f_op->aio_read(). They loop around partial progress
1302 * instead of returning -EIOCBRETRY because they don't have the means to call
1305 static ssize_t aio_pread(struct kiocb *iocb)
1307 struct file *file = iocb->ki_filp;
1308 struct address_space *mapping = file->f_mapping;
1309 struct inode *inode = mapping->host;
1313 ret = file->f_op->aio_read(iocb, iocb->ki_buf,
1314 iocb->ki_left, iocb->ki_pos);
1316 * Can't just depend on iocb->ki_left to determine
1317 * whether we are done. This may have been a short read.
1320 iocb->ki_buf += ret;
1321 iocb->ki_left -= ret;
1325 * For pipes and sockets we return once we have some data; for
1326 * regular files we retry till we complete the entire read or
1327 * find that we can't read any more data (e.g short reads).
1329 } while (ret > 0 && iocb->ki_left > 0 &&
1330 !S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode));
1332 /* This means we must have transferred all that we could */
1333 /* No need to retry anymore */
1334 if ((ret == 0) || (iocb->ki_left == 0))
1335 ret = iocb->ki_nbytes - iocb->ki_left;
1340 /* see aio_pread() */
1341 static ssize_t aio_pwrite(struct kiocb *iocb)
1343 struct file *file = iocb->ki_filp;
1347 ret = file->f_op->aio_write(iocb, iocb->ki_buf,
1348 iocb->ki_left, iocb->ki_pos);
1350 iocb->ki_buf += ret;
1351 iocb->ki_left -= ret;
1353 } while (ret > 0 && iocb->ki_left > 0);
1355 if ((ret == 0) || (iocb->ki_left == 0))
1356 ret = iocb->ki_nbytes - iocb->ki_left;
1361 static ssize_t aio_fdsync(struct kiocb *iocb)
1363 struct file *file = iocb->ki_filp;
1364 ssize_t ret = -EINVAL;
1366 if (file->f_op->aio_fsync)
1367 ret = file->f_op->aio_fsync(iocb, 1);
1371 static ssize_t aio_fsync(struct kiocb *iocb)
1373 struct file *file = iocb->ki_filp;
1374 ssize_t ret = -EINVAL;
1376 if (file->f_op->aio_fsync)
1377 ret = file->f_op->aio_fsync(iocb, 0);
1383 * Performs the initial checks and aio retry method
1384 * setup for the kiocb at the time of io submission.
1386 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1388 struct file *file = kiocb->ki_filp;
1391 switch (kiocb->ki_opcode) {
1392 case IOCB_CMD_PREAD:
1394 if (unlikely(!(file->f_mode & FMODE_READ)))
1397 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1401 if (file->f_op->aio_read)
1402 kiocb->ki_retry = aio_pread;
1404 case IOCB_CMD_PWRITE:
1406 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1409 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1413 if (file->f_op->aio_write)
1414 kiocb->ki_retry = aio_pwrite;
1416 case IOCB_CMD_FDSYNC:
1418 if (file->f_op->aio_fsync)
1419 kiocb->ki_retry = aio_fdsync;
1421 case IOCB_CMD_FSYNC:
1423 if (file->f_op->aio_fsync)
1424 kiocb->ki_retry = aio_fsync;
1427 dprintk("EINVAL: io_submit: no operation provided\n");
1431 if (!kiocb->ki_retry)
1438 * aio_wake_function:
1439 * wait queue callback function for aio notification,
1440 * Simply triggers a retry of the operation via kick_iocb.
1442 * This callback is specified in the wait queue entry in
1443 * a kiocb (current->io_wait points to this wait queue
1444 * entry when an aio operation executes; it is used
1445 * instead of a synchronous wait when an i/o blocking
1446 * condition is encountered during aio).
1449 * This routine is executed with the wait queue lock held.
1450 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1451 * the ioctx lock inside the wait queue lock. This is safe
1452 * because this callback isn't used for wait queues which
1453 * are nested inside ioctx lock (i.e. ctx->wait)
1455 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1456 int sync, void *key)
1458 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1460 list_del_init(&wait->task_list);
1465 int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1472 /* enforce forwards compatibility on users */
1473 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 ||
1474 iocb->aio_reserved3)) {
1475 pr_debug("EINVAL: io_submit: reserve field set\n");
1479 /* prevent overflows */
1481 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1482 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1483 ((ssize_t)iocb->aio_nbytes < 0)
1485 pr_debug("EINVAL: io_submit: overflow check\n");
1489 file = fget(iocb->aio_fildes);
1490 if (unlikely(!file))
1493 req = aio_get_req(ctx); /* returns with 2 references to req */
1494 if (unlikely(!req)) {
1499 req->ki_filp = file;
1500 ret = put_user(req->ki_key, &user_iocb->aio_key);
1501 if (unlikely(ret)) {
1502 dprintk("EFAULT: aio_key\n");
1506 req->ki_obj.user = user_iocb;
1507 req->ki_user_data = iocb->aio_data;
1508 req->ki_pos = iocb->aio_offset;
1510 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1511 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1512 req->ki_opcode = iocb->aio_lio_opcode;
1513 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1514 INIT_LIST_HEAD(&req->ki_wait.task_list);
1515 req->ki_retried = 0;
1517 ret = aio_setup_iocb(req);
1522 spin_lock_irq(&ctx->ctx_lock);
1524 if (!list_empty(&ctx->run_list)) {
1525 /* drain the run list */
1526 while (__aio_run_iocbs(ctx))
1529 spin_unlock_irq(&ctx->ctx_lock);
1530 aio_put_req(req); /* drop extra ref to req */
1534 aio_put_req(req); /* drop extra ref to req */
1535 aio_put_req(req); /* drop i/o ref to req */
1540 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1541 * the number of iocbs queued. May return -EINVAL if the aio_context
1542 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1543 * *iocbpp[0] is not properly initialized, if the operation specified
1544 * is invalid for the file descriptor in the iocb. May fail with
1545 * -EFAULT if any of the data structures point to invalid data. May
1546 * fail with -EBADF if the file descriptor specified in the first
1547 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1548 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1549 * fail with -ENOSYS if not implemented.
1551 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1552 struct iocb __user * __user *iocbpp)
1558 if (unlikely(nr < 0))
1561 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1564 ctx = lookup_ioctx(ctx_id);
1565 if (unlikely(!ctx)) {
1566 pr_debug("EINVAL: io_submit: invalid context id\n");
1571 * AKPM: should this return a partial result if some of the IOs were
1572 * successfully submitted?
1574 for (i=0; i<nr; i++) {
1575 struct iocb __user *user_iocb;
1578 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1583 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1588 ret = io_submit_one(ctx, user_iocb, &tmp);
1598 * Finds a given iocb for cancellation.
1599 * MUST be called with ctx->ctx_lock held.
1601 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1604 struct list_head *pos;
1605 /* TODO: use a hash or array, this sucks. */
1606 list_for_each(pos, &ctx->active_reqs) {
1607 struct kiocb *kiocb = list_kiocb(pos);
1608 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1615 * Attempts to cancel an iocb previously passed to io_submit. If
1616 * the operation is successfully cancelled, the resulting event is
1617 * copied into the memory pointed to by result without being placed
1618 * into the completion queue and 0 is returned. May fail with
1619 * -EFAULT if any of the data structures pointed to are invalid.
1620 * May fail with -EINVAL if aio_context specified by ctx_id is
1621 * invalid. May fail with -EAGAIN if the iocb specified was not
1622 * cancelled. Will fail with -ENOSYS if not implemented.
1624 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1625 struct io_event __user *result)
1627 int (*cancel)(struct kiocb *iocb, struct io_event *res);
1629 struct kiocb *kiocb;
1633 ret = get_user(key, &iocb->aio_key);
1637 ctx = lookup_ioctx(ctx_id);
1641 spin_lock_irq(&ctx->ctx_lock);
1643 kiocb = lookup_kiocb(ctx, iocb, key);
1644 if (kiocb && kiocb->ki_cancel) {
1645 cancel = kiocb->ki_cancel;
1647 kiocbSetCancelled(kiocb);
1650 spin_unlock_irq(&ctx->ctx_lock);
1652 if (NULL != cancel) {
1653 struct io_event tmp;
1654 pr_debug("calling cancel\n");
1655 memset(&tmp, 0, sizeof(tmp));
1656 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1657 tmp.data = kiocb->ki_user_data;
1658 ret = cancel(kiocb, &tmp);
1660 /* Cancellation succeeded -- copy the result
1661 * into the user's buffer.
1663 if (copy_to_user(result, &tmp, sizeof(tmp)))
1675 * Attempts to read at least min_nr events and up to nr events from
1676 * the completion queue for the aio_context specified by ctx_id. May
1677 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1678 * if nr is out of range, if when is out of range. May fail with
1679 * -EFAULT if any of the memory specified to is invalid. May return
1680 * 0 or < min_nr if no events are available and the timeout specified
1681 * by when has elapsed, where when == NULL specifies an infinite
1682 * timeout. Note that the timeout pointed to by when is relative and
1683 * will be updated if not NULL and the operation blocks. Will fail
1684 * with -ENOSYS if not implemented.
1686 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1689 struct io_event __user *events,
1690 struct timespec __user *timeout)
1692 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1695 if (likely(ioctx)) {
1696 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1697 ret = read_events(ioctx, min_nr, nr, events, timeout);
1704 __initcall(aio_setup);
1706 EXPORT_SYMBOL(aio_complete);
1707 EXPORT_SYMBOL(aio_put_req);
1708 EXPORT_SYMBOL(wait_on_sync_kiocb);