KVM: Allocate guest memory as MAP_PRIVATE, not MAP_SHARED
[linux-2.6] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 #include "vmx.h"
21 #include "mmu.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30 #include <linux/hugetlb.h>
31 #include <linux/compiler.h>
32
33 #include <asm/page.h>
34 #include <asm/cmpxchg.h>
35 #include <asm/io.h>
36
37 /*
38  * When setting this variable to true it enables Two-Dimensional-Paging
39  * where the hardware walks 2 page tables:
40  * 1. the guest-virtual to guest-physical
41  * 2. while doing 1. it walks guest-physical to host-physical
42  * If the hardware supports that we don't need to do shadow paging.
43  */
44 bool tdp_enabled = false;
45
46 #undef MMU_DEBUG
47
48 #undef AUDIT
49
50 #ifdef AUDIT
51 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
52 #else
53 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
54 #endif
55
56 #ifdef MMU_DEBUG
57
58 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
59 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
60
61 #else
62
63 #define pgprintk(x...) do { } while (0)
64 #define rmap_printk(x...) do { } while (0)
65
66 #endif
67
68 #if defined(MMU_DEBUG) || defined(AUDIT)
69 static int dbg = 0;
70 module_param(dbg, bool, 0644);
71 #endif
72
73 #ifndef MMU_DEBUG
74 #define ASSERT(x) do { } while (0)
75 #else
76 #define ASSERT(x)                                                       \
77         if (!(x)) {                                                     \
78                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
79                        __FILE__, __LINE__, #x);                         \
80         }
81 #endif
82
83 #define PT_FIRST_AVAIL_BITS_SHIFT 9
84 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
85
86 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
87
88 #define PT64_LEVEL_BITS 9
89
90 #define PT64_LEVEL_SHIFT(level) \
91                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
92
93 #define PT64_LEVEL_MASK(level) \
94                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
95
96 #define PT64_INDEX(address, level)\
97         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
98
99
100 #define PT32_LEVEL_BITS 10
101
102 #define PT32_LEVEL_SHIFT(level) \
103                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
104
105 #define PT32_LEVEL_MASK(level) \
106                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
107
108 #define PT32_INDEX(address, level)\
109         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
110
111
112 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
113 #define PT64_DIR_BASE_ADDR_MASK \
114         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
115
116 #define PT32_BASE_ADDR_MASK PAGE_MASK
117 #define PT32_DIR_BASE_ADDR_MASK \
118         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119
120 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
121                         | PT64_NX_MASK)
122
123 #define PFERR_PRESENT_MASK (1U << 0)
124 #define PFERR_WRITE_MASK (1U << 1)
125 #define PFERR_USER_MASK (1U << 2)
126 #define PFERR_FETCH_MASK (1U << 4)
127
128 #define PT_DIRECTORY_LEVEL 2
129 #define PT_PAGE_TABLE_LEVEL 1
130
131 #define RMAP_EXT 4
132
133 #define ACC_EXEC_MASK    1
134 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
135 #define ACC_USER_MASK    PT_USER_MASK
136 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
137
138 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
140 struct kvm_rmap_desc {
141         u64 *shadow_ptes[RMAP_EXT];
142         struct kvm_rmap_desc *more;
143 };
144
145 struct kvm_shadow_walk {
146         int (*entry)(struct kvm_shadow_walk *walk, struct kvm_vcpu *vcpu,
147                      gva_t addr, u64 *spte, int level);
148 };
149
150 static struct kmem_cache *pte_chain_cache;
151 static struct kmem_cache *rmap_desc_cache;
152 static struct kmem_cache *mmu_page_header_cache;
153
154 static u64 __read_mostly shadow_trap_nonpresent_pte;
155 static u64 __read_mostly shadow_notrap_nonpresent_pte;
156 static u64 __read_mostly shadow_base_present_pte;
157 static u64 __read_mostly shadow_nx_mask;
158 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
159 static u64 __read_mostly shadow_user_mask;
160 static u64 __read_mostly shadow_accessed_mask;
161 static u64 __read_mostly shadow_dirty_mask;
162
163 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
164 {
165         shadow_trap_nonpresent_pte = trap_pte;
166         shadow_notrap_nonpresent_pte = notrap_pte;
167 }
168 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
169
170 void kvm_mmu_set_base_ptes(u64 base_pte)
171 {
172         shadow_base_present_pte = base_pte;
173 }
174 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
175
176 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
177                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
178 {
179         shadow_user_mask = user_mask;
180         shadow_accessed_mask = accessed_mask;
181         shadow_dirty_mask = dirty_mask;
182         shadow_nx_mask = nx_mask;
183         shadow_x_mask = x_mask;
184 }
185 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
186
187 static int is_write_protection(struct kvm_vcpu *vcpu)
188 {
189         return vcpu->arch.cr0 & X86_CR0_WP;
190 }
191
192 static int is_cpuid_PSE36(void)
193 {
194         return 1;
195 }
196
197 static int is_nx(struct kvm_vcpu *vcpu)
198 {
199         return vcpu->arch.shadow_efer & EFER_NX;
200 }
201
202 static int is_present_pte(unsigned long pte)
203 {
204         return pte & PT_PRESENT_MASK;
205 }
206
207 static int is_shadow_present_pte(u64 pte)
208 {
209         return pte != shadow_trap_nonpresent_pte
210                 && pte != shadow_notrap_nonpresent_pte;
211 }
212
213 static int is_large_pte(u64 pte)
214 {
215         return pte & PT_PAGE_SIZE_MASK;
216 }
217
218 static int is_writeble_pte(unsigned long pte)
219 {
220         return pte & PT_WRITABLE_MASK;
221 }
222
223 static int is_dirty_pte(unsigned long pte)
224 {
225         return pte & shadow_dirty_mask;
226 }
227
228 static int is_rmap_pte(u64 pte)
229 {
230         return is_shadow_present_pte(pte);
231 }
232
233 static pfn_t spte_to_pfn(u64 pte)
234 {
235         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
236 }
237
238 static gfn_t pse36_gfn_delta(u32 gpte)
239 {
240         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
241
242         return (gpte & PT32_DIR_PSE36_MASK) << shift;
243 }
244
245 static void set_shadow_pte(u64 *sptep, u64 spte)
246 {
247 #ifdef CONFIG_X86_64
248         set_64bit((unsigned long *)sptep, spte);
249 #else
250         set_64bit((unsigned long long *)sptep, spte);
251 #endif
252 }
253
254 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
255                                   struct kmem_cache *base_cache, int min)
256 {
257         void *obj;
258
259         if (cache->nobjs >= min)
260                 return 0;
261         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
262                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
263                 if (!obj)
264                         return -ENOMEM;
265                 cache->objects[cache->nobjs++] = obj;
266         }
267         return 0;
268 }
269
270 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
271 {
272         while (mc->nobjs)
273                 kfree(mc->objects[--mc->nobjs]);
274 }
275
276 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
277                                        int min)
278 {
279         struct page *page;
280
281         if (cache->nobjs >= min)
282                 return 0;
283         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
284                 page = alloc_page(GFP_KERNEL);
285                 if (!page)
286                         return -ENOMEM;
287                 set_page_private(page, 0);
288                 cache->objects[cache->nobjs++] = page_address(page);
289         }
290         return 0;
291 }
292
293 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
294 {
295         while (mc->nobjs)
296                 free_page((unsigned long)mc->objects[--mc->nobjs]);
297 }
298
299 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
300 {
301         int r;
302
303         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
304                                    pte_chain_cache, 4);
305         if (r)
306                 goto out;
307         r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
308                                    rmap_desc_cache, 1);
309         if (r)
310                 goto out;
311         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
312         if (r)
313                 goto out;
314         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
315                                    mmu_page_header_cache, 4);
316 out:
317         return r;
318 }
319
320 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
321 {
322         mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
323         mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
324         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
325         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
326 }
327
328 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
329                                     size_t size)
330 {
331         void *p;
332
333         BUG_ON(!mc->nobjs);
334         p = mc->objects[--mc->nobjs];
335         memset(p, 0, size);
336         return p;
337 }
338
339 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
340 {
341         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
342                                       sizeof(struct kvm_pte_chain));
343 }
344
345 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
346 {
347         kfree(pc);
348 }
349
350 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
351 {
352         return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
353                                       sizeof(struct kvm_rmap_desc));
354 }
355
356 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
357 {
358         kfree(rd);
359 }
360
361 /*
362  * Return the pointer to the largepage write count for a given
363  * gfn, handling slots that are not large page aligned.
364  */
365 static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
366 {
367         unsigned long idx;
368
369         idx = (gfn / KVM_PAGES_PER_HPAGE) -
370               (slot->base_gfn / KVM_PAGES_PER_HPAGE);
371         return &slot->lpage_info[idx].write_count;
372 }
373
374 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
375 {
376         int *write_count;
377
378         write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
379         *write_count += 1;
380 }
381
382 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
383 {
384         int *write_count;
385
386         write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
387         *write_count -= 1;
388         WARN_ON(*write_count < 0);
389 }
390
391 static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
392 {
393         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
394         int *largepage_idx;
395
396         if (slot) {
397                 largepage_idx = slot_largepage_idx(gfn, slot);
398                 return *largepage_idx;
399         }
400
401         return 1;
402 }
403
404 static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
405 {
406         struct vm_area_struct *vma;
407         unsigned long addr;
408
409         addr = gfn_to_hva(kvm, gfn);
410         if (kvm_is_error_hva(addr))
411                 return 0;
412
413         vma = find_vma(current->mm, addr);
414         if (vma && is_vm_hugetlb_page(vma))
415                 return 1;
416
417         return 0;
418 }
419
420 static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
421 {
422         struct kvm_memory_slot *slot;
423
424         if (has_wrprotected_page(vcpu->kvm, large_gfn))
425                 return 0;
426
427         if (!host_largepage_backed(vcpu->kvm, large_gfn))
428                 return 0;
429
430         slot = gfn_to_memslot(vcpu->kvm, large_gfn);
431         if (slot && slot->dirty_bitmap)
432                 return 0;
433
434         return 1;
435 }
436
437 /*
438  * Take gfn and return the reverse mapping to it.
439  * Note: gfn must be unaliased before this function get called
440  */
441
442 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
443 {
444         struct kvm_memory_slot *slot;
445         unsigned long idx;
446
447         slot = gfn_to_memslot(kvm, gfn);
448         if (!lpage)
449                 return &slot->rmap[gfn - slot->base_gfn];
450
451         idx = (gfn / KVM_PAGES_PER_HPAGE) -
452               (slot->base_gfn / KVM_PAGES_PER_HPAGE);
453
454         return &slot->lpage_info[idx].rmap_pde;
455 }
456
457 /*
458  * Reverse mapping data structures:
459  *
460  * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
461  * that points to page_address(page).
462  *
463  * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
464  * containing more mappings.
465  */
466 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
467 {
468         struct kvm_mmu_page *sp;
469         struct kvm_rmap_desc *desc;
470         unsigned long *rmapp;
471         int i;
472
473         if (!is_rmap_pte(*spte))
474                 return;
475         gfn = unalias_gfn(vcpu->kvm, gfn);
476         sp = page_header(__pa(spte));
477         sp->gfns[spte - sp->spt] = gfn;
478         rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
479         if (!*rmapp) {
480                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
481                 *rmapp = (unsigned long)spte;
482         } else if (!(*rmapp & 1)) {
483                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
484                 desc = mmu_alloc_rmap_desc(vcpu);
485                 desc->shadow_ptes[0] = (u64 *)*rmapp;
486                 desc->shadow_ptes[1] = spte;
487                 *rmapp = (unsigned long)desc | 1;
488         } else {
489                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
490                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
491                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
492                         desc = desc->more;
493                 if (desc->shadow_ptes[RMAP_EXT-1]) {
494                         desc->more = mmu_alloc_rmap_desc(vcpu);
495                         desc = desc->more;
496                 }
497                 for (i = 0; desc->shadow_ptes[i]; ++i)
498                         ;
499                 desc->shadow_ptes[i] = spte;
500         }
501 }
502
503 static void rmap_desc_remove_entry(unsigned long *rmapp,
504                                    struct kvm_rmap_desc *desc,
505                                    int i,
506                                    struct kvm_rmap_desc *prev_desc)
507 {
508         int j;
509
510         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
511                 ;
512         desc->shadow_ptes[i] = desc->shadow_ptes[j];
513         desc->shadow_ptes[j] = NULL;
514         if (j != 0)
515                 return;
516         if (!prev_desc && !desc->more)
517                 *rmapp = (unsigned long)desc->shadow_ptes[0];
518         else
519                 if (prev_desc)
520                         prev_desc->more = desc->more;
521                 else
522                         *rmapp = (unsigned long)desc->more | 1;
523         mmu_free_rmap_desc(desc);
524 }
525
526 static void rmap_remove(struct kvm *kvm, u64 *spte)
527 {
528         struct kvm_rmap_desc *desc;
529         struct kvm_rmap_desc *prev_desc;
530         struct kvm_mmu_page *sp;
531         pfn_t pfn;
532         unsigned long *rmapp;
533         int i;
534
535         if (!is_rmap_pte(*spte))
536                 return;
537         sp = page_header(__pa(spte));
538         pfn = spte_to_pfn(*spte);
539         if (*spte & shadow_accessed_mask)
540                 kvm_set_pfn_accessed(pfn);
541         if (is_writeble_pte(*spte))
542                 kvm_release_pfn_dirty(pfn);
543         else
544                 kvm_release_pfn_clean(pfn);
545         rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
546         if (!*rmapp) {
547                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
548                 BUG();
549         } else if (!(*rmapp & 1)) {
550                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
551                 if ((u64 *)*rmapp != spte) {
552                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
553                                spte, *spte);
554                         BUG();
555                 }
556                 *rmapp = 0;
557         } else {
558                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
559                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
560                 prev_desc = NULL;
561                 while (desc) {
562                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
563                                 if (desc->shadow_ptes[i] == spte) {
564                                         rmap_desc_remove_entry(rmapp,
565                                                                desc, i,
566                                                                prev_desc);
567                                         return;
568                                 }
569                         prev_desc = desc;
570                         desc = desc->more;
571                 }
572                 BUG();
573         }
574 }
575
576 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
577 {
578         struct kvm_rmap_desc *desc;
579         struct kvm_rmap_desc *prev_desc;
580         u64 *prev_spte;
581         int i;
582
583         if (!*rmapp)
584                 return NULL;
585         else if (!(*rmapp & 1)) {
586                 if (!spte)
587                         return (u64 *)*rmapp;
588                 return NULL;
589         }
590         desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
591         prev_desc = NULL;
592         prev_spte = NULL;
593         while (desc) {
594                 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
595                         if (prev_spte == spte)
596                                 return desc->shadow_ptes[i];
597                         prev_spte = desc->shadow_ptes[i];
598                 }
599                 desc = desc->more;
600         }
601         return NULL;
602 }
603
604 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
605 {
606         unsigned long *rmapp;
607         u64 *spte;
608         int write_protected = 0;
609
610         gfn = unalias_gfn(kvm, gfn);
611         rmapp = gfn_to_rmap(kvm, gfn, 0);
612
613         spte = rmap_next(kvm, rmapp, NULL);
614         while (spte) {
615                 BUG_ON(!spte);
616                 BUG_ON(!(*spte & PT_PRESENT_MASK));
617                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
618                 if (is_writeble_pte(*spte)) {
619                         set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
620                         write_protected = 1;
621                 }
622                 spte = rmap_next(kvm, rmapp, spte);
623         }
624         if (write_protected) {
625                 pfn_t pfn;
626
627                 spte = rmap_next(kvm, rmapp, NULL);
628                 pfn = spte_to_pfn(*spte);
629                 kvm_set_pfn_dirty(pfn);
630         }
631
632         /* check for huge page mappings */
633         rmapp = gfn_to_rmap(kvm, gfn, 1);
634         spte = rmap_next(kvm, rmapp, NULL);
635         while (spte) {
636                 BUG_ON(!spte);
637                 BUG_ON(!(*spte & PT_PRESENT_MASK));
638                 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
639                 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
640                 if (is_writeble_pte(*spte)) {
641                         rmap_remove(kvm, spte);
642                         --kvm->stat.lpages;
643                         set_shadow_pte(spte, shadow_trap_nonpresent_pte);
644                         spte = NULL;
645                         write_protected = 1;
646                 }
647                 spte = rmap_next(kvm, rmapp, spte);
648         }
649
650         if (write_protected)
651                 kvm_flush_remote_tlbs(kvm);
652
653         account_shadowed(kvm, gfn);
654 }
655
656 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
657 {
658         u64 *spte;
659         int need_tlb_flush = 0;
660
661         while ((spte = rmap_next(kvm, rmapp, NULL))) {
662                 BUG_ON(!(*spte & PT_PRESENT_MASK));
663                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
664                 rmap_remove(kvm, spte);
665                 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
666                 need_tlb_flush = 1;
667         }
668         return need_tlb_flush;
669 }
670
671 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
672                           int (*handler)(struct kvm *kvm, unsigned long *rmapp))
673 {
674         int i;
675         int retval = 0;
676
677         /*
678          * If mmap_sem isn't taken, we can look the memslots with only
679          * the mmu_lock by skipping over the slots with userspace_addr == 0.
680          */
681         for (i = 0; i < kvm->nmemslots; i++) {
682                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
683                 unsigned long start = memslot->userspace_addr;
684                 unsigned long end;
685
686                 /* mmu_lock protects userspace_addr */
687                 if (!start)
688                         continue;
689
690                 end = start + (memslot->npages << PAGE_SHIFT);
691                 if (hva >= start && hva < end) {
692                         gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
693                         retval |= handler(kvm, &memslot->rmap[gfn_offset]);
694                         retval |= handler(kvm,
695                                           &memslot->lpage_info[
696                                                   gfn_offset /
697                                                   KVM_PAGES_PER_HPAGE].rmap_pde);
698                 }
699         }
700
701         return retval;
702 }
703
704 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
705 {
706         return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
707 }
708
709 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
710 {
711         u64 *spte;
712         int young = 0;
713
714         /* always return old for EPT */
715         if (!shadow_accessed_mask)
716                 return 0;
717
718         spte = rmap_next(kvm, rmapp, NULL);
719         while (spte) {
720                 int _young;
721                 u64 _spte = *spte;
722                 BUG_ON(!(_spte & PT_PRESENT_MASK));
723                 _young = _spte & PT_ACCESSED_MASK;
724                 if (_young) {
725                         young = 1;
726                         clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
727                 }
728                 spte = rmap_next(kvm, rmapp, spte);
729         }
730         return young;
731 }
732
733 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
734 {
735         return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
736 }
737
738 #ifdef MMU_DEBUG
739 static int is_empty_shadow_page(u64 *spt)
740 {
741         u64 *pos;
742         u64 *end;
743
744         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
745                 if (is_shadow_present_pte(*pos)) {
746                         printk(KERN_ERR "%s: %p %llx\n", __func__,
747                                pos, *pos);
748                         return 0;
749                 }
750         return 1;
751 }
752 #endif
753
754 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
755 {
756         ASSERT(is_empty_shadow_page(sp->spt));
757         list_del(&sp->link);
758         __free_page(virt_to_page(sp->spt));
759         __free_page(virt_to_page(sp->gfns));
760         kfree(sp);
761         ++kvm->arch.n_free_mmu_pages;
762 }
763
764 static unsigned kvm_page_table_hashfn(gfn_t gfn)
765 {
766         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
767 }
768
769 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
770                                                u64 *parent_pte)
771 {
772         struct kvm_mmu_page *sp;
773
774         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
775         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
776         sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
777         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
778         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
779         ASSERT(is_empty_shadow_page(sp->spt));
780         sp->slot_bitmap = 0;
781         sp->multimapped = 0;
782         sp->parent_pte = parent_pte;
783         --vcpu->kvm->arch.n_free_mmu_pages;
784         return sp;
785 }
786
787 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
788                                     struct kvm_mmu_page *sp, u64 *parent_pte)
789 {
790         struct kvm_pte_chain *pte_chain;
791         struct hlist_node *node;
792         int i;
793
794         if (!parent_pte)
795                 return;
796         if (!sp->multimapped) {
797                 u64 *old = sp->parent_pte;
798
799                 if (!old) {
800                         sp->parent_pte = parent_pte;
801                         return;
802                 }
803                 sp->multimapped = 1;
804                 pte_chain = mmu_alloc_pte_chain(vcpu);
805                 INIT_HLIST_HEAD(&sp->parent_ptes);
806                 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
807                 pte_chain->parent_ptes[0] = old;
808         }
809         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
810                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
811                         continue;
812                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
813                         if (!pte_chain->parent_ptes[i]) {
814                                 pte_chain->parent_ptes[i] = parent_pte;
815                                 return;
816                         }
817         }
818         pte_chain = mmu_alloc_pte_chain(vcpu);
819         BUG_ON(!pte_chain);
820         hlist_add_head(&pte_chain->link, &sp->parent_ptes);
821         pte_chain->parent_ptes[0] = parent_pte;
822 }
823
824 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
825                                        u64 *parent_pte)
826 {
827         struct kvm_pte_chain *pte_chain;
828         struct hlist_node *node;
829         int i;
830
831         if (!sp->multimapped) {
832                 BUG_ON(sp->parent_pte != parent_pte);
833                 sp->parent_pte = NULL;
834                 return;
835         }
836         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
837                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
838                         if (!pte_chain->parent_ptes[i])
839                                 break;
840                         if (pte_chain->parent_ptes[i] != parent_pte)
841                                 continue;
842                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
843                                 && pte_chain->parent_ptes[i + 1]) {
844                                 pte_chain->parent_ptes[i]
845                                         = pte_chain->parent_ptes[i + 1];
846                                 ++i;
847                         }
848                         pte_chain->parent_ptes[i] = NULL;
849                         if (i == 0) {
850                                 hlist_del(&pte_chain->link);
851                                 mmu_free_pte_chain(pte_chain);
852                                 if (hlist_empty(&sp->parent_ptes)) {
853                                         sp->multimapped = 0;
854                                         sp->parent_pte = NULL;
855                                 }
856                         }
857                         return;
858                 }
859         BUG();
860 }
861
862 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
863                                     struct kvm_mmu_page *sp)
864 {
865         int i;
866
867         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
868                 sp->spt[i] = shadow_trap_nonpresent_pte;
869 }
870
871 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
872 {
873         unsigned index;
874         struct hlist_head *bucket;
875         struct kvm_mmu_page *sp;
876         struct hlist_node *node;
877
878         pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
879         index = kvm_page_table_hashfn(gfn);
880         bucket = &kvm->arch.mmu_page_hash[index];
881         hlist_for_each_entry(sp, node, bucket, hash_link)
882                 if (sp->gfn == gfn && !sp->role.metaphysical
883                     && !sp->role.invalid) {
884                         pgprintk("%s: found role %x\n",
885                                  __func__, sp->role.word);
886                         return sp;
887                 }
888         return NULL;
889 }
890
891 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
892                                              gfn_t gfn,
893                                              gva_t gaddr,
894                                              unsigned level,
895                                              int metaphysical,
896                                              unsigned access,
897                                              u64 *parent_pte)
898 {
899         union kvm_mmu_page_role role;
900         unsigned index;
901         unsigned quadrant;
902         struct hlist_head *bucket;
903         struct kvm_mmu_page *sp;
904         struct hlist_node *node;
905
906         role.word = 0;
907         role.glevels = vcpu->arch.mmu.root_level;
908         role.level = level;
909         role.metaphysical = metaphysical;
910         role.access = access;
911         if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
912                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
913                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
914                 role.quadrant = quadrant;
915         }
916         pgprintk("%s: looking gfn %lx role %x\n", __func__,
917                  gfn, role.word);
918         index = kvm_page_table_hashfn(gfn);
919         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
920         hlist_for_each_entry(sp, node, bucket, hash_link)
921                 if (sp->gfn == gfn && sp->role.word == role.word) {
922                         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
923                         pgprintk("%s: found\n", __func__);
924                         return sp;
925                 }
926         ++vcpu->kvm->stat.mmu_cache_miss;
927         sp = kvm_mmu_alloc_page(vcpu, parent_pte);
928         if (!sp)
929                 return sp;
930         pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
931         sp->gfn = gfn;
932         sp->role = role;
933         hlist_add_head(&sp->hash_link, bucket);
934         if (!metaphysical)
935                 rmap_write_protect(vcpu->kvm, gfn);
936         if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
937                 vcpu->arch.mmu.prefetch_page(vcpu, sp);
938         else
939                 nonpaging_prefetch_page(vcpu, sp);
940         return sp;
941 }
942
943 static int walk_shadow(struct kvm_shadow_walk *walker,
944                        struct kvm_vcpu *vcpu, gva_t addr)
945 {
946         hpa_t shadow_addr;
947         int level;
948         int r;
949         u64 *sptep;
950         unsigned index;
951
952         shadow_addr = vcpu->arch.mmu.root_hpa;
953         level = vcpu->arch.mmu.shadow_root_level;
954         if (level == PT32E_ROOT_LEVEL) {
955                 shadow_addr = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
956                 shadow_addr &= PT64_BASE_ADDR_MASK;
957                 --level;
958         }
959
960         while (level >= PT_PAGE_TABLE_LEVEL) {
961                 index = SHADOW_PT_INDEX(addr, level);
962                 sptep = ((u64 *)__va(shadow_addr)) + index;
963                 r = walker->entry(walker, vcpu, addr, sptep, level);
964                 if (r)
965                         return r;
966                 shadow_addr = *sptep & PT64_BASE_ADDR_MASK;
967                 --level;
968         }
969         return 0;
970 }
971
972 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
973                                          struct kvm_mmu_page *sp)
974 {
975         unsigned i;
976         u64 *pt;
977         u64 ent;
978
979         pt = sp->spt;
980
981         if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
982                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
983                         if (is_shadow_present_pte(pt[i]))
984                                 rmap_remove(kvm, &pt[i]);
985                         pt[i] = shadow_trap_nonpresent_pte;
986                 }
987                 return;
988         }
989
990         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
991                 ent = pt[i];
992
993                 if (is_shadow_present_pte(ent)) {
994                         if (!is_large_pte(ent)) {
995                                 ent &= PT64_BASE_ADDR_MASK;
996                                 mmu_page_remove_parent_pte(page_header(ent),
997                                                            &pt[i]);
998                         } else {
999                                 --kvm->stat.lpages;
1000                                 rmap_remove(kvm, &pt[i]);
1001                         }
1002                 }
1003                 pt[i] = shadow_trap_nonpresent_pte;
1004         }
1005 }
1006
1007 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1008 {
1009         mmu_page_remove_parent_pte(sp, parent_pte);
1010 }
1011
1012 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1013 {
1014         int i;
1015
1016         for (i = 0; i < KVM_MAX_VCPUS; ++i)
1017                 if (kvm->vcpus[i])
1018                         kvm->vcpus[i]->arch.last_pte_updated = NULL;
1019 }
1020
1021 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1022 {
1023         u64 *parent_pte;
1024
1025         while (sp->multimapped || sp->parent_pte) {
1026                 if (!sp->multimapped)
1027                         parent_pte = sp->parent_pte;
1028                 else {
1029                         struct kvm_pte_chain *chain;
1030
1031                         chain = container_of(sp->parent_ptes.first,
1032                                              struct kvm_pte_chain, link);
1033                         parent_pte = chain->parent_ptes[0];
1034                 }
1035                 BUG_ON(!parent_pte);
1036                 kvm_mmu_put_page(sp, parent_pte);
1037                 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
1038         }
1039 }
1040
1041 static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1042 {
1043         ++kvm->stat.mmu_shadow_zapped;
1044         kvm_mmu_page_unlink_children(kvm, sp);
1045         kvm_mmu_unlink_parents(kvm, sp);
1046         kvm_flush_remote_tlbs(kvm);
1047         if (!sp->role.invalid && !sp->role.metaphysical)
1048                 unaccount_shadowed(kvm, sp->gfn);
1049         if (!sp->root_count) {
1050                 hlist_del(&sp->hash_link);
1051                 kvm_mmu_free_page(kvm, sp);
1052         } else {
1053                 sp->role.invalid = 1;
1054                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1055                 kvm_reload_remote_mmus(kvm);
1056         }
1057         kvm_mmu_reset_last_pte_updated(kvm);
1058 }
1059
1060 /*
1061  * Changing the number of mmu pages allocated to the vm
1062  * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
1063  */
1064 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
1065 {
1066         /*
1067          * If we set the number of mmu pages to be smaller be than the
1068          * number of actived pages , we must to free some mmu pages before we
1069          * change the value
1070          */
1071
1072         if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
1073             kvm_nr_mmu_pages) {
1074                 int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
1075                                        - kvm->arch.n_free_mmu_pages;
1076
1077                 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
1078                         struct kvm_mmu_page *page;
1079
1080                         page = container_of(kvm->arch.active_mmu_pages.prev,
1081                                             struct kvm_mmu_page, link);
1082                         kvm_mmu_zap_page(kvm, page);
1083                         n_used_mmu_pages--;
1084                 }
1085                 kvm->arch.n_free_mmu_pages = 0;
1086         }
1087         else
1088                 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
1089                                          - kvm->arch.n_alloc_mmu_pages;
1090
1091         kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
1092 }
1093
1094 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1095 {
1096         unsigned index;
1097         struct hlist_head *bucket;
1098         struct kvm_mmu_page *sp;
1099         struct hlist_node *node, *n;
1100         int r;
1101
1102         pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1103         r = 0;
1104         index = kvm_page_table_hashfn(gfn);
1105         bucket = &kvm->arch.mmu_page_hash[index];
1106         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
1107                 if (sp->gfn == gfn && !sp->role.metaphysical) {
1108                         pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
1109                                  sp->role.word);
1110                         kvm_mmu_zap_page(kvm, sp);
1111                         r = 1;
1112                 }
1113         return r;
1114 }
1115
1116 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1117 {
1118         struct kvm_mmu_page *sp;
1119
1120         while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
1121                 pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
1122                 kvm_mmu_zap_page(kvm, sp);
1123         }
1124 }
1125
1126 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1127 {
1128         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
1129         struct kvm_mmu_page *sp = page_header(__pa(pte));
1130
1131         __set_bit(slot, &sp->slot_bitmap);
1132 }
1133
1134 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
1135 {
1136         struct page *page;
1137
1138         gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1139
1140         if (gpa == UNMAPPED_GVA)
1141                 return NULL;
1142
1143         down_read(&current->mm->mmap_sem);
1144         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1145         up_read(&current->mm->mmap_sem);
1146
1147         return page;
1148 }
1149
1150 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
1151                          unsigned pt_access, unsigned pte_access,
1152                          int user_fault, int write_fault, int dirty,
1153                          int *ptwrite, int largepage, gfn_t gfn,
1154                          pfn_t pfn, bool speculative)
1155 {
1156         u64 spte;
1157         int was_rmapped = 0;
1158         int was_writeble = is_writeble_pte(*shadow_pte);
1159
1160         pgprintk("%s: spte %llx access %x write_fault %d"
1161                  " user_fault %d gfn %lx\n",
1162                  __func__, *shadow_pte, pt_access,
1163                  write_fault, user_fault, gfn);
1164
1165         if (is_rmap_pte(*shadow_pte)) {
1166                 /*
1167                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1168                  * the parent of the now unreachable PTE.
1169                  */
1170                 if (largepage && !is_large_pte(*shadow_pte)) {
1171                         struct kvm_mmu_page *child;
1172                         u64 pte = *shadow_pte;
1173
1174                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1175                         mmu_page_remove_parent_pte(child, shadow_pte);
1176                 } else if (pfn != spte_to_pfn(*shadow_pte)) {
1177                         pgprintk("hfn old %lx new %lx\n",
1178                                  spte_to_pfn(*shadow_pte), pfn);
1179                         rmap_remove(vcpu->kvm, shadow_pte);
1180                 } else {
1181                         if (largepage)
1182                                 was_rmapped = is_large_pte(*shadow_pte);
1183                         else
1184                                 was_rmapped = 1;
1185                 }
1186         }
1187
1188         /*
1189          * We don't set the accessed bit, since we sometimes want to see
1190          * whether the guest actually used the pte (in order to detect
1191          * demand paging).
1192          */
1193         spte = shadow_base_present_pte | shadow_dirty_mask;
1194         if (!speculative)
1195                 pte_access |= PT_ACCESSED_MASK;
1196         if (!dirty)
1197                 pte_access &= ~ACC_WRITE_MASK;
1198         if (pte_access & ACC_EXEC_MASK)
1199                 spte |= shadow_x_mask;
1200         else
1201                 spte |= shadow_nx_mask;
1202         if (pte_access & ACC_USER_MASK)
1203                 spte |= shadow_user_mask;
1204         if (largepage)
1205                 spte |= PT_PAGE_SIZE_MASK;
1206
1207         spte |= (u64)pfn << PAGE_SHIFT;
1208
1209         if ((pte_access & ACC_WRITE_MASK)
1210             || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
1211                 struct kvm_mmu_page *shadow;
1212
1213                 spte |= PT_WRITABLE_MASK;
1214
1215                 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
1216                 if (shadow ||
1217                    (largepage && has_wrprotected_page(vcpu->kvm, gfn))) {
1218                         pgprintk("%s: found shadow page for %lx, marking ro\n",
1219                                  __func__, gfn);
1220                         pte_access &= ~ACC_WRITE_MASK;
1221                         if (is_writeble_pte(spte)) {
1222                                 spte &= ~PT_WRITABLE_MASK;
1223                                 kvm_x86_ops->tlb_flush(vcpu);
1224                         }
1225                         if (write_fault)
1226                                 *ptwrite = 1;
1227                 }
1228         }
1229
1230         if (pte_access & ACC_WRITE_MASK)
1231                 mark_page_dirty(vcpu->kvm, gfn);
1232
1233         pgprintk("%s: setting spte %llx\n", __func__, spte);
1234         pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
1235                  (spte&PT_PAGE_SIZE_MASK)? "2MB" : "4kB",
1236                  (spte&PT_WRITABLE_MASK)?"RW":"R", gfn, spte, shadow_pte);
1237         set_shadow_pte(shadow_pte, spte);
1238         if (!was_rmapped && (spte & PT_PAGE_SIZE_MASK)
1239             && (spte & PT_PRESENT_MASK))
1240                 ++vcpu->kvm->stat.lpages;
1241
1242         page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
1243         if (!was_rmapped) {
1244                 rmap_add(vcpu, shadow_pte, gfn, largepage);
1245                 if (!is_rmap_pte(*shadow_pte))
1246                         kvm_release_pfn_clean(pfn);
1247         } else {
1248                 if (was_writeble)
1249                         kvm_release_pfn_dirty(pfn);
1250                 else
1251                         kvm_release_pfn_clean(pfn);
1252         }
1253         if (speculative) {
1254                 vcpu->arch.last_pte_updated = shadow_pte;
1255                 vcpu->arch.last_pte_gfn = gfn;
1256         }
1257 }
1258
1259 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
1260 {
1261 }
1262
1263 struct direct_shadow_walk {
1264         struct kvm_shadow_walk walker;
1265         pfn_t pfn;
1266         int write;
1267         int largepage;
1268         int pt_write;
1269 };
1270
1271 static int direct_map_entry(struct kvm_shadow_walk *_walk,
1272                             struct kvm_vcpu *vcpu,
1273                             gva_t addr, u64 *sptep, int level)
1274 {
1275         struct direct_shadow_walk *walk =
1276                 container_of(_walk, struct direct_shadow_walk, walker);
1277         struct kvm_mmu_page *sp;
1278         gfn_t pseudo_gfn;
1279         gfn_t gfn = addr >> PAGE_SHIFT;
1280
1281         if (level == PT_PAGE_TABLE_LEVEL
1282             || (walk->largepage && level == PT_DIRECTORY_LEVEL)) {
1283                 mmu_set_spte(vcpu, sptep, ACC_ALL, ACC_ALL,
1284                              0, walk->write, 1, &walk->pt_write,
1285                              walk->largepage, gfn, walk->pfn, false);
1286                 return 1;
1287         }
1288
1289         if (*sptep == shadow_trap_nonpresent_pte) {
1290                 pseudo_gfn = (addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
1291                 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, addr, level - 1,
1292                                       1, ACC_ALL, sptep);
1293                 if (!sp) {
1294                         pgprintk("nonpaging_map: ENOMEM\n");
1295                         kvm_release_pfn_clean(walk->pfn);
1296                         return -ENOMEM;
1297                 }
1298
1299                 set_shadow_pte(sptep,
1300                                __pa(sp->spt)
1301                                | PT_PRESENT_MASK | PT_WRITABLE_MASK
1302                                | shadow_user_mask | shadow_x_mask);
1303         }
1304         return 0;
1305 }
1306
1307 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
1308                         int largepage, gfn_t gfn, pfn_t pfn)
1309 {
1310         int r;
1311         struct direct_shadow_walk walker = {
1312                 .walker = { .entry = direct_map_entry, },
1313                 .pfn = pfn,
1314                 .largepage = largepage,
1315                 .write = write,
1316                 .pt_write = 0,
1317         };
1318
1319         r = walk_shadow(&walker.walker, vcpu, (gva_t)gfn << PAGE_SHIFT);
1320         if (r < 0)
1321                 return r;
1322         return walker.pt_write;
1323 }
1324
1325 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1326 {
1327         int r;
1328         int largepage = 0;
1329         pfn_t pfn;
1330         unsigned long mmu_seq;
1331
1332         down_read(&current->mm->mmap_sem);
1333         if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1334                 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1335                 largepage = 1;
1336         }
1337
1338         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1339         /* implicit mb(), we'll read before PT lock is unlocked */
1340         pfn = gfn_to_pfn(vcpu->kvm, gfn);
1341         up_read(&current->mm->mmap_sem);
1342
1343         /* mmio */
1344         if (is_error_pfn(pfn)) {
1345                 kvm_release_pfn_clean(pfn);
1346                 return 1;
1347         }
1348
1349         spin_lock(&vcpu->kvm->mmu_lock);
1350         if (mmu_notifier_retry(vcpu, mmu_seq))
1351                 goto out_unlock;
1352         kvm_mmu_free_some_pages(vcpu);
1353         r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
1354         spin_unlock(&vcpu->kvm->mmu_lock);
1355
1356
1357         return r;
1358
1359 out_unlock:
1360         spin_unlock(&vcpu->kvm->mmu_lock);
1361         kvm_release_pfn_clean(pfn);
1362         return 0;
1363 }
1364
1365
1366 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1367 {
1368         int i;
1369         struct kvm_mmu_page *sp;
1370
1371         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1372                 return;
1373         spin_lock(&vcpu->kvm->mmu_lock);
1374         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1375                 hpa_t root = vcpu->arch.mmu.root_hpa;
1376
1377                 sp = page_header(root);
1378                 --sp->root_count;
1379                 if (!sp->root_count && sp->role.invalid)
1380                         kvm_mmu_zap_page(vcpu->kvm, sp);
1381                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1382                 spin_unlock(&vcpu->kvm->mmu_lock);
1383                 return;
1384         }
1385         for (i = 0; i < 4; ++i) {
1386                 hpa_t root = vcpu->arch.mmu.pae_root[i];
1387
1388                 if (root) {
1389                         root &= PT64_BASE_ADDR_MASK;
1390                         sp = page_header(root);
1391                         --sp->root_count;
1392                         if (!sp->root_count && sp->role.invalid)
1393                                 kvm_mmu_zap_page(vcpu->kvm, sp);
1394                 }
1395                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1396         }
1397         spin_unlock(&vcpu->kvm->mmu_lock);
1398         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1399 }
1400
1401 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1402 {
1403         int i;
1404         gfn_t root_gfn;
1405         struct kvm_mmu_page *sp;
1406         int metaphysical = 0;
1407
1408         root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1409
1410         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1411                 hpa_t root = vcpu->arch.mmu.root_hpa;
1412
1413                 ASSERT(!VALID_PAGE(root));
1414                 if (tdp_enabled)
1415                         metaphysical = 1;
1416                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1417                                       PT64_ROOT_LEVEL, metaphysical,
1418                                       ACC_ALL, NULL);
1419                 root = __pa(sp->spt);
1420                 ++sp->root_count;
1421                 vcpu->arch.mmu.root_hpa = root;
1422                 return;
1423         }
1424         metaphysical = !is_paging(vcpu);
1425         if (tdp_enabled)
1426                 metaphysical = 1;
1427         for (i = 0; i < 4; ++i) {
1428                 hpa_t root = vcpu->arch.mmu.pae_root[i];
1429
1430                 ASSERT(!VALID_PAGE(root));
1431                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1432                         if (!is_present_pte(vcpu->arch.pdptrs[i])) {
1433                                 vcpu->arch.mmu.pae_root[i] = 0;
1434                                 continue;
1435                         }
1436                         root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
1437                 } else if (vcpu->arch.mmu.root_level == 0)
1438                         root_gfn = 0;
1439                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1440                                       PT32_ROOT_LEVEL, metaphysical,
1441                                       ACC_ALL, NULL);
1442                 root = __pa(sp->spt);
1443                 ++sp->root_count;
1444                 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
1445         }
1446         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
1447 }
1448
1449 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
1450 {
1451         return vaddr;
1452 }
1453
1454 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
1455                                 u32 error_code)
1456 {
1457         gfn_t gfn;
1458         int r;
1459
1460         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
1461         r = mmu_topup_memory_caches(vcpu);
1462         if (r)
1463                 return r;
1464
1465         ASSERT(vcpu);
1466         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1467
1468         gfn = gva >> PAGE_SHIFT;
1469
1470         return nonpaging_map(vcpu, gva & PAGE_MASK,
1471                              error_code & PFERR_WRITE_MASK, gfn);
1472 }
1473
1474 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
1475                                 u32 error_code)
1476 {
1477         pfn_t pfn;
1478         int r;
1479         int largepage = 0;
1480         gfn_t gfn = gpa >> PAGE_SHIFT;
1481         unsigned long mmu_seq;
1482
1483         ASSERT(vcpu);
1484         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1485
1486         r = mmu_topup_memory_caches(vcpu);
1487         if (r)
1488                 return r;
1489
1490         down_read(&current->mm->mmap_sem);
1491         if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1492                 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1493                 largepage = 1;
1494         }
1495         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1496         /* implicit mb(), we'll read before PT lock is unlocked */
1497         pfn = gfn_to_pfn(vcpu->kvm, gfn);
1498         up_read(&current->mm->mmap_sem);
1499         if (is_error_pfn(pfn)) {
1500                 kvm_release_pfn_clean(pfn);
1501                 return 1;
1502         }
1503         spin_lock(&vcpu->kvm->mmu_lock);
1504         if (mmu_notifier_retry(vcpu, mmu_seq))
1505                 goto out_unlock;
1506         kvm_mmu_free_some_pages(vcpu);
1507         r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
1508                          largepage, gfn, pfn);
1509         spin_unlock(&vcpu->kvm->mmu_lock);
1510
1511         return r;
1512
1513 out_unlock:
1514         spin_unlock(&vcpu->kvm->mmu_lock);
1515         kvm_release_pfn_clean(pfn);
1516         return 0;
1517 }
1518
1519 static void nonpaging_free(struct kvm_vcpu *vcpu)
1520 {
1521         mmu_free_roots(vcpu);
1522 }
1523
1524 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
1525 {
1526         struct kvm_mmu *context = &vcpu->arch.mmu;
1527
1528         context->new_cr3 = nonpaging_new_cr3;
1529         context->page_fault = nonpaging_page_fault;
1530         context->gva_to_gpa = nonpaging_gva_to_gpa;
1531         context->free = nonpaging_free;
1532         context->prefetch_page = nonpaging_prefetch_page;
1533         context->root_level = 0;
1534         context->shadow_root_level = PT32E_ROOT_LEVEL;
1535         context->root_hpa = INVALID_PAGE;
1536         return 0;
1537 }
1538
1539 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
1540 {
1541         ++vcpu->stat.tlb_flush;
1542         kvm_x86_ops->tlb_flush(vcpu);
1543 }
1544
1545 static void paging_new_cr3(struct kvm_vcpu *vcpu)
1546 {
1547         pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
1548         mmu_free_roots(vcpu);
1549 }
1550
1551 static void inject_page_fault(struct kvm_vcpu *vcpu,
1552                               u64 addr,
1553                               u32 err_code)
1554 {
1555         kvm_inject_page_fault(vcpu, addr, err_code);
1556 }
1557
1558 static void paging_free(struct kvm_vcpu *vcpu)
1559 {
1560         nonpaging_free(vcpu);
1561 }
1562
1563 #define PTTYPE 64
1564 #include "paging_tmpl.h"
1565 #undef PTTYPE
1566
1567 #define PTTYPE 32
1568 #include "paging_tmpl.h"
1569 #undef PTTYPE
1570
1571 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1572 {
1573         struct kvm_mmu *context = &vcpu->arch.mmu;
1574
1575         ASSERT(is_pae(vcpu));
1576         context->new_cr3 = paging_new_cr3;
1577         context->page_fault = paging64_page_fault;
1578         context->gva_to_gpa = paging64_gva_to_gpa;
1579         context->prefetch_page = paging64_prefetch_page;
1580         context->free = paging_free;
1581         context->root_level = level;
1582         context->shadow_root_level = level;
1583         context->root_hpa = INVALID_PAGE;
1584         return 0;
1585 }
1586
1587 static int paging64_init_context(struct kvm_vcpu *vcpu)
1588 {
1589         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1590 }
1591
1592 static int paging32_init_context(struct kvm_vcpu *vcpu)
1593 {
1594         struct kvm_mmu *context = &vcpu->arch.mmu;
1595
1596         context->new_cr3 = paging_new_cr3;
1597         context->page_fault = paging32_page_fault;
1598         context->gva_to_gpa = paging32_gva_to_gpa;
1599         context->free = paging_free;
1600         context->prefetch_page = paging32_prefetch_page;
1601         context->root_level = PT32_ROOT_LEVEL;
1602         context->shadow_root_level = PT32E_ROOT_LEVEL;
1603         context->root_hpa = INVALID_PAGE;
1604         return 0;
1605 }
1606
1607 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1608 {
1609         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1610 }
1611
1612 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
1613 {
1614         struct kvm_mmu *context = &vcpu->arch.mmu;
1615
1616         context->new_cr3 = nonpaging_new_cr3;
1617         context->page_fault = tdp_page_fault;
1618         context->free = nonpaging_free;
1619         context->prefetch_page = nonpaging_prefetch_page;
1620         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
1621         context->root_hpa = INVALID_PAGE;
1622
1623         if (!is_paging(vcpu)) {
1624                 context->gva_to_gpa = nonpaging_gva_to_gpa;
1625                 context->root_level = 0;
1626         } else if (is_long_mode(vcpu)) {
1627                 context->gva_to_gpa = paging64_gva_to_gpa;
1628                 context->root_level = PT64_ROOT_LEVEL;
1629         } else if (is_pae(vcpu)) {
1630                 context->gva_to_gpa = paging64_gva_to_gpa;
1631                 context->root_level = PT32E_ROOT_LEVEL;
1632         } else {
1633                 context->gva_to_gpa = paging32_gva_to_gpa;
1634                 context->root_level = PT32_ROOT_LEVEL;
1635         }
1636
1637         return 0;
1638 }
1639
1640 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
1641 {
1642         ASSERT(vcpu);
1643         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1644
1645         if (!is_paging(vcpu))
1646                 return nonpaging_init_context(vcpu);
1647         else if (is_long_mode(vcpu))
1648                 return paging64_init_context(vcpu);
1649         else if (is_pae(vcpu))
1650                 return paging32E_init_context(vcpu);
1651         else
1652                 return paging32_init_context(vcpu);
1653 }
1654
1655 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1656 {
1657         vcpu->arch.update_pte.pfn = bad_pfn;
1658
1659         if (tdp_enabled)
1660                 return init_kvm_tdp_mmu(vcpu);
1661         else
1662                 return init_kvm_softmmu(vcpu);
1663 }
1664
1665 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1666 {
1667         ASSERT(vcpu);
1668         if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
1669                 vcpu->arch.mmu.free(vcpu);
1670                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1671         }
1672 }
1673
1674 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1675 {
1676         destroy_kvm_mmu(vcpu);
1677         return init_kvm_mmu(vcpu);
1678 }
1679 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1680
1681 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1682 {
1683         int r;
1684
1685         r = mmu_topup_memory_caches(vcpu);
1686         if (r)
1687                 goto out;
1688         spin_lock(&vcpu->kvm->mmu_lock);
1689         kvm_mmu_free_some_pages(vcpu);
1690         mmu_alloc_roots(vcpu);
1691         spin_unlock(&vcpu->kvm->mmu_lock);
1692         kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
1693         kvm_mmu_flush_tlb(vcpu);
1694 out:
1695         return r;
1696 }
1697 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1698
1699 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1700 {
1701         mmu_free_roots(vcpu);
1702 }
1703
1704 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1705                                   struct kvm_mmu_page *sp,
1706                                   u64 *spte)
1707 {
1708         u64 pte;
1709         struct kvm_mmu_page *child;
1710
1711         pte = *spte;
1712         if (is_shadow_present_pte(pte)) {
1713                 if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
1714                     is_large_pte(pte))
1715                         rmap_remove(vcpu->kvm, spte);
1716                 else {
1717                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1718                         mmu_page_remove_parent_pte(child, spte);
1719                 }
1720         }
1721         set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1722         if (is_large_pte(pte))
1723                 --vcpu->kvm->stat.lpages;
1724 }
1725
1726 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1727                                   struct kvm_mmu_page *sp,
1728                                   u64 *spte,
1729                                   const void *new)
1730 {
1731         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
1732                 if (!vcpu->arch.update_pte.largepage ||
1733                     sp->role.glevels == PT32_ROOT_LEVEL) {
1734                         ++vcpu->kvm->stat.mmu_pde_zapped;
1735                         return;
1736                 }
1737         }
1738
1739         ++vcpu->kvm->stat.mmu_pte_updated;
1740         if (sp->role.glevels == PT32_ROOT_LEVEL)
1741                 paging32_update_pte(vcpu, sp, spte, new);
1742         else
1743                 paging64_update_pte(vcpu, sp, spte, new);
1744 }
1745
1746 static bool need_remote_flush(u64 old, u64 new)
1747 {
1748         if (!is_shadow_present_pte(old))
1749                 return false;
1750         if (!is_shadow_present_pte(new))
1751                 return true;
1752         if ((old ^ new) & PT64_BASE_ADDR_MASK)
1753                 return true;
1754         old ^= PT64_NX_MASK;
1755         new ^= PT64_NX_MASK;
1756         return (old & ~new & PT64_PERM_MASK) != 0;
1757 }
1758
1759 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
1760 {
1761         if (need_remote_flush(old, new))
1762                 kvm_flush_remote_tlbs(vcpu->kvm);
1763         else
1764                 kvm_mmu_flush_tlb(vcpu);
1765 }
1766
1767 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1768 {
1769         u64 *spte = vcpu->arch.last_pte_updated;
1770
1771         return !!(spte && (*spte & shadow_accessed_mask));
1772 }
1773
1774 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1775                                           const u8 *new, int bytes)
1776 {
1777         gfn_t gfn;
1778         int r;
1779         u64 gpte = 0;
1780         pfn_t pfn;
1781
1782         vcpu->arch.update_pte.largepage = 0;
1783
1784         if (bytes != 4 && bytes != 8)
1785                 return;
1786
1787         /*
1788          * Assume that the pte write on a page table of the same type
1789          * as the current vcpu paging mode.  This is nearly always true
1790          * (might be false while changing modes).  Note it is verified later
1791          * by update_pte().
1792          */
1793         if (is_pae(vcpu)) {
1794                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
1795                 if ((bytes == 4) && (gpa % 4 == 0)) {
1796                         r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
1797                         if (r)
1798                                 return;
1799                         memcpy((void *)&gpte + (gpa % 8), new, 4);
1800                 } else if ((bytes == 8) && (gpa % 8 == 0)) {
1801                         memcpy((void *)&gpte, new, 8);
1802                 }
1803         } else {
1804                 if ((bytes == 4) && (gpa % 4 == 0))
1805                         memcpy((void *)&gpte, new, 4);
1806         }
1807         if (!is_present_pte(gpte))
1808                 return;
1809         gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
1810
1811         down_read(&current->mm->mmap_sem);
1812         if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
1813                 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1814                 vcpu->arch.update_pte.largepage = 1;
1815         }
1816         vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
1817         /* implicit mb(), we'll read before PT lock is unlocked */
1818         pfn = gfn_to_pfn(vcpu->kvm, gfn);
1819         up_read(&current->mm->mmap_sem);
1820
1821         if (is_error_pfn(pfn)) {
1822                 kvm_release_pfn_clean(pfn);
1823                 return;
1824         }
1825         vcpu->arch.update_pte.gfn = gfn;
1826         vcpu->arch.update_pte.pfn = pfn;
1827 }
1828
1829 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1830 {
1831         u64 *spte = vcpu->arch.last_pte_updated;
1832
1833         if (spte
1834             && vcpu->arch.last_pte_gfn == gfn
1835             && shadow_accessed_mask
1836             && !(*spte & shadow_accessed_mask)
1837             && is_shadow_present_pte(*spte))
1838                 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1839 }
1840
1841 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1842                        const u8 *new, int bytes)
1843 {
1844         gfn_t gfn = gpa >> PAGE_SHIFT;
1845         struct kvm_mmu_page *sp;
1846         struct hlist_node *node, *n;
1847         struct hlist_head *bucket;
1848         unsigned index;
1849         u64 entry, gentry;
1850         u64 *spte;
1851         unsigned offset = offset_in_page(gpa);
1852         unsigned pte_size;
1853         unsigned page_offset;
1854         unsigned misaligned;
1855         unsigned quadrant;
1856         int level;
1857         int flooded = 0;
1858         int npte;
1859         int r;
1860
1861         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
1862         mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
1863         spin_lock(&vcpu->kvm->mmu_lock);
1864         kvm_mmu_access_page(vcpu, gfn);
1865         kvm_mmu_free_some_pages(vcpu);
1866         ++vcpu->kvm->stat.mmu_pte_write;
1867         kvm_mmu_audit(vcpu, "pre pte write");
1868         if (gfn == vcpu->arch.last_pt_write_gfn
1869             && !last_updated_pte_accessed(vcpu)) {
1870                 ++vcpu->arch.last_pt_write_count;
1871                 if (vcpu->arch.last_pt_write_count >= 3)
1872                         flooded = 1;
1873         } else {
1874                 vcpu->arch.last_pt_write_gfn = gfn;
1875                 vcpu->arch.last_pt_write_count = 1;
1876                 vcpu->arch.last_pte_updated = NULL;
1877         }
1878         index = kvm_page_table_hashfn(gfn);
1879         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1880         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
1881                 if (sp->gfn != gfn || sp->role.metaphysical || sp->role.invalid)
1882                         continue;
1883                 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1884                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1885                 misaligned |= bytes < 4;
1886                 if (misaligned || flooded) {
1887                         /*
1888                          * Misaligned accesses are too much trouble to fix
1889                          * up; also, they usually indicate a page is not used
1890                          * as a page table.
1891                          *
1892                          * If we're seeing too many writes to a page,
1893                          * it may no longer be a page table, or we may be
1894                          * forking, in which case it is better to unmap the
1895                          * page.
1896                          */
1897                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1898                                  gpa, bytes, sp->role.word);
1899                         kvm_mmu_zap_page(vcpu->kvm, sp);
1900                         ++vcpu->kvm->stat.mmu_flooded;
1901                         continue;
1902                 }
1903                 page_offset = offset;
1904                 level = sp->role.level;
1905                 npte = 1;
1906                 if (sp->role.glevels == PT32_ROOT_LEVEL) {
1907                         page_offset <<= 1;      /* 32->64 */
1908                         /*
1909                          * A 32-bit pde maps 4MB while the shadow pdes map
1910                          * only 2MB.  So we need to double the offset again
1911                          * and zap two pdes instead of one.
1912                          */
1913                         if (level == PT32_ROOT_LEVEL) {
1914                                 page_offset &= ~7; /* kill rounding error */
1915                                 page_offset <<= 1;
1916                                 npte = 2;
1917                         }
1918                         quadrant = page_offset >> PAGE_SHIFT;
1919                         page_offset &= ~PAGE_MASK;
1920                         if (quadrant != sp->role.quadrant)
1921                                 continue;
1922                 }
1923                 spte = &sp->spt[page_offset / sizeof(*spte)];
1924                 if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
1925                         gentry = 0;
1926                         r = kvm_read_guest_atomic(vcpu->kvm,
1927                                                   gpa & ~(u64)(pte_size - 1),
1928                                                   &gentry, pte_size);
1929                         new = (const void *)&gentry;
1930                         if (r < 0)
1931                                 new = NULL;
1932                 }
1933                 while (npte--) {
1934                         entry = *spte;
1935                         mmu_pte_write_zap_pte(vcpu, sp, spte);
1936                         if (new)
1937                                 mmu_pte_write_new_pte(vcpu, sp, spte, new);
1938                         mmu_pte_write_flush_tlb(vcpu, entry, *spte);
1939                         ++spte;
1940                 }
1941         }
1942         kvm_mmu_audit(vcpu, "post pte write");
1943         spin_unlock(&vcpu->kvm->mmu_lock);
1944         if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
1945                 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
1946                 vcpu->arch.update_pte.pfn = bad_pfn;
1947         }
1948 }
1949
1950 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1951 {
1952         gpa_t gpa;
1953         int r;
1954
1955         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1956
1957         spin_lock(&vcpu->kvm->mmu_lock);
1958         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1959         spin_unlock(&vcpu->kvm->mmu_lock);
1960         return r;
1961 }
1962 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
1963
1964 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1965 {
1966         while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
1967                 struct kvm_mmu_page *sp;
1968
1969                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
1970                                   struct kvm_mmu_page, link);
1971                 kvm_mmu_zap_page(vcpu->kvm, sp);
1972                 ++vcpu->kvm->stat.mmu_recycled;
1973         }
1974 }
1975
1976 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
1977 {
1978         int r;
1979         enum emulation_result er;
1980
1981         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
1982         if (r < 0)
1983                 goto out;
1984
1985         if (!r) {
1986                 r = 1;
1987                 goto out;
1988         }
1989
1990         r = mmu_topup_memory_caches(vcpu);
1991         if (r)
1992                 goto out;
1993
1994         er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
1995
1996         switch (er) {
1997         case EMULATE_DONE:
1998                 return 1;
1999         case EMULATE_DO_MMIO:
2000                 ++vcpu->stat.mmio_exits;
2001                 return 0;
2002         case EMULATE_FAIL:
2003                 kvm_report_emulation_failure(vcpu, "pagetable");
2004                 return 1;
2005         default:
2006                 BUG();
2007         }
2008 out:
2009         return r;
2010 }
2011 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
2012
2013 void kvm_enable_tdp(void)
2014 {
2015         tdp_enabled = true;
2016 }
2017 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
2018
2019 void kvm_disable_tdp(void)
2020 {
2021         tdp_enabled = false;
2022 }
2023 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
2024
2025 static void free_mmu_pages(struct kvm_vcpu *vcpu)
2026 {
2027         struct kvm_mmu_page *sp;
2028
2029         while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
2030                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
2031                                   struct kvm_mmu_page, link);
2032                 kvm_mmu_zap_page(vcpu->kvm, sp);
2033                 cond_resched();
2034         }
2035         free_page((unsigned long)vcpu->arch.mmu.pae_root);
2036 }
2037
2038 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
2039 {
2040         struct page *page;
2041         int i;
2042
2043         ASSERT(vcpu);
2044
2045         if (vcpu->kvm->arch.n_requested_mmu_pages)
2046                 vcpu->kvm->arch.n_free_mmu_pages =
2047                                         vcpu->kvm->arch.n_requested_mmu_pages;
2048         else
2049                 vcpu->kvm->arch.n_free_mmu_pages =
2050                                         vcpu->kvm->arch.n_alloc_mmu_pages;
2051         /*
2052          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
2053          * Therefore we need to allocate shadow page tables in the first
2054          * 4GB of memory, which happens to fit the DMA32 zone.
2055          */
2056         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
2057         if (!page)
2058                 goto error_1;
2059         vcpu->arch.mmu.pae_root = page_address(page);
2060         for (i = 0; i < 4; ++i)
2061                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2062
2063         return 0;
2064
2065 error_1:
2066         free_mmu_pages(vcpu);
2067         return -ENOMEM;
2068 }
2069
2070 int kvm_mmu_create(struct kvm_vcpu *vcpu)
2071 {
2072         ASSERT(vcpu);
2073         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2074
2075         return alloc_mmu_pages(vcpu);
2076 }
2077
2078 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
2079 {
2080         ASSERT(vcpu);
2081         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2082
2083         return init_kvm_mmu(vcpu);
2084 }
2085
2086 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
2087 {
2088         ASSERT(vcpu);
2089
2090         destroy_kvm_mmu(vcpu);
2091         free_mmu_pages(vcpu);
2092         mmu_free_memory_caches(vcpu);
2093 }
2094
2095 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
2096 {
2097         struct kvm_mmu_page *sp;
2098
2099         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
2100                 int i;
2101                 u64 *pt;
2102
2103                 if (!test_bit(slot, &sp->slot_bitmap))
2104                         continue;
2105
2106                 pt = sp->spt;
2107                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2108                         /* avoid RMW */
2109                         if (pt[i] & PT_WRITABLE_MASK)
2110                                 pt[i] &= ~PT_WRITABLE_MASK;
2111         }
2112 }
2113
2114 void kvm_mmu_zap_all(struct kvm *kvm)
2115 {
2116         struct kvm_mmu_page *sp, *node;
2117
2118         spin_lock(&kvm->mmu_lock);
2119         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
2120                 kvm_mmu_zap_page(kvm, sp);
2121         spin_unlock(&kvm->mmu_lock);
2122
2123         kvm_flush_remote_tlbs(kvm);
2124 }
2125
2126 static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
2127 {
2128         struct kvm_mmu_page *page;
2129
2130         page = container_of(kvm->arch.active_mmu_pages.prev,
2131                             struct kvm_mmu_page, link);
2132         kvm_mmu_zap_page(kvm, page);
2133 }
2134
2135 static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
2136 {
2137         struct kvm *kvm;
2138         struct kvm *kvm_freed = NULL;
2139         int cache_count = 0;
2140
2141         spin_lock(&kvm_lock);
2142
2143         list_for_each_entry(kvm, &vm_list, vm_list) {
2144                 int npages;
2145
2146                 if (!down_read_trylock(&kvm->slots_lock))
2147                         continue;
2148                 spin_lock(&kvm->mmu_lock);
2149                 npages = kvm->arch.n_alloc_mmu_pages -
2150                          kvm->arch.n_free_mmu_pages;
2151                 cache_count += npages;
2152                 if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
2153                         kvm_mmu_remove_one_alloc_mmu_page(kvm);
2154                         cache_count--;
2155                         kvm_freed = kvm;
2156                 }
2157                 nr_to_scan--;
2158
2159                 spin_unlock(&kvm->mmu_lock);
2160                 up_read(&kvm->slots_lock);
2161         }
2162         if (kvm_freed)
2163                 list_move_tail(&kvm_freed->vm_list, &vm_list);
2164
2165         spin_unlock(&kvm_lock);
2166
2167         return cache_count;
2168 }
2169
2170 static struct shrinker mmu_shrinker = {
2171         .shrink = mmu_shrink,
2172         .seeks = DEFAULT_SEEKS * 10,
2173 };
2174
2175 static void mmu_destroy_caches(void)
2176 {
2177         if (pte_chain_cache)
2178                 kmem_cache_destroy(pte_chain_cache);
2179         if (rmap_desc_cache)
2180                 kmem_cache_destroy(rmap_desc_cache);
2181         if (mmu_page_header_cache)
2182                 kmem_cache_destroy(mmu_page_header_cache);
2183 }
2184
2185 void kvm_mmu_module_exit(void)
2186 {
2187         mmu_destroy_caches();
2188         unregister_shrinker(&mmu_shrinker);
2189 }
2190
2191 int kvm_mmu_module_init(void)
2192 {
2193         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
2194                                             sizeof(struct kvm_pte_chain),
2195                                             0, 0, NULL);
2196         if (!pte_chain_cache)
2197                 goto nomem;
2198         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
2199                                             sizeof(struct kvm_rmap_desc),
2200                                             0, 0, NULL);
2201         if (!rmap_desc_cache)
2202                 goto nomem;
2203
2204         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
2205                                                   sizeof(struct kvm_mmu_page),
2206                                                   0, 0, NULL);
2207         if (!mmu_page_header_cache)
2208                 goto nomem;
2209
2210         register_shrinker(&mmu_shrinker);
2211
2212         return 0;
2213
2214 nomem:
2215         mmu_destroy_caches();
2216         return -ENOMEM;
2217 }
2218
2219 /*
2220  * Caculate mmu pages needed for kvm.
2221  */
2222 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
2223 {
2224         int i;
2225         unsigned int nr_mmu_pages;
2226         unsigned int  nr_pages = 0;
2227
2228         for (i = 0; i < kvm->nmemslots; i++)
2229                 nr_pages += kvm->memslots[i].npages;
2230
2231         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
2232         nr_mmu_pages = max(nr_mmu_pages,
2233                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
2234
2235         return nr_mmu_pages;
2236 }
2237
2238 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2239                                 unsigned len)
2240 {
2241         if (len > buffer->len)
2242                 return NULL;
2243         return buffer->ptr;
2244 }
2245
2246 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2247                                 unsigned len)
2248 {
2249         void *ret;
2250
2251         ret = pv_mmu_peek_buffer(buffer, len);
2252         if (!ret)
2253                 return ret;
2254         buffer->ptr += len;
2255         buffer->len -= len;
2256         buffer->processed += len;
2257         return ret;
2258 }
2259
2260 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
2261                              gpa_t addr, gpa_t value)
2262 {
2263         int bytes = 8;
2264         int r;
2265
2266         if (!is_long_mode(vcpu) && !is_pae(vcpu))
2267                 bytes = 4;
2268
2269         r = mmu_topup_memory_caches(vcpu);
2270         if (r)
2271                 return r;
2272
2273         if (!emulator_write_phys(vcpu, addr, &value, bytes))
2274                 return -EFAULT;
2275
2276         return 1;
2277 }
2278
2279 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2280 {
2281         kvm_x86_ops->tlb_flush(vcpu);
2282         return 1;
2283 }
2284
2285 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
2286 {
2287         spin_lock(&vcpu->kvm->mmu_lock);
2288         mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
2289         spin_unlock(&vcpu->kvm->mmu_lock);
2290         return 1;
2291 }
2292
2293 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
2294                              struct kvm_pv_mmu_op_buffer *buffer)
2295 {
2296         struct kvm_mmu_op_header *header;
2297
2298         header = pv_mmu_peek_buffer(buffer, sizeof *header);
2299         if (!header)
2300                 return 0;
2301         switch (header->op) {
2302         case KVM_MMU_OP_WRITE_PTE: {
2303                 struct kvm_mmu_op_write_pte *wpte;
2304
2305                 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
2306                 if (!wpte)
2307                         return 0;
2308                 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
2309                                         wpte->pte_val);
2310         }
2311         case KVM_MMU_OP_FLUSH_TLB: {
2312                 struct kvm_mmu_op_flush_tlb *ftlb;
2313
2314                 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
2315                 if (!ftlb)
2316                         return 0;
2317                 return kvm_pv_mmu_flush_tlb(vcpu);
2318         }
2319         case KVM_MMU_OP_RELEASE_PT: {
2320                 struct kvm_mmu_op_release_pt *rpt;
2321
2322                 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
2323                 if (!rpt)
2324                         return 0;
2325                 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
2326         }
2327         default: return 0;
2328         }
2329 }
2330
2331 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
2332                   gpa_t addr, unsigned long *ret)
2333 {
2334         int r;
2335         struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
2336
2337         buffer->ptr = buffer->buf;
2338         buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
2339         buffer->processed = 0;
2340
2341         r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
2342         if (r)
2343                 goto out;
2344
2345         while (buffer->len) {
2346                 r = kvm_pv_mmu_op_one(vcpu, buffer);
2347                 if (r < 0)
2348                         goto out;
2349                 if (r == 0)
2350                         break;
2351         }
2352
2353         r = 1;
2354 out:
2355         *ret = buffer->processed;
2356         return r;
2357 }
2358
2359 #ifdef AUDIT
2360
2361 static const char *audit_msg;
2362
2363 static gva_t canonicalize(gva_t gva)
2364 {
2365 #ifdef CONFIG_X86_64
2366         gva = (long long)(gva << 16) >> 16;
2367 #endif
2368         return gva;
2369 }
2370
2371 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
2372                                 gva_t va, int level)
2373 {
2374         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
2375         int i;
2376         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
2377
2378         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
2379                 u64 ent = pt[i];
2380
2381                 if (ent == shadow_trap_nonpresent_pte)
2382                         continue;
2383
2384                 va = canonicalize(va);
2385                 if (level > 1) {
2386                         if (ent == shadow_notrap_nonpresent_pte)
2387                                 printk(KERN_ERR "audit: (%s) nontrapping pte"
2388                                        " in nonleaf level: levels %d gva %lx"
2389                                        " level %d pte %llx\n", audit_msg,
2390                                        vcpu->arch.mmu.root_level, va, level, ent);
2391
2392                         audit_mappings_page(vcpu, ent, va, level - 1);
2393                 } else {
2394                         gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
2395                         hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
2396
2397                         if (is_shadow_present_pte(ent)
2398                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
2399                                 printk(KERN_ERR "xx audit error: (%s) levels %d"
2400                                        " gva %lx gpa %llx hpa %llx ent %llx %d\n",
2401                                        audit_msg, vcpu->arch.mmu.root_level,
2402                                        va, gpa, hpa, ent,
2403                                        is_shadow_present_pte(ent));
2404                         else if (ent == shadow_notrap_nonpresent_pte
2405                                  && !is_error_hpa(hpa))
2406                                 printk(KERN_ERR "audit: (%s) notrap shadow,"
2407                                        " valid guest gva %lx\n", audit_msg, va);
2408                         kvm_release_pfn_clean(pfn);
2409
2410                 }
2411         }
2412 }
2413
2414 static void audit_mappings(struct kvm_vcpu *vcpu)
2415 {
2416         unsigned i;
2417
2418         if (vcpu->arch.mmu.root_level == 4)
2419                 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
2420         else
2421                 for (i = 0; i < 4; ++i)
2422                         if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
2423                                 audit_mappings_page(vcpu,
2424                                                     vcpu->arch.mmu.pae_root[i],
2425                                                     i << 30,
2426                                                     2);
2427 }
2428
2429 static int count_rmaps(struct kvm_vcpu *vcpu)
2430 {
2431         int nmaps = 0;
2432         int i, j, k;
2433
2434         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
2435                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
2436                 struct kvm_rmap_desc *d;
2437
2438                 for (j = 0; j < m->npages; ++j) {
2439                         unsigned long *rmapp = &m->rmap[j];
2440
2441                         if (!*rmapp)
2442                                 continue;
2443                         if (!(*rmapp & 1)) {
2444                                 ++nmaps;
2445                                 continue;
2446                         }
2447                         d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
2448                         while (d) {
2449                                 for (k = 0; k < RMAP_EXT; ++k)
2450                                         if (d->shadow_ptes[k])
2451                                                 ++nmaps;
2452                                         else
2453                                                 break;
2454                                 d = d->more;
2455                         }
2456                 }
2457         }
2458         return nmaps;
2459 }
2460
2461 static int count_writable_mappings(struct kvm_vcpu *vcpu)
2462 {
2463         int nmaps = 0;
2464         struct kvm_mmu_page *sp;
2465         int i;
2466
2467         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
2468                 u64 *pt = sp->spt;
2469
2470                 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
2471                         continue;
2472
2473                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
2474                         u64 ent = pt[i];
2475
2476                         if (!(ent & PT_PRESENT_MASK))
2477                                 continue;
2478                         if (!(ent & PT_WRITABLE_MASK))
2479                                 continue;
2480                         ++nmaps;
2481                 }
2482         }
2483         return nmaps;
2484 }
2485
2486 static void audit_rmap(struct kvm_vcpu *vcpu)
2487 {
2488         int n_rmap = count_rmaps(vcpu);
2489         int n_actual = count_writable_mappings(vcpu);
2490
2491         if (n_rmap != n_actual)
2492                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
2493                        __func__, audit_msg, n_rmap, n_actual);
2494 }
2495
2496 static void audit_write_protection(struct kvm_vcpu *vcpu)
2497 {
2498         struct kvm_mmu_page *sp;
2499         struct kvm_memory_slot *slot;
2500         unsigned long *rmapp;
2501         gfn_t gfn;
2502
2503         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
2504                 if (sp->role.metaphysical)
2505                         continue;
2506
2507                 slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
2508                 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
2509                 rmapp = &slot->rmap[gfn - slot->base_gfn];
2510                 if (*rmapp)
2511                         printk(KERN_ERR "%s: (%s) shadow page has writable"
2512                                " mappings: gfn %lx role %x\n",
2513                                __func__, audit_msg, sp->gfn,
2514                                sp->role.word);
2515         }
2516 }
2517
2518 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
2519 {
2520         int olddbg = dbg;
2521
2522         dbg = 0;
2523         audit_msg = msg;
2524         audit_rmap(vcpu);
2525         audit_write_protection(vcpu);
2526         audit_mappings(vcpu);
2527         dbg = olddbg;
2528 }
2529
2530 #endif