Merge branches 'x86/urgent', 'x86/amd-iommu', 'x86/apic', 'x86/cleanups', 'x86/core...
[linux-2.6] / arch / sparc64 / kernel / smp.c
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/lmb.h>
24
25 #include <asm/head.h>
26 #include <asm/ptrace.h>
27 #include <asm/atomic.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 #include <asm/cpudata.h>
31 #include <asm/hvtramp.h>
32 #include <asm/io.h>
33 #include <asm/timer.h>
34
35 #include <asm/irq.h>
36 #include <asm/irq_regs.h>
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/oplib.h>
40 #include <asm/uaccess.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/sections.h>
44 #include <asm/prom.h>
45 #include <asm/mdesc.h>
46 #include <asm/ldc.h>
47 #include <asm/hypervisor.h>
48
49 int sparc64_multi_core __read_mostly;
50
51 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
52 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
53 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
54 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
55         { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
56
57 EXPORT_SYMBOL(cpu_possible_map);
58 EXPORT_SYMBOL(cpu_online_map);
59 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
60 EXPORT_SYMBOL(cpu_core_map);
61
62 static cpumask_t smp_commenced_mask;
63
64 void smp_info(struct seq_file *m)
65 {
66         int i;
67         
68         seq_printf(m, "State:\n");
69         for_each_online_cpu(i)
70                 seq_printf(m, "CPU%d:\t\tonline\n", i);
71 }
72
73 void smp_bogo(struct seq_file *m)
74 {
75         int i;
76         
77         for_each_online_cpu(i)
78                 seq_printf(m,
79                            "Cpu%dClkTck\t: %016lx\n",
80                            i, cpu_data(i).clock_tick);
81 }
82
83 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
84
85 extern void setup_sparc64_timer(void);
86
87 static volatile unsigned long callin_flag = 0;
88
89 void __cpuinit smp_callin(void)
90 {
91         int cpuid = hard_smp_processor_id();
92
93         __local_per_cpu_offset = __per_cpu_offset(cpuid);
94
95         if (tlb_type == hypervisor)
96                 sun4v_ktsb_register();
97
98         __flush_tlb_all();
99
100         setup_sparc64_timer();
101
102         if (cheetah_pcache_forced_on)
103                 cheetah_enable_pcache();
104
105         local_irq_enable();
106
107         callin_flag = 1;
108         __asm__ __volatile__("membar #Sync\n\t"
109                              "flush  %%g6" : : : "memory");
110
111         /* Clear this or we will die instantly when we
112          * schedule back to this idler...
113          */
114         current_thread_info()->new_child = 0;
115
116         /* Attach to the address space of init_task. */
117         atomic_inc(&init_mm.mm_count);
118         current->active_mm = &init_mm;
119
120         while (!cpu_isset(cpuid, smp_commenced_mask))
121                 rmb();
122
123         spin_lock(&call_lock);
124         cpu_set(cpuid, cpu_online_map);
125         spin_unlock(&call_lock);
126
127         /* idle thread is expected to have preempt disabled */
128         preempt_disable();
129 }
130
131 void cpu_panic(void)
132 {
133         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
134         panic("SMP bolixed\n");
135 }
136
137 /* This tick register synchronization scheme is taken entirely from
138  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
139  *
140  * The only change I've made is to rework it so that the master
141  * initiates the synchonization instead of the slave. -DaveM
142  */
143
144 #define MASTER  0
145 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
146
147 #define NUM_ROUNDS      64      /* magic value */
148 #define NUM_ITERS       5       /* likewise */
149
150 static DEFINE_SPINLOCK(itc_sync_lock);
151 static unsigned long go[SLAVE + 1];
152
153 #define DEBUG_TICK_SYNC 0
154
155 static inline long get_delta (long *rt, long *master)
156 {
157         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
158         unsigned long tcenter, t0, t1, tm;
159         unsigned long i;
160
161         for (i = 0; i < NUM_ITERS; i++) {
162                 t0 = tick_ops->get_tick();
163                 go[MASTER] = 1;
164                 membar_storeload();
165                 while (!(tm = go[SLAVE]))
166                         rmb();
167                 go[SLAVE] = 0;
168                 wmb();
169                 t1 = tick_ops->get_tick();
170
171                 if (t1 - t0 < best_t1 - best_t0)
172                         best_t0 = t0, best_t1 = t1, best_tm = tm;
173         }
174
175         *rt = best_t1 - best_t0;
176         *master = best_tm - best_t0;
177
178         /* average best_t0 and best_t1 without overflow: */
179         tcenter = (best_t0/2 + best_t1/2);
180         if (best_t0 % 2 + best_t1 % 2 == 2)
181                 tcenter++;
182         return tcenter - best_tm;
183 }
184
185 void smp_synchronize_tick_client(void)
186 {
187         long i, delta, adj, adjust_latency = 0, done = 0;
188         unsigned long flags, rt, master_time_stamp, bound;
189 #if DEBUG_TICK_SYNC
190         struct {
191                 long rt;        /* roundtrip time */
192                 long master;    /* master's timestamp */
193                 long diff;      /* difference between midpoint and master's timestamp */
194                 long lat;       /* estimate of itc adjustment latency */
195         } t[NUM_ROUNDS];
196 #endif
197
198         go[MASTER] = 1;
199
200         while (go[MASTER])
201                 rmb();
202
203         local_irq_save(flags);
204         {
205                 for (i = 0; i < NUM_ROUNDS; i++) {
206                         delta = get_delta(&rt, &master_time_stamp);
207                         if (delta == 0) {
208                                 done = 1;       /* let's lock on to this... */
209                                 bound = rt;
210                         }
211
212                         if (!done) {
213                                 if (i > 0) {
214                                         adjust_latency += -delta;
215                                         adj = -delta + adjust_latency/4;
216                                 } else
217                                         adj = -delta;
218
219                                 tick_ops->add_tick(adj);
220                         }
221 #if DEBUG_TICK_SYNC
222                         t[i].rt = rt;
223                         t[i].master = master_time_stamp;
224                         t[i].diff = delta;
225                         t[i].lat = adjust_latency/4;
226 #endif
227                 }
228         }
229         local_irq_restore(flags);
230
231 #if DEBUG_TICK_SYNC
232         for (i = 0; i < NUM_ROUNDS; i++)
233                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
234                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
235 #endif
236
237         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
238                "(last diff %ld cycles, maxerr %lu cycles)\n",
239                smp_processor_id(), delta, rt);
240 }
241
242 static void smp_start_sync_tick_client(int cpu);
243
244 static void smp_synchronize_one_tick(int cpu)
245 {
246         unsigned long flags, i;
247
248         go[MASTER] = 0;
249
250         smp_start_sync_tick_client(cpu);
251
252         /* wait for client to be ready */
253         while (!go[MASTER])
254                 rmb();
255
256         /* now let the client proceed into his loop */
257         go[MASTER] = 0;
258         membar_storeload();
259
260         spin_lock_irqsave(&itc_sync_lock, flags);
261         {
262                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
263                         while (!go[MASTER])
264                                 rmb();
265                         go[MASTER] = 0;
266                         wmb();
267                         go[SLAVE] = tick_ops->get_tick();
268                         membar_storeload();
269                 }
270         }
271         spin_unlock_irqrestore(&itc_sync_lock, flags);
272 }
273
274 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
275 /* XXX Put this in some common place. XXX */
276 static unsigned long kimage_addr_to_ra(void *p)
277 {
278         unsigned long val = (unsigned long) p;
279
280         return kern_base + (val - KERNBASE);
281 }
282
283 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
284 {
285         extern unsigned long sparc64_ttable_tl0;
286         extern unsigned long kern_locked_tte_data;
287         struct hvtramp_descr *hdesc;
288         unsigned long trampoline_ra;
289         struct trap_per_cpu *tb;
290         u64 tte_vaddr, tte_data;
291         unsigned long hv_err;
292         int i;
293
294         hdesc = kzalloc(sizeof(*hdesc) +
295                         (sizeof(struct hvtramp_mapping) *
296                          num_kernel_image_mappings - 1),
297                         GFP_KERNEL);
298         if (!hdesc) {
299                 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
300                        "hvtramp_descr.\n");
301                 return;
302         }
303
304         hdesc->cpu = cpu;
305         hdesc->num_mappings = num_kernel_image_mappings;
306
307         tb = &trap_block[cpu];
308         tb->hdesc = hdesc;
309
310         hdesc->fault_info_va = (unsigned long) &tb->fault_info;
311         hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
312
313         hdesc->thread_reg = thread_reg;
314
315         tte_vaddr = (unsigned long) KERNBASE;
316         tte_data = kern_locked_tte_data;
317
318         for (i = 0; i < hdesc->num_mappings; i++) {
319                 hdesc->maps[i].vaddr = tte_vaddr;
320                 hdesc->maps[i].tte   = tte_data;
321                 tte_vaddr += 0x400000;
322                 tte_data  += 0x400000;
323         }
324
325         trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
326
327         hv_err = sun4v_cpu_start(cpu, trampoline_ra,
328                                  kimage_addr_to_ra(&sparc64_ttable_tl0),
329                                  __pa(hdesc));
330         if (hv_err)
331                 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
332                        "gives error %lu\n", hv_err);
333 }
334 #endif
335
336 extern unsigned long sparc64_cpu_startup;
337
338 /* The OBP cpu startup callback truncates the 3rd arg cookie to
339  * 32-bits (I think) so to be safe we have it read the pointer
340  * contained here so we work on >4GB machines. -DaveM
341  */
342 static struct thread_info *cpu_new_thread = NULL;
343
344 static int __devinit smp_boot_one_cpu(unsigned int cpu)
345 {
346         struct trap_per_cpu *tb = &trap_block[cpu];
347         unsigned long entry =
348                 (unsigned long)(&sparc64_cpu_startup);
349         unsigned long cookie =
350                 (unsigned long)(&cpu_new_thread);
351         struct task_struct *p;
352         int timeout, ret;
353
354         p = fork_idle(cpu);
355         if (IS_ERR(p))
356                 return PTR_ERR(p);
357         callin_flag = 0;
358         cpu_new_thread = task_thread_info(p);
359
360         if (tlb_type == hypervisor) {
361 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
362                 if (ldom_domaining_enabled)
363                         ldom_startcpu_cpuid(cpu,
364                                             (unsigned long) cpu_new_thread);
365                 else
366 #endif
367                         prom_startcpu_cpuid(cpu, entry, cookie);
368         } else {
369                 struct device_node *dp = of_find_node_by_cpuid(cpu);
370
371                 prom_startcpu(dp->node, entry, cookie);
372         }
373
374         for (timeout = 0; timeout < 50000; timeout++) {
375                 if (callin_flag)
376                         break;
377                 udelay(100);
378         }
379
380         if (callin_flag) {
381                 ret = 0;
382         } else {
383                 printk("Processor %d is stuck.\n", cpu);
384                 ret = -ENODEV;
385         }
386         cpu_new_thread = NULL;
387
388         if (tb->hdesc) {
389                 kfree(tb->hdesc);
390                 tb->hdesc = NULL;
391         }
392
393         return ret;
394 }
395
396 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
397 {
398         u64 result, target;
399         int stuck, tmp;
400
401         if (this_is_starfire) {
402                 /* map to real upaid */
403                 cpu = (((cpu & 0x3c) << 1) |
404                         ((cpu & 0x40) >> 4) |
405                         (cpu & 0x3));
406         }
407
408         target = (cpu << 14) | 0x70;
409 again:
410         /* Ok, this is the real Spitfire Errata #54.
411          * One must read back from a UDB internal register
412          * after writes to the UDB interrupt dispatch, but
413          * before the membar Sync for that write.
414          * So we use the high UDB control register (ASI 0x7f,
415          * ADDR 0x20) for the dummy read. -DaveM
416          */
417         tmp = 0x40;
418         __asm__ __volatile__(
419         "wrpr   %1, %2, %%pstate\n\t"
420         "stxa   %4, [%0] %3\n\t"
421         "stxa   %5, [%0+%8] %3\n\t"
422         "add    %0, %8, %0\n\t"
423         "stxa   %6, [%0+%8] %3\n\t"
424         "membar #Sync\n\t"
425         "stxa   %%g0, [%7] %3\n\t"
426         "membar #Sync\n\t"
427         "mov    0x20, %%g1\n\t"
428         "ldxa   [%%g1] 0x7f, %%g0\n\t"
429         "membar #Sync"
430         : "=r" (tmp)
431         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
432           "r" (data0), "r" (data1), "r" (data2), "r" (target),
433           "r" (0x10), "0" (tmp)
434         : "g1");
435
436         /* NOTE: PSTATE_IE is still clear. */
437         stuck = 100000;
438         do {
439                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
440                         : "=r" (result)
441                         : "i" (ASI_INTR_DISPATCH_STAT));
442                 if (result == 0) {
443                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
444                                              : : "r" (pstate));
445                         return;
446                 }
447                 stuck -= 1;
448                 if (stuck == 0)
449                         break;
450         } while (result & 0x1);
451         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
452                              : : "r" (pstate));
453         if (stuck == 0) {
454                 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
455                        smp_processor_id(), result);
456         } else {
457                 udelay(2);
458                 goto again;
459         }
460 }
461
462 static inline void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
463 {
464         u64 pstate;
465         int i;
466
467         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
468         for_each_cpu_mask(i, mask)
469                 spitfire_xcall_helper(data0, data1, data2, pstate, i);
470 }
471
472 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
473  * packet, but we have no use for that.  However we do take advantage of
474  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
475  */
476 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
477 {
478         u64 pstate, ver, busy_mask;
479         int nack_busy_id, is_jbus, need_more;
480
481         if (cpus_empty(mask))
482                 return;
483
484         /* Unfortunately, someone at Sun had the brilliant idea to make the
485          * busy/nack fields hard-coded by ITID number for this Ultra-III
486          * derivative processor.
487          */
488         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
489         is_jbus = ((ver >> 32) == __JALAPENO_ID ||
490                    (ver >> 32) == __SERRANO_ID);
491
492         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
493
494 retry:
495         need_more = 0;
496         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
497                              : : "r" (pstate), "i" (PSTATE_IE));
498
499         /* Setup the dispatch data registers. */
500         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
501                              "stxa      %1, [%4] %6\n\t"
502                              "stxa      %2, [%5] %6\n\t"
503                              "membar    #Sync\n\t"
504                              : /* no outputs */
505                              : "r" (data0), "r" (data1), "r" (data2),
506                                "r" (0x40), "r" (0x50), "r" (0x60),
507                                "i" (ASI_INTR_W));
508
509         nack_busy_id = 0;
510         busy_mask = 0;
511         {
512                 int i;
513
514                 for_each_cpu_mask(i, mask) {
515                         u64 target = (i << 14) | 0x70;
516
517                         if (is_jbus) {
518                                 busy_mask |= (0x1UL << (i * 2));
519                         } else {
520                                 target |= (nack_busy_id << 24);
521                                 busy_mask |= (0x1UL <<
522                                               (nack_busy_id * 2));
523                         }
524                         __asm__ __volatile__(
525                                 "stxa   %%g0, [%0] %1\n\t"
526                                 "membar #Sync\n\t"
527                                 : /* no outputs */
528                                 : "r" (target), "i" (ASI_INTR_W));
529                         nack_busy_id++;
530                         if (nack_busy_id == 32) {
531                                 need_more = 1;
532                                 break;
533                         }
534                 }
535         }
536
537         /* Now, poll for completion. */
538         {
539                 u64 dispatch_stat, nack_mask;
540                 long stuck;
541
542                 stuck = 100000 * nack_busy_id;
543                 nack_mask = busy_mask << 1;
544                 do {
545                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
546                                              : "=r" (dispatch_stat)
547                                              : "i" (ASI_INTR_DISPATCH_STAT));
548                         if (!(dispatch_stat & (busy_mask | nack_mask))) {
549                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
550                                                      : : "r" (pstate));
551                                 if (unlikely(need_more)) {
552                                         int i, cnt = 0;
553                                         for_each_cpu_mask(i, mask) {
554                                                 cpu_clear(i, mask);
555                                                 cnt++;
556                                                 if (cnt == 32)
557                                                         break;
558                                         }
559                                         goto retry;
560                                 }
561                                 return;
562                         }
563                         if (!--stuck)
564                                 break;
565                 } while (dispatch_stat & busy_mask);
566
567                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
568                                      : : "r" (pstate));
569
570                 if (dispatch_stat & busy_mask) {
571                         /* Busy bits will not clear, continue instead
572                          * of freezing up on this cpu.
573                          */
574                         printk("CPU[%d]: mondo stuckage result[%016lx]\n",
575                                smp_processor_id(), dispatch_stat);
576                 } else {
577                         int i, this_busy_nack = 0;
578
579                         /* Delay some random time with interrupts enabled
580                          * to prevent deadlock.
581                          */
582                         udelay(2 * nack_busy_id);
583
584                         /* Clear out the mask bits for cpus which did not
585                          * NACK us.
586                          */
587                         for_each_cpu_mask(i, mask) {
588                                 u64 check_mask;
589
590                                 if (is_jbus)
591                                         check_mask = (0x2UL << (2*i));
592                                 else
593                                         check_mask = (0x2UL <<
594                                                       this_busy_nack);
595                                 if ((dispatch_stat & check_mask) == 0)
596                                         cpu_clear(i, mask);
597                                 this_busy_nack += 2;
598                                 if (this_busy_nack == 64)
599                                         break;
600                         }
601
602                         goto retry;
603                 }
604         }
605 }
606
607 /* Multi-cpu list version.  */
608 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
609 {
610         struct trap_per_cpu *tb;
611         u16 *cpu_list;
612         u64 *mondo;
613         cpumask_t error_mask;
614         unsigned long flags, status;
615         int cnt, retries, this_cpu, prev_sent, i;
616
617         if (cpus_empty(mask))
618                 return;
619
620         /* We have to do this whole thing with interrupts fully disabled.
621          * Otherwise if we send an xcall from interrupt context it will
622          * corrupt both our mondo block and cpu list state.
623          *
624          * One consequence of this is that we cannot use timeout mechanisms
625          * that depend upon interrupts being delivered locally.  So, for
626          * example, we cannot sample jiffies and expect it to advance.
627          *
628          * Fortunately, udelay() uses %stick/%tick so we can use that.
629          */
630         local_irq_save(flags);
631
632         this_cpu = smp_processor_id();
633         tb = &trap_block[this_cpu];
634
635         mondo = __va(tb->cpu_mondo_block_pa);
636         mondo[0] = data0;
637         mondo[1] = data1;
638         mondo[2] = data2;
639         wmb();
640
641         cpu_list = __va(tb->cpu_list_pa);
642
643         /* Setup the initial cpu list.  */
644         cnt = 0;
645         for_each_cpu_mask(i, mask)
646                 cpu_list[cnt++] = i;
647
648         cpus_clear(error_mask);
649         retries = 0;
650         prev_sent = 0;
651         do {
652                 int forward_progress, n_sent;
653
654                 status = sun4v_cpu_mondo_send(cnt,
655                                               tb->cpu_list_pa,
656                                               tb->cpu_mondo_block_pa);
657
658                 /* HV_EOK means all cpus received the xcall, we're done.  */
659                 if (likely(status == HV_EOK))
660                         break;
661
662                 /* First, see if we made any forward progress.
663                  *
664                  * The hypervisor indicates successful sends by setting
665                  * cpu list entries to the value 0xffff.
666                  */
667                 n_sent = 0;
668                 for (i = 0; i < cnt; i++) {
669                         if (likely(cpu_list[i] == 0xffff))
670                                 n_sent++;
671                 }
672
673                 forward_progress = 0;
674                 if (n_sent > prev_sent)
675                         forward_progress = 1;
676
677                 prev_sent = n_sent;
678
679                 /* If we get a HV_ECPUERROR, then one or more of the cpus
680                  * in the list are in error state.  Use the cpu_state()
681                  * hypervisor call to find out which cpus are in error state.
682                  */
683                 if (unlikely(status == HV_ECPUERROR)) {
684                         for (i = 0; i < cnt; i++) {
685                                 long err;
686                                 u16 cpu;
687
688                                 cpu = cpu_list[i];
689                                 if (cpu == 0xffff)
690                                         continue;
691
692                                 err = sun4v_cpu_state(cpu);
693                                 if (err >= 0 &&
694                                     err == HV_CPU_STATE_ERROR) {
695                                         cpu_list[i] = 0xffff;
696                                         cpu_set(cpu, error_mask);
697                                 }
698                         }
699                 } else if (unlikely(status != HV_EWOULDBLOCK))
700                         goto fatal_mondo_error;
701
702                 /* Don't bother rewriting the CPU list, just leave the
703                  * 0xffff and non-0xffff entries in there and the
704                  * hypervisor will do the right thing.
705                  *
706                  * Only advance timeout state if we didn't make any
707                  * forward progress.
708                  */
709                 if (unlikely(!forward_progress)) {
710                         if (unlikely(++retries > 10000))
711                                 goto fatal_mondo_timeout;
712
713                         /* Delay a little bit to let other cpus catch up
714                          * on their cpu mondo queue work.
715                          */
716                         udelay(2 * cnt);
717                 }
718         } while (1);
719
720         local_irq_restore(flags);
721
722         if (unlikely(!cpus_empty(error_mask)))
723                 goto fatal_mondo_cpu_error;
724
725         return;
726
727 fatal_mondo_cpu_error:
728         printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
729                "were in error state\n",
730                this_cpu);
731         printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
732         for_each_cpu_mask(i, error_mask)
733                 printk("%d ", i);
734         printk("]\n");
735         return;
736
737 fatal_mondo_timeout:
738         local_irq_restore(flags);
739         printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
740                " progress after %d retries.\n",
741                this_cpu, retries);
742         goto dump_cpu_list_and_out;
743
744 fatal_mondo_error:
745         local_irq_restore(flags);
746         printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
747                this_cpu, status);
748         printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
749                "mondo_block_pa(%lx)\n",
750                this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
751
752 dump_cpu_list_and_out:
753         printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
754         for (i = 0; i < cnt; i++)
755                 printk("%u ", cpu_list[i]);
756         printk("]\n");
757 }
758
759 /* Send cross call to all processors mentioned in MASK
760  * except self.
761  */
762 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
763 {
764         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
765         int this_cpu = get_cpu();
766
767         cpus_and(mask, mask, cpu_online_map);
768         cpu_clear(this_cpu, mask);
769
770         if (tlb_type == spitfire)
771                 spitfire_xcall_deliver(data0, data1, data2, mask);
772         else if (tlb_type == cheetah || tlb_type == cheetah_plus)
773                 cheetah_xcall_deliver(data0, data1, data2, mask);
774         else
775                 hypervisor_xcall_deliver(data0, data1, data2, mask);
776         /* NOTE: Caller runs local copy on master. */
777
778         put_cpu();
779 }
780
781 extern unsigned long xcall_sync_tick;
782
783 static void smp_start_sync_tick_client(int cpu)
784 {
785         cpumask_t mask = cpumask_of_cpu(cpu);
786
787         smp_cross_call_masked(&xcall_sync_tick,
788                               0, 0, 0, mask);
789 }
790
791 /* Send cross call to all processors except self. */
792 #define smp_cross_call(func, ctx, data1, data2) \
793         smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
794
795 struct call_data_struct {
796         void (*func) (void *info);
797         void *info;
798         atomic_t finished;
799         int wait;
800 };
801
802 static struct call_data_struct *call_data;
803
804 extern unsigned long xcall_call_function;
805
806 /**
807  * smp_call_function(): Run a function on all other CPUs.
808  * @func: The function to run. This must be fast and non-blocking.
809  * @info: An arbitrary pointer to pass to the function.
810  * @wait: If true, wait (atomically) until function has completed on other CPUs.
811  *
812  * Returns 0 on success, else a negative status code. Does not return until
813  * remote CPUs are nearly ready to execute <<func>> or are or have executed.
814  *
815  * You must not call this function with disabled interrupts or from a
816  * hardware interrupt handler or from a bottom half handler.
817  */
818 static int sparc64_smp_call_function_mask(void (*func)(void *info), void *info,
819                                           int wait, cpumask_t mask)
820 {
821         struct call_data_struct data;
822         int cpus;
823
824         /* Can deadlock when called with interrupts disabled */
825         WARN_ON(irqs_disabled());
826
827         data.func = func;
828         data.info = info;
829         atomic_set(&data.finished, 0);
830         data.wait = wait;
831
832         spin_lock(&call_lock);
833
834         cpu_clear(smp_processor_id(), mask);
835         cpus = cpus_weight(mask);
836         if (!cpus)
837                 goto out_unlock;
838
839         call_data = &data;
840         mb();
841
842         smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
843
844         /* Wait for response */
845         while (atomic_read(&data.finished) != cpus)
846                 cpu_relax();
847
848 out_unlock:
849         spin_unlock(&call_lock);
850
851         return 0;
852 }
853
854 int smp_call_function(void (*func)(void *info), void *info, int wait)
855 {
856         return sparc64_smp_call_function_mask(func, info, wait, cpu_online_map);
857 }
858
859 void smp_call_function_client(int irq, struct pt_regs *regs)
860 {
861         void (*func) (void *info) = call_data->func;
862         void *info = call_data->info;
863
864         clear_softint(1 << irq);
865         if (call_data->wait) {
866                 /* let initiator proceed only after completion */
867                 func(info);
868                 atomic_inc(&call_data->finished);
869         } else {
870                 /* let initiator proceed after getting data */
871                 atomic_inc(&call_data->finished);
872                 func(info);
873         }
874 }
875
876 static void tsb_sync(void *info)
877 {
878         struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
879         struct mm_struct *mm = info;
880
881         /* It is not valid to test "currrent->active_mm == mm" here.
882          *
883          * The value of "current" is not changed atomically with
884          * switch_mm().  But that's OK, we just need to check the
885          * current cpu's trap block PGD physical address.
886          */
887         if (tp->pgd_paddr == __pa(mm->pgd))
888                 tsb_context_switch(mm);
889 }
890
891 void smp_tsb_sync(struct mm_struct *mm)
892 {
893         sparc64_smp_call_function_mask(tsb_sync, mm, 1, mm->cpu_vm_mask);
894 }
895
896 extern unsigned long xcall_flush_tlb_mm;
897 extern unsigned long xcall_flush_tlb_pending;
898 extern unsigned long xcall_flush_tlb_kernel_range;
899 extern unsigned long xcall_report_regs;
900 #ifdef CONFIG_MAGIC_SYSRQ
901 extern unsigned long xcall_fetch_glob_regs;
902 #endif
903 extern unsigned long xcall_receive_signal;
904 extern unsigned long xcall_new_mmu_context_version;
905 #ifdef CONFIG_KGDB
906 extern unsigned long xcall_kgdb_capture;
907 #endif
908
909 #ifdef DCACHE_ALIASING_POSSIBLE
910 extern unsigned long xcall_flush_dcache_page_cheetah;
911 #endif
912 extern unsigned long xcall_flush_dcache_page_spitfire;
913
914 #ifdef CONFIG_DEBUG_DCFLUSH
915 extern atomic_t dcpage_flushes;
916 extern atomic_t dcpage_flushes_xcall;
917 #endif
918
919 static inline void __local_flush_dcache_page(struct page *page)
920 {
921 #ifdef DCACHE_ALIASING_POSSIBLE
922         __flush_dcache_page(page_address(page),
923                             ((tlb_type == spitfire) &&
924                              page_mapping(page) != NULL));
925 #else
926         if (page_mapping(page) != NULL &&
927             tlb_type == spitfire)
928                 __flush_icache_page(__pa(page_address(page)));
929 #endif
930 }
931
932 void smp_flush_dcache_page_impl(struct page *page, int cpu)
933 {
934         cpumask_t mask = cpumask_of_cpu(cpu);
935         int this_cpu;
936
937         if (tlb_type == hypervisor)
938                 return;
939
940 #ifdef CONFIG_DEBUG_DCFLUSH
941         atomic_inc(&dcpage_flushes);
942 #endif
943
944         this_cpu = get_cpu();
945
946         if (cpu == this_cpu) {
947                 __local_flush_dcache_page(page);
948         } else if (cpu_online(cpu)) {
949                 void *pg_addr = page_address(page);
950                 u64 data0;
951
952                 if (tlb_type == spitfire) {
953                         data0 =
954                                 ((u64)&xcall_flush_dcache_page_spitfire);
955                         if (page_mapping(page) != NULL)
956                                 data0 |= ((u64)1 << 32);
957                         spitfire_xcall_deliver(data0,
958                                                __pa(pg_addr),
959                                                (u64) pg_addr,
960                                                mask);
961                 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
962 #ifdef DCACHE_ALIASING_POSSIBLE
963                         data0 =
964                                 ((u64)&xcall_flush_dcache_page_cheetah);
965                         cheetah_xcall_deliver(data0,
966                                               __pa(pg_addr),
967                                               0, mask);
968 #endif
969                 }
970 #ifdef CONFIG_DEBUG_DCFLUSH
971                 atomic_inc(&dcpage_flushes_xcall);
972 #endif
973         }
974
975         put_cpu();
976 }
977
978 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
979 {
980         void *pg_addr = page_address(page);
981         cpumask_t mask = cpu_online_map;
982         u64 data0;
983         int this_cpu;
984
985         if (tlb_type == hypervisor)
986                 return;
987
988         this_cpu = get_cpu();
989
990         cpu_clear(this_cpu, mask);
991
992 #ifdef CONFIG_DEBUG_DCFLUSH
993         atomic_inc(&dcpage_flushes);
994 #endif
995         if (cpus_empty(mask))
996                 goto flush_self;
997         if (tlb_type == spitfire) {
998                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
999                 if (page_mapping(page) != NULL)
1000                         data0 |= ((u64)1 << 32);
1001                 spitfire_xcall_deliver(data0,
1002                                        __pa(pg_addr),
1003                                        (u64) pg_addr,
1004                                        mask);
1005         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1006 #ifdef DCACHE_ALIASING_POSSIBLE
1007                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1008                 cheetah_xcall_deliver(data0,
1009                                       __pa(pg_addr),
1010                                       0, mask);
1011 #endif
1012         }
1013 #ifdef CONFIG_DEBUG_DCFLUSH
1014         atomic_inc(&dcpage_flushes_xcall);
1015 #endif
1016  flush_self:
1017         __local_flush_dcache_page(page);
1018
1019         put_cpu();
1020 }
1021
1022 static void __smp_receive_signal_mask(cpumask_t mask)
1023 {
1024         smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
1025 }
1026
1027 void smp_receive_signal(int cpu)
1028 {
1029         cpumask_t mask = cpumask_of_cpu(cpu);
1030
1031         if (cpu_online(cpu))
1032                 __smp_receive_signal_mask(mask);
1033 }
1034
1035 void smp_receive_signal_client(int irq, struct pt_regs *regs)
1036 {
1037         clear_softint(1 << irq);
1038 }
1039
1040 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1041 {
1042         struct mm_struct *mm;
1043         unsigned long flags;
1044
1045         clear_softint(1 << irq);
1046
1047         /* See if we need to allocate a new TLB context because
1048          * the version of the one we are using is now out of date.
1049          */
1050         mm = current->active_mm;
1051         if (unlikely(!mm || (mm == &init_mm)))
1052                 return;
1053
1054         spin_lock_irqsave(&mm->context.lock, flags);
1055
1056         if (unlikely(!CTX_VALID(mm->context)))
1057                 get_new_mmu_context(mm);
1058
1059         spin_unlock_irqrestore(&mm->context.lock, flags);
1060
1061         load_secondary_context(mm);
1062         __flush_tlb_mm(CTX_HWBITS(mm->context),
1063                        SECONDARY_CONTEXT);
1064 }
1065
1066 void smp_new_mmu_context_version(void)
1067 {
1068         smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1069 }
1070
1071 #ifdef CONFIG_KGDB
1072 void kgdb_roundup_cpus(unsigned long flags)
1073 {
1074         smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1075 }
1076 #endif
1077
1078 void smp_report_regs(void)
1079 {
1080         smp_cross_call(&xcall_report_regs, 0, 0, 0);
1081 }
1082
1083 #ifdef CONFIG_MAGIC_SYSRQ
1084 void smp_fetch_global_regs(void)
1085 {
1086         smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1087 }
1088 #endif
1089
1090 /* We know that the window frames of the user have been flushed
1091  * to the stack before we get here because all callers of us
1092  * are flush_tlb_*() routines, and these run after flush_cache_*()
1093  * which performs the flushw.
1094  *
1095  * The SMP TLB coherency scheme we use works as follows:
1096  *
1097  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1098  *    space has (potentially) executed on, this is the heuristic
1099  *    we use to avoid doing cross calls.
1100  *
1101  *    Also, for flushing from kswapd and also for clones, we
1102  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1103  *
1104  * 2) TLB context numbers are shared globally across all processors
1105  *    in the system, this allows us to play several games to avoid
1106  *    cross calls.
1107  *
1108  *    One invariant is that when a cpu switches to a process, and
1109  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1110  *    current cpu's bit set, that tlb context is flushed locally.
1111  *
1112  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1113  *    cross calls when we want to flush the currently running process's
1114  *    tlb state.  This is done by clearing all cpu bits except the current
1115  *    processor's in current->active_mm->cpu_vm_mask and performing the
1116  *    flush locally only.  This will force any subsequent cpus which run
1117  *    this task to flush the context from the local tlb if the process
1118  *    migrates to another cpu (again).
1119  *
1120  * 3) For shared address spaces (threads) and swapping we bite the
1121  *    bullet for most cases and perform the cross call (but only to
1122  *    the cpus listed in cpu_vm_mask).
1123  *
1124  *    The performance gain from "optimizing" away the cross call for threads is
1125  *    questionable (in theory the big win for threads is the massive sharing of
1126  *    address space state across processors).
1127  */
1128
1129 /* This currently is only used by the hugetlb arch pre-fault
1130  * hook on UltraSPARC-III+ and later when changing the pagesize
1131  * bits of the context register for an address space.
1132  */
1133 void smp_flush_tlb_mm(struct mm_struct *mm)
1134 {
1135         u32 ctx = CTX_HWBITS(mm->context);
1136         int cpu = get_cpu();
1137
1138         if (atomic_read(&mm->mm_users) == 1) {
1139                 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1140                 goto local_flush_and_out;
1141         }
1142
1143         smp_cross_call_masked(&xcall_flush_tlb_mm,
1144                               ctx, 0, 0,
1145                               mm->cpu_vm_mask);
1146
1147 local_flush_and_out:
1148         __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1149
1150         put_cpu();
1151 }
1152
1153 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1154 {
1155         u32 ctx = CTX_HWBITS(mm->context);
1156         int cpu = get_cpu();
1157
1158         if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1159                 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1160         else
1161                 smp_cross_call_masked(&xcall_flush_tlb_pending,
1162                                       ctx, nr, (unsigned long) vaddrs,
1163                                       mm->cpu_vm_mask);
1164
1165         __flush_tlb_pending(ctx, nr, vaddrs);
1166
1167         put_cpu();
1168 }
1169
1170 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1171 {
1172         start &= PAGE_MASK;
1173         end    = PAGE_ALIGN(end);
1174         if (start != end) {
1175                 smp_cross_call(&xcall_flush_tlb_kernel_range,
1176                                0, start, end);
1177
1178                 __flush_tlb_kernel_range(start, end);
1179         }
1180 }
1181
1182 /* CPU capture. */
1183 /* #define CAPTURE_DEBUG */
1184 extern unsigned long xcall_capture;
1185
1186 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1187 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1188 static unsigned long penguins_are_doing_time;
1189
1190 void smp_capture(void)
1191 {
1192         int result = atomic_add_ret(1, &smp_capture_depth);
1193
1194         if (result == 1) {
1195                 int ncpus = num_online_cpus();
1196
1197 #ifdef CAPTURE_DEBUG
1198                 printk("CPU[%d]: Sending penguins to jail...",
1199                        smp_processor_id());
1200 #endif
1201                 penguins_are_doing_time = 1;
1202                 membar_storestore_loadstore();
1203                 atomic_inc(&smp_capture_registry);
1204                 smp_cross_call(&xcall_capture, 0, 0, 0);
1205                 while (atomic_read(&smp_capture_registry) != ncpus)
1206                         rmb();
1207 #ifdef CAPTURE_DEBUG
1208                 printk("done\n");
1209 #endif
1210         }
1211 }
1212
1213 void smp_release(void)
1214 {
1215         if (atomic_dec_and_test(&smp_capture_depth)) {
1216 #ifdef CAPTURE_DEBUG
1217                 printk("CPU[%d]: Giving pardon to "
1218                        "imprisoned penguins\n",
1219                        smp_processor_id());
1220 #endif
1221                 penguins_are_doing_time = 0;
1222                 membar_storeload_storestore();
1223                 atomic_dec(&smp_capture_registry);
1224         }
1225 }
1226
1227 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1228  * can service tlb flush xcalls...
1229  */
1230 extern void prom_world(int);
1231
1232 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1233 {
1234         clear_softint(1 << irq);
1235
1236         preempt_disable();
1237
1238         __asm__ __volatile__("flushw");
1239         prom_world(1);
1240         atomic_inc(&smp_capture_registry);
1241         membar_storeload_storestore();
1242         while (penguins_are_doing_time)
1243                 rmb();
1244         atomic_dec(&smp_capture_registry);
1245         prom_world(0);
1246
1247         preempt_enable();
1248 }
1249
1250 /* /proc/profile writes can call this, don't __init it please. */
1251 int setup_profiling_timer(unsigned int multiplier)
1252 {
1253         return -EINVAL;
1254 }
1255
1256 void __init smp_prepare_cpus(unsigned int max_cpus)
1257 {
1258 }
1259
1260 void __devinit smp_prepare_boot_cpu(void)
1261 {
1262 }
1263
1264 void __devinit smp_fill_in_sib_core_maps(void)
1265 {
1266         unsigned int i;
1267
1268         for_each_present_cpu(i) {
1269                 unsigned int j;
1270
1271                 cpus_clear(cpu_core_map[i]);
1272                 if (cpu_data(i).core_id == 0) {
1273                         cpu_set(i, cpu_core_map[i]);
1274                         continue;
1275                 }
1276
1277                 for_each_present_cpu(j) {
1278                         if (cpu_data(i).core_id ==
1279                             cpu_data(j).core_id)
1280                                 cpu_set(j, cpu_core_map[i]);
1281                 }
1282         }
1283
1284         for_each_present_cpu(i) {
1285                 unsigned int j;
1286
1287                 cpus_clear(per_cpu(cpu_sibling_map, i));
1288                 if (cpu_data(i).proc_id == -1) {
1289                         cpu_set(i, per_cpu(cpu_sibling_map, i));
1290                         continue;
1291                 }
1292
1293                 for_each_present_cpu(j) {
1294                         if (cpu_data(i).proc_id ==
1295                             cpu_data(j).proc_id)
1296                                 cpu_set(j, per_cpu(cpu_sibling_map, i));
1297                 }
1298         }
1299 }
1300
1301 int __cpuinit __cpu_up(unsigned int cpu)
1302 {
1303         int ret = smp_boot_one_cpu(cpu);
1304
1305         if (!ret) {
1306                 cpu_set(cpu, smp_commenced_mask);
1307                 while (!cpu_isset(cpu, cpu_online_map))
1308                         mb();
1309                 if (!cpu_isset(cpu, cpu_online_map)) {
1310                         ret = -ENODEV;
1311                 } else {
1312                         /* On SUN4V, writes to %tick and %stick are
1313                          * not allowed.
1314                          */
1315                         if (tlb_type != hypervisor)
1316                                 smp_synchronize_one_tick(cpu);
1317                 }
1318         }
1319         return ret;
1320 }
1321
1322 #ifdef CONFIG_HOTPLUG_CPU
1323 void cpu_play_dead(void)
1324 {
1325         int cpu = smp_processor_id();
1326         unsigned long pstate;
1327
1328         idle_task_exit();
1329
1330         if (tlb_type == hypervisor) {
1331                 struct trap_per_cpu *tb = &trap_block[cpu];
1332
1333                 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1334                                 tb->cpu_mondo_pa, 0);
1335                 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1336                                 tb->dev_mondo_pa, 0);
1337                 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1338                                 tb->resum_mondo_pa, 0);
1339                 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1340                                 tb->nonresum_mondo_pa, 0);
1341         }
1342
1343         cpu_clear(cpu, smp_commenced_mask);
1344         membar_safe("#Sync");
1345
1346         local_irq_disable();
1347
1348         __asm__ __volatile__(
1349                 "rdpr   %%pstate, %0\n\t"
1350                 "wrpr   %0, %1, %%pstate"
1351                 : "=r" (pstate)
1352                 : "i" (PSTATE_IE));
1353
1354         while (1)
1355                 barrier();
1356 }
1357
1358 int __cpu_disable(void)
1359 {
1360         int cpu = smp_processor_id();
1361         cpuinfo_sparc *c;
1362         int i;
1363
1364         for_each_cpu_mask(i, cpu_core_map[cpu])
1365                 cpu_clear(cpu, cpu_core_map[i]);
1366         cpus_clear(cpu_core_map[cpu]);
1367
1368         for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1369                 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1370         cpus_clear(per_cpu(cpu_sibling_map, cpu));
1371
1372         c = &cpu_data(cpu);
1373
1374         c->core_id = 0;
1375         c->proc_id = -1;
1376
1377         spin_lock(&call_lock);
1378         cpu_clear(cpu, cpu_online_map);
1379         spin_unlock(&call_lock);
1380
1381         smp_wmb();
1382
1383         /* Make sure no interrupts point to this cpu.  */
1384         fixup_irqs();
1385
1386         local_irq_enable();
1387         mdelay(1);
1388         local_irq_disable();
1389
1390         return 0;
1391 }
1392
1393 void __cpu_die(unsigned int cpu)
1394 {
1395         int i;
1396
1397         for (i = 0; i < 100; i++) {
1398                 smp_rmb();
1399                 if (!cpu_isset(cpu, smp_commenced_mask))
1400                         break;
1401                 msleep(100);
1402         }
1403         if (cpu_isset(cpu, smp_commenced_mask)) {
1404                 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1405         } else {
1406 #if defined(CONFIG_SUN_LDOMS)
1407                 unsigned long hv_err;
1408                 int limit = 100;
1409
1410                 do {
1411                         hv_err = sun4v_cpu_stop(cpu);
1412                         if (hv_err == HV_EOK) {
1413                                 cpu_clear(cpu, cpu_present_map);
1414                                 break;
1415                         }
1416                 } while (--limit > 0);
1417                 if (limit <= 0) {
1418                         printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1419                                hv_err);
1420                 }
1421 #endif
1422         }
1423 }
1424 #endif
1425
1426 void __init smp_cpus_done(unsigned int max_cpus)
1427 {
1428 }
1429
1430 void smp_send_reschedule(int cpu)
1431 {
1432         smp_receive_signal(cpu);
1433 }
1434
1435 /* This is a nop because we capture all other cpus
1436  * anyways when making the PROM active.
1437  */
1438 void smp_send_stop(void)
1439 {
1440 }
1441
1442 unsigned long __per_cpu_base __read_mostly;
1443 unsigned long __per_cpu_shift __read_mostly;
1444
1445 EXPORT_SYMBOL(__per_cpu_base);
1446 EXPORT_SYMBOL(__per_cpu_shift);
1447
1448 void __init real_setup_per_cpu_areas(void)
1449 {
1450         unsigned long paddr, goal, size, i;
1451         char *ptr;
1452
1453         /* Copy section for each CPU (we discard the original) */
1454         goal = PERCPU_ENOUGH_ROOM;
1455
1456         __per_cpu_shift = PAGE_SHIFT;
1457         for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1458                 __per_cpu_shift++;
1459
1460         paddr = lmb_alloc(size * NR_CPUS, PAGE_SIZE);
1461         if (!paddr) {
1462                 prom_printf("Cannot allocate per-cpu memory.\n");
1463                 prom_halt();
1464         }
1465
1466         ptr = __va(paddr);
1467         __per_cpu_base = ptr - __per_cpu_start;
1468
1469         for (i = 0; i < NR_CPUS; i++, ptr += size)
1470                 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1471
1472         /* Setup %g5 for the boot cpu.  */
1473         __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1474 }