MIPS: Alchemy: Timer build fix
[linux-2.6] / arch / mips / kernel / setup.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/module.h>
16 #include <linux/screen_info.h>
17 #include <linux/bootmem.h>
18 #include <linux/initrd.h>
19 #include <linux/root_dev.h>
20 #include <linux/highmem.h>
21 #include <linux/console.h>
22 #include <linux/pfn.h>
23 #include <linux/debugfs.h>
24
25 #include <asm/addrspace.h>
26 #include <asm/bootinfo.h>
27 #include <asm/bugs.h>
28 #include <asm/cache.h>
29 #include <asm/cpu.h>
30 #include <asm/sections.h>
31 #include <asm/setup.h>
32 #include <asm/smp-ops.h>
33 #include <asm/system.h>
34
35 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
36
37 EXPORT_SYMBOL(cpu_data);
38
39 #ifdef CONFIG_VT
40 struct screen_info screen_info;
41 #endif
42
43 /*
44  * Despite it's name this variable is even if we don't have PCI
45  */
46 unsigned int PCI_DMA_BUS_IS_PHYS;
47
48 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
49
50 /*
51  * Setup information
52  *
53  * These are initialized so they are in the .data section
54  */
55 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
56
57 EXPORT_SYMBOL(mips_machtype);
58
59 struct boot_mem_map boot_mem_map;
60
61 static char command_line[CL_SIZE];
62        char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
63
64 /*
65  * mips_io_port_base is the begin of the address space to which x86 style
66  * I/O ports are mapped.
67  */
68 const unsigned long mips_io_port_base __read_mostly = -1;
69 EXPORT_SYMBOL(mips_io_port_base);
70
71 static struct resource code_resource = { .name = "Kernel code", };
72 static struct resource data_resource = { .name = "Kernel data", };
73
74 void __init add_memory_region(phys_t start, phys_t size, long type)
75 {
76         int x = boot_mem_map.nr_map;
77         struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
78
79         /* Sanity check */
80         if (start + size < start) {
81                 pr_warning("Trying to add an invalid memory region, skipped\n");
82                 return;
83         }
84
85         /*
86          * Try to merge with previous entry if any.  This is far less than
87          * perfect but is sufficient for most real world cases.
88          */
89         if (x && prev->addr + prev->size == start && prev->type == type) {
90                 prev->size += size;
91                 return;
92         }
93
94         if (x == BOOT_MEM_MAP_MAX) {
95                 pr_err("Ooops! Too many entries in the memory map!\n");
96                 return;
97         }
98
99         boot_mem_map.map[x].addr = start;
100         boot_mem_map.map[x].size = size;
101         boot_mem_map.map[x].type = type;
102         boot_mem_map.nr_map++;
103 }
104
105 static void __init print_memory_map(void)
106 {
107         int i;
108         const int field = 2 * sizeof(unsigned long);
109
110         for (i = 0; i < boot_mem_map.nr_map; i++) {
111                 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
112                        field, (unsigned long long) boot_mem_map.map[i].size,
113                        field, (unsigned long long) boot_mem_map.map[i].addr);
114
115                 switch (boot_mem_map.map[i].type) {
116                 case BOOT_MEM_RAM:
117                         printk(KERN_CONT "(usable)\n");
118                         break;
119                 case BOOT_MEM_ROM_DATA:
120                         printk(KERN_CONT "(ROM data)\n");
121                         break;
122                 case BOOT_MEM_RESERVED:
123                         printk(KERN_CONT "(reserved)\n");
124                         break;
125                 default:
126                         printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
127                         break;
128                 }
129         }
130 }
131
132 /*
133  * Manage initrd
134  */
135 #ifdef CONFIG_BLK_DEV_INITRD
136
137 static int __init rd_start_early(char *p)
138 {
139         unsigned long start = memparse(p, &p);
140
141 #ifdef CONFIG_64BIT
142         /* Guess if the sign extension was forgotten by bootloader */
143         if (start < XKPHYS)
144                 start = (int)start;
145 #endif
146         initrd_start = start;
147         initrd_end += start;
148         return 0;
149 }
150 early_param("rd_start", rd_start_early);
151
152 static int __init rd_size_early(char *p)
153 {
154         initrd_end += memparse(p, &p);
155         return 0;
156 }
157 early_param("rd_size", rd_size_early);
158
159 /* it returns the next free pfn after initrd */
160 static unsigned long __init init_initrd(void)
161 {
162         unsigned long end;
163
164         /*
165          * Board specific code or command line parser should have
166          * already set up initrd_start and initrd_end. In these cases
167          * perfom sanity checks and use them if all looks good.
168          */
169         if (!initrd_start || initrd_end <= initrd_start) {
170 #ifdef CONFIG_PROBE_INITRD_HEADER
171                 u32 *initrd_header;
172
173                 /*
174                  * See if initrd has been added to the kernel image by
175                  * arch/mips/boot/addinitrd.c. In that case a header is
176                  * prepended to initrd and is made up by 8 bytes. The first
177                  * word is a magic number and the second one is the size of
178                  * initrd.  Initrd start must be page aligned in any cases.
179                  */
180                 initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8;
181                 if (initrd_header[0] != 0x494E5244)
182                         goto disable;
183                 initrd_start = (unsigned long)(initrd_header + 2);
184                 initrd_end = initrd_start + initrd_header[1];
185 #else
186                 goto disable;
187 #endif
188         }
189
190         if (initrd_start & ~PAGE_MASK) {
191                 pr_err("initrd start must be page aligned\n");
192                 goto disable;
193         }
194         if (initrd_start < PAGE_OFFSET) {
195                 pr_err("initrd start < PAGE_OFFSET\n");
196                 goto disable;
197         }
198
199         /*
200          * Sanitize initrd addresses. For example firmware
201          * can't guess if they need to pass them through
202          * 64-bits values if the kernel has been built in pure
203          * 32-bit. We need also to switch from KSEG0 to XKPHYS
204          * addresses now, so the code can now safely use __pa().
205          */
206         end = __pa(initrd_end);
207         initrd_end = (unsigned long)__va(end);
208         initrd_start = (unsigned long)__va(__pa(initrd_start));
209
210         ROOT_DEV = Root_RAM0;
211         return PFN_UP(end);
212 disable:
213         initrd_start = 0;
214         initrd_end = 0;
215         return 0;
216 }
217
218 static void __init finalize_initrd(void)
219 {
220         unsigned long size = initrd_end - initrd_start;
221
222         if (size == 0) {
223                 printk(KERN_INFO "Initrd not found or empty");
224                 goto disable;
225         }
226         if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
227                 printk(KERN_ERR "Initrd extends beyond end of memory");
228                 goto disable;
229         }
230
231         reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
232         initrd_below_start_ok = 1;
233
234         pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
235                 initrd_start, size);
236         return;
237 disable:
238         printk(KERN_CONT " - disabling initrd\n");
239         initrd_start = 0;
240         initrd_end = 0;
241 }
242
243 #else  /* !CONFIG_BLK_DEV_INITRD */
244
245 static unsigned long __init init_initrd(void)
246 {
247         return 0;
248 }
249
250 #define finalize_initrd()       do {} while (0)
251
252 #endif
253
254 /*
255  * Initialize the bootmem allocator. It also setup initrd related data
256  * if needed.
257  */
258 #ifdef CONFIG_SGI_IP27
259
260 static void __init bootmem_init(void)
261 {
262         init_initrd();
263         finalize_initrd();
264 }
265
266 #else  /* !CONFIG_SGI_IP27 */
267
268 static void __init bootmem_init(void)
269 {
270         unsigned long reserved_end;
271         unsigned long mapstart = ~0UL;
272         unsigned long bootmap_size;
273         int i;
274
275         /*
276          * Init any data related to initrd. It's a nop if INITRD is
277          * not selected. Once that done we can determine the low bound
278          * of usable memory.
279          */
280         reserved_end = max(init_initrd(),
281                            (unsigned long) PFN_UP(__pa_symbol(&_end)));
282
283         /*
284          * max_low_pfn is not a number of pages. The number of pages
285          * of the system is given by 'max_low_pfn - min_low_pfn'.
286          */
287         min_low_pfn = ~0UL;
288         max_low_pfn = 0;
289
290         /*
291          * Find the highest page frame number we have available.
292          */
293         for (i = 0; i < boot_mem_map.nr_map; i++) {
294                 unsigned long start, end;
295
296                 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
297                         continue;
298
299                 start = PFN_UP(boot_mem_map.map[i].addr);
300                 end = PFN_DOWN(boot_mem_map.map[i].addr
301                                 + boot_mem_map.map[i].size);
302
303                 if (end > max_low_pfn)
304                         max_low_pfn = end;
305                 if (start < min_low_pfn)
306                         min_low_pfn = start;
307                 if (end <= reserved_end)
308                         continue;
309                 if (start >= mapstart)
310                         continue;
311                 mapstart = max(reserved_end, start);
312         }
313
314         if (min_low_pfn >= max_low_pfn)
315                 panic("Incorrect memory mapping !!!");
316         if (min_low_pfn > ARCH_PFN_OFFSET) {
317                 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
318                         (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
319                         min_low_pfn - ARCH_PFN_OFFSET);
320         } else if (min_low_pfn < ARCH_PFN_OFFSET) {
321                 pr_info("%lu free pages won't be used\n",
322                         ARCH_PFN_OFFSET - min_low_pfn);
323         }
324         min_low_pfn = ARCH_PFN_OFFSET;
325
326         /*
327          * Determine low and high memory ranges
328          */
329         max_pfn = max_low_pfn;
330         if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
331 #ifdef CONFIG_HIGHMEM
332                 highstart_pfn = PFN_DOWN(HIGHMEM_START);
333                 highend_pfn = max_low_pfn;
334 #endif
335                 max_low_pfn = PFN_DOWN(HIGHMEM_START);
336         }
337
338         /*
339          * Initialize the boot-time allocator with low memory only.
340          */
341         bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
342                                          min_low_pfn, max_low_pfn);
343
344
345         for (i = 0; i < boot_mem_map.nr_map; i++) {
346                 unsigned long start, end;
347
348                 start = PFN_UP(boot_mem_map.map[i].addr);
349                 end = PFN_DOWN(boot_mem_map.map[i].addr
350                                 + boot_mem_map.map[i].size);
351
352                 if (start <= min_low_pfn)
353                         start = min_low_pfn;
354                 if (start >= end)
355                         continue;
356
357 #ifndef CONFIG_HIGHMEM
358                 if (end > max_low_pfn)
359                         end = max_low_pfn;
360
361                 /*
362                  * ... finally, is the area going away?
363                  */
364                 if (end <= start)
365                         continue;
366 #endif
367
368                 add_active_range(0, start, end);
369         }
370
371         /*
372          * Register fully available low RAM pages with the bootmem allocator.
373          */
374         for (i = 0; i < boot_mem_map.nr_map; i++) {
375                 unsigned long start, end, size;
376
377                 /*
378                  * Reserve usable memory.
379                  */
380                 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
381                         continue;
382
383                 start = PFN_UP(boot_mem_map.map[i].addr);
384                 end   = PFN_DOWN(boot_mem_map.map[i].addr
385                                     + boot_mem_map.map[i].size);
386                 /*
387                  * We are rounding up the start address of usable memory
388                  * and at the end of the usable range downwards.
389                  */
390                 if (start >= max_low_pfn)
391                         continue;
392                 if (start < reserved_end)
393                         start = reserved_end;
394                 if (end > max_low_pfn)
395                         end = max_low_pfn;
396
397                 /*
398                  * ... finally, is the area going away?
399                  */
400                 if (end <= start)
401                         continue;
402                 size = end - start;
403
404                 /* Register lowmem ranges */
405                 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
406                 memory_present(0, start, end);
407         }
408
409         /*
410          * Reserve the bootmap memory.
411          */
412         reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
413
414         /*
415          * Reserve initrd memory if needed.
416          */
417         finalize_initrd();
418 }
419
420 #endif  /* CONFIG_SGI_IP27 */
421
422 /*
423  * arch_mem_init - initialize memory management subsystem
424  *
425  *  o plat_mem_setup() detects the memory configuration and will record detected
426  *    memory areas using add_memory_region.
427  *
428  * At this stage the memory configuration of the system is known to the
429  * kernel but generic memory management system is still entirely uninitialized.
430  *
431  *  o bootmem_init()
432  *  o sparse_init()
433  *  o paging_init()
434  *
435  * At this stage the bootmem allocator is ready to use.
436  *
437  * NOTE: historically plat_mem_setup did the entire platform initialization.
438  *       This was rather impractical because it meant plat_mem_setup had to
439  * get away without any kind of memory allocator.  To keep old code from
440  * breaking plat_setup was just renamed to plat_setup and a second platform
441  * initialization hook for anything else was introduced.
442  */
443
444 static int usermem __initdata = 0;
445
446 static int __init early_parse_mem(char *p)
447 {
448         unsigned long start, size;
449
450         /*
451          * If a user specifies memory size, we
452          * blow away any automatically generated
453          * size.
454          */
455         if (usermem == 0) {
456                 boot_mem_map.nr_map = 0;
457                 usermem = 1;
458         }
459         start = 0;
460         size = memparse(p, &p);
461         if (*p == '@')
462                 start = memparse(p + 1, &p);
463
464         add_memory_region(start, size, BOOT_MEM_RAM);
465         return 0;
466 }
467 early_param("mem", early_parse_mem);
468
469 static void __init arch_mem_init(char **cmdline_p)
470 {
471         extern void plat_mem_setup(void);
472
473         /* call board setup routine */
474         plat_mem_setup();
475
476         pr_info("Determined physical RAM map:\n");
477         print_memory_map();
478
479         strlcpy(command_line, arcs_cmdline, sizeof(command_line));
480         strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
481
482         *cmdline_p = command_line;
483
484         parse_early_param();
485
486         if (usermem) {
487                 pr_info("User-defined physical RAM map:\n");
488                 print_memory_map();
489         }
490
491         bootmem_init();
492         sparse_init();
493         paging_init();
494 }
495
496 static void __init resource_init(void)
497 {
498         int i;
499
500         if (UNCAC_BASE != IO_BASE)
501                 return;
502
503         code_resource.start = __pa_symbol(&_text);
504         code_resource.end = __pa_symbol(&_etext) - 1;
505         data_resource.start = __pa_symbol(&_etext);
506         data_resource.end = __pa_symbol(&_edata) - 1;
507
508         /*
509          * Request address space for all standard RAM.
510          */
511         for (i = 0; i < boot_mem_map.nr_map; i++) {
512                 struct resource *res;
513                 unsigned long start, end;
514
515                 start = boot_mem_map.map[i].addr;
516                 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
517                 if (start >= HIGHMEM_START)
518                         continue;
519                 if (end >= HIGHMEM_START)
520                         end = HIGHMEM_START - 1;
521
522                 res = alloc_bootmem(sizeof(struct resource));
523                 switch (boot_mem_map.map[i].type) {
524                 case BOOT_MEM_RAM:
525                 case BOOT_MEM_ROM_DATA:
526                         res->name = "System RAM";
527                         break;
528                 case BOOT_MEM_RESERVED:
529                 default:
530                         res->name = "reserved";
531                 }
532
533                 res->start = start;
534                 res->end = end;
535
536                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
537                 request_resource(&iomem_resource, res);
538
539                 /*
540                  *  We don't know which RAM region contains kernel data,
541                  *  so we try it repeatedly and let the resource manager
542                  *  test it.
543                  */
544                 request_resource(res, &code_resource);
545                 request_resource(res, &data_resource);
546         }
547 }
548
549 void __init setup_arch(char **cmdline_p)
550 {
551         cpu_probe();
552         prom_init();
553
554 #ifdef CONFIG_EARLY_PRINTK
555         setup_early_printk();
556 #endif
557         cpu_report();
558         check_bugs_early();
559
560 #if defined(CONFIG_VT)
561 #if defined(CONFIG_VGA_CONSOLE)
562         conswitchp = &vga_con;
563 #elif defined(CONFIG_DUMMY_CONSOLE)
564         conswitchp = &dummy_con;
565 #endif
566 #endif
567
568         arch_mem_init(cmdline_p);
569
570         resource_init();
571         plat_smp_setup();
572 }
573
574 static int __init fpu_disable(char *s)
575 {
576         int i;
577
578         for (i = 0; i < NR_CPUS; i++)
579                 cpu_data[i].options &= ~MIPS_CPU_FPU;
580
581         return 1;
582 }
583
584 __setup("nofpu", fpu_disable);
585
586 static int __init dsp_disable(char *s)
587 {
588         cpu_data[0].ases &= ~MIPS_ASE_DSP;
589
590         return 1;
591 }
592
593 __setup("nodsp", dsp_disable);
594
595 unsigned long kernelsp[NR_CPUS];
596 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
597
598 #ifdef CONFIG_DEBUG_FS
599 struct dentry *mips_debugfs_dir;
600 static int __init debugfs_mips(void)
601 {
602         struct dentry *d;
603
604         d = debugfs_create_dir("mips", NULL);
605         if (!d)
606                 return -ENOMEM;
607         mips_debugfs_dir = d;
608         return 0;
609 }
610 arch_initcall(debugfs_mips);
611 #endif