2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
23 #include <linux/types.h>
24 #include <linux/string.h>
26 #include <linux/highmem.h>
27 #include <linux/module.h>
28 #include <linux/swap.h>
29 #include <linux/hugetlb.h>
30 #include <linux/compiler.h>
33 #include <asm/cmpxchg.h>
38 * When setting this variable to true it enables Two-Dimensional-Paging
39 * where the hardware walks 2 page tables:
40 * 1. the guest-virtual to guest-physical
41 * 2. while doing 1. it walks guest-physical to host-physical
42 * If the hardware supports that we don't need to do shadow paging.
44 bool tdp_enabled = false;
51 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
53 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
58 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
59 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
63 #define pgprintk(x...) do { } while (0)
64 #define rmap_printk(x...) do { } while (0)
68 #if defined(MMU_DEBUG) || defined(AUDIT)
70 module_param(dbg, bool, 0644);
73 static int oos_shadow = 1;
74 module_param(oos_shadow, bool, 0644);
77 #define ASSERT(x) do { } while (0)
81 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
82 __FILE__, __LINE__, #x); \
86 #define PT_FIRST_AVAIL_BITS_SHIFT 9
87 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
89 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
91 #define PT64_LEVEL_BITS 9
93 #define PT64_LEVEL_SHIFT(level) \
94 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
96 #define PT64_LEVEL_MASK(level) \
97 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
99 #define PT64_INDEX(address, level)\
100 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103 #define PT32_LEVEL_BITS 10
105 #define PT32_LEVEL_SHIFT(level) \
106 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
108 #define PT32_LEVEL_MASK(level) \
109 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
111 #define PT32_INDEX(address, level)\
112 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
115 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
116 #define PT64_DIR_BASE_ADDR_MASK \
117 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
119 #define PT32_BASE_ADDR_MASK PAGE_MASK
120 #define PT32_DIR_BASE_ADDR_MASK \
121 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
123 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
126 #define PFERR_PRESENT_MASK (1U << 0)
127 #define PFERR_WRITE_MASK (1U << 1)
128 #define PFERR_USER_MASK (1U << 2)
129 #define PFERR_FETCH_MASK (1U << 4)
131 #define PT_DIRECTORY_LEVEL 2
132 #define PT_PAGE_TABLE_LEVEL 1
136 #define ACC_EXEC_MASK 1
137 #define ACC_WRITE_MASK PT_WRITABLE_MASK
138 #define ACC_USER_MASK PT_USER_MASK
139 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
141 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
143 struct kvm_rmap_desc {
144 u64 *shadow_ptes[RMAP_EXT];
145 struct kvm_rmap_desc *more;
148 struct kvm_shadow_walk {
149 int (*entry)(struct kvm_shadow_walk *walk, struct kvm_vcpu *vcpu,
150 u64 addr, u64 *spte, int level);
153 struct kvm_unsync_walk {
154 int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
157 typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
159 static struct kmem_cache *pte_chain_cache;
160 static struct kmem_cache *rmap_desc_cache;
161 static struct kmem_cache *mmu_page_header_cache;
163 static u64 __read_mostly shadow_trap_nonpresent_pte;
164 static u64 __read_mostly shadow_notrap_nonpresent_pte;
165 static u64 __read_mostly shadow_base_present_pte;
166 static u64 __read_mostly shadow_nx_mask;
167 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
168 static u64 __read_mostly shadow_user_mask;
169 static u64 __read_mostly shadow_accessed_mask;
170 static u64 __read_mostly shadow_dirty_mask;
171 static u64 __read_mostly shadow_mt_mask;
173 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
175 shadow_trap_nonpresent_pte = trap_pte;
176 shadow_notrap_nonpresent_pte = notrap_pte;
178 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
180 void kvm_mmu_set_base_ptes(u64 base_pte)
182 shadow_base_present_pte = base_pte;
184 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
186 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
187 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 mt_mask)
189 shadow_user_mask = user_mask;
190 shadow_accessed_mask = accessed_mask;
191 shadow_dirty_mask = dirty_mask;
192 shadow_nx_mask = nx_mask;
193 shadow_x_mask = x_mask;
194 shadow_mt_mask = mt_mask;
196 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
198 static int is_write_protection(struct kvm_vcpu *vcpu)
200 return vcpu->arch.cr0 & X86_CR0_WP;
203 static int is_cpuid_PSE36(void)
208 static int is_nx(struct kvm_vcpu *vcpu)
210 return vcpu->arch.shadow_efer & EFER_NX;
213 static int is_present_pte(unsigned long pte)
215 return pte & PT_PRESENT_MASK;
218 static int is_shadow_present_pte(u64 pte)
220 return pte != shadow_trap_nonpresent_pte
221 && pte != shadow_notrap_nonpresent_pte;
224 static int is_large_pte(u64 pte)
226 return pte & PT_PAGE_SIZE_MASK;
229 static int is_writeble_pte(unsigned long pte)
231 return pte & PT_WRITABLE_MASK;
234 static int is_dirty_pte(unsigned long pte)
236 return pte & shadow_dirty_mask;
239 static int is_rmap_pte(u64 pte)
241 return is_shadow_present_pte(pte);
244 static pfn_t spte_to_pfn(u64 pte)
246 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
249 static gfn_t pse36_gfn_delta(u32 gpte)
251 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
253 return (gpte & PT32_DIR_PSE36_MASK) << shift;
256 static void set_shadow_pte(u64 *sptep, u64 spte)
259 set_64bit((unsigned long *)sptep, spte);
261 set_64bit((unsigned long long *)sptep, spte);
265 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
266 struct kmem_cache *base_cache, int min)
270 if (cache->nobjs >= min)
272 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
273 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
276 cache->objects[cache->nobjs++] = obj;
281 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
284 kfree(mc->objects[--mc->nobjs]);
287 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
292 if (cache->nobjs >= min)
294 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
295 page = alloc_page(GFP_KERNEL);
298 set_page_private(page, 0);
299 cache->objects[cache->nobjs++] = page_address(page);
304 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
307 free_page((unsigned long)mc->objects[--mc->nobjs]);
310 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
314 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
318 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
322 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
325 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
326 mmu_page_header_cache, 4);
331 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
333 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
334 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
335 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
336 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
339 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
345 p = mc->objects[--mc->nobjs];
350 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
352 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
353 sizeof(struct kvm_pte_chain));
356 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
361 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
363 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
364 sizeof(struct kvm_rmap_desc));
367 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
373 * Return the pointer to the largepage write count for a given
374 * gfn, handling slots that are not large page aligned.
376 static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
380 idx = (gfn / KVM_PAGES_PER_HPAGE) -
381 (slot->base_gfn / KVM_PAGES_PER_HPAGE);
382 return &slot->lpage_info[idx].write_count;
385 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
389 gfn = unalias_gfn(kvm, gfn);
390 write_count = slot_largepage_idx(gfn,
391 gfn_to_memslot_unaliased(kvm, gfn));
395 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
399 gfn = unalias_gfn(kvm, gfn);
400 write_count = slot_largepage_idx(gfn,
401 gfn_to_memslot_unaliased(kvm, gfn));
403 WARN_ON(*write_count < 0);
406 static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
408 struct kvm_memory_slot *slot;
411 gfn = unalias_gfn(kvm, gfn);
412 slot = gfn_to_memslot_unaliased(kvm, gfn);
414 largepage_idx = slot_largepage_idx(gfn, slot);
415 return *largepage_idx;
421 static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
423 struct vm_area_struct *vma;
427 addr = gfn_to_hva(kvm, gfn);
428 if (kvm_is_error_hva(addr))
431 down_read(¤t->mm->mmap_sem);
432 vma = find_vma(current->mm, addr);
433 if (vma && is_vm_hugetlb_page(vma))
435 up_read(¤t->mm->mmap_sem);
440 static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
442 struct kvm_memory_slot *slot;
444 if (has_wrprotected_page(vcpu->kvm, large_gfn))
447 if (!host_largepage_backed(vcpu->kvm, large_gfn))
450 slot = gfn_to_memslot(vcpu->kvm, large_gfn);
451 if (slot && slot->dirty_bitmap)
458 * Take gfn and return the reverse mapping to it.
459 * Note: gfn must be unaliased before this function get called
462 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
464 struct kvm_memory_slot *slot;
467 slot = gfn_to_memslot(kvm, gfn);
469 return &slot->rmap[gfn - slot->base_gfn];
471 idx = (gfn / KVM_PAGES_PER_HPAGE) -
472 (slot->base_gfn / KVM_PAGES_PER_HPAGE);
474 return &slot->lpage_info[idx].rmap_pde;
478 * Reverse mapping data structures:
480 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
481 * that points to page_address(page).
483 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
484 * containing more mappings.
486 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
488 struct kvm_mmu_page *sp;
489 struct kvm_rmap_desc *desc;
490 unsigned long *rmapp;
493 if (!is_rmap_pte(*spte))
495 gfn = unalias_gfn(vcpu->kvm, gfn);
496 sp = page_header(__pa(spte));
497 sp->gfns[spte - sp->spt] = gfn;
498 rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
500 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
501 *rmapp = (unsigned long)spte;
502 } else if (!(*rmapp & 1)) {
503 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
504 desc = mmu_alloc_rmap_desc(vcpu);
505 desc->shadow_ptes[0] = (u64 *)*rmapp;
506 desc->shadow_ptes[1] = spte;
507 *rmapp = (unsigned long)desc | 1;
509 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
510 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
511 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
513 if (desc->shadow_ptes[RMAP_EXT-1]) {
514 desc->more = mmu_alloc_rmap_desc(vcpu);
517 for (i = 0; desc->shadow_ptes[i]; ++i)
519 desc->shadow_ptes[i] = spte;
523 static void rmap_desc_remove_entry(unsigned long *rmapp,
524 struct kvm_rmap_desc *desc,
526 struct kvm_rmap_desc *prev_desc)
530 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
532 desc->shadow_ptes[i] = desc->shadow_ptes[j];
533 desc->shadow_ptes[j] = NULL;
536 if (!prev_desc && !desc->more)
537 *rmapp = (unsigned long)desc->shadow_ptes[0];
540 prev_desc->more = desc->more;
542 *rmapp = (unsigned long)desc->more | 1;
543 mmu_free_rmap_desc(desc);
546 static void rmap_remove(struct kvm *kvm, u64 *spte)
548 struct kvm_rmap_desc *desc;
549 struct kvm_rmap_desc *prev_desc;
550 struct kvm_mmu_page *sp;
552 unsigned long *rmapp;
555 if (!is_rmap_pte(*spte))
557 sp = page_header(__pa(spte));
558 pfn = spte_to_pfn(*spte);
559 if (*spte & shadow_accessed_mask)
560 kvm_set_pfn_accessed(pfn);
561 if (is_writeble_pte(*spte))
562 kvm_release_pfn_dirty(pfn);
564 kvm_release_pfn_clean(pfn);
565 rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
567 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
569 } else if (!(*rmapp & 1)) {
570 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
571 if ((u64 *)*rmapp != spte) {
572 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
578 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
579 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
582 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
583 if (desc->shadow_ptes[i] == spte) {
584 rmap_desc_remove_entry(rmapp,
596 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
598 struct kvm_rmap_desc *desc;
599 struct kvm_rmap_desc *prev_desc;
605 else if (!(*rmapp & 1)) {
607 return (u64 *)*rmapp;
610 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
614 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
615 if (prev_spte == spte)
616 return desc->shadow_ptes[i];
617 prev_spte = desc->shadow_ptes[i];
624 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
626 unsigned long *rmapp;
628 int write_protected = 0;
630 gfn = unalias_gfn(kvm, gfn);
631 rmapp = gfn_to_rmap(kvm, gfn, 0);
633 spte = rmap_next(kvm, rmapp, NULL);
636 BUG_ON(!(*spte & PT_PRESENT_MASK));
637 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
638 if (is_writeble_pte(*spte)) {
639 set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
642 spte = rmap_next(kvm, rmapp, spte);
644 if (write_protected) {
647 spte = rmap_next(kvm, rmapp, NULL);
648 pfn = spte_to_pfn(*spte);
649 kvm_set_pfn_dirty(pfn);
652 /* check for huge page mappings */
653 rmapp = gfn_to_rmap(kvm, gfn, 1);
654 spte = rmap_next(kvm, rmapp, NULL);
657 BUG_ON(!(*spte & PT_PRESENT_MASK));
658 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
659 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
660 if (is_writeble_pte(*spte)) {
661 rmap_remove(kvm, spte);
663 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
667 spte = rmap_next(kvm, rmapp, spte);
670 return write_protected;
673 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
676 int need_tlb_flush = 0;
678 while ((spte = rmap_next(kvm, rmapp, NULL))) {
679 BUG_ON(!(*spte & PT_PRESENT_MASK));
680 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
681 rmap_remove(kvm, spte);
682 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
685 return need_tlb_flush;
688 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
689 int (*handler)(struct kvm *kvm, unsigned long *rmapp))
695 * If mmap_sem isn't taken, we can look the memslots with only
696 * the mmu_lock by skipping over the slots with userspace_addr == 0.
698 for (i = 0; i < kvm->nmemslots; i++) {
699 struct kvm_memory_slot *memslot = &kvm->memslots[i];
700 unsigned long start = memslot->userspace_addr;
703 /* mmu_lock protects userspace_addr */
707 end = start + (memslot->npages << PAGE_SHIFT);
708 if (hva >= start && hva < end) {
709 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
710 retval |= handler(kvm, &memslot->rmap[gfn_offset]);
711 retval |= handler(kvm,
712 &memslot->lpage_info[
714 KVM_PAGES_PER_HPAGE].rmap_pde);
721 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
723 return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
726 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
731 /* always return old for EPT */
732 if (!shadow_accessed_mask)
735 spte = rmap_next(kvm, rmapp, NULL);
739 BUG_ON(!(_spte & PT_PRESENT_MASK));
740 _young = _spte & PT_ACCESSED_MASK;
743 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
745 spte = rmap_next(kvm, rmapp, spte);
750 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
752 return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
756 static int is_empty_shadow_page(u64 *spt)
761 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
762 if (is_shadow_present_pte(*pos)) {
763 printk(KERN_ERR "%s: %p %llx\n", __func__,
771 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
773 ASSERT(is_empty_shadow_page(sp->spt));
775 __free_page(virt_to_page(sp->spt));
776 __free_page(virt_to_page(sp->gfns));
778 ++kvm->arch.n_free_mmu_pages;
781 static unsigned kvm_page_table_hashfn(gfn_t gfn)
783 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
786 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
789 struct kvm_mmu_page *sp;
791 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
792 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
793 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
794 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
795 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
796 INIT_LIST_HEAD(&sp->oos_link);
797 ASSERT(is_empty_shadow_page(sp->spt));
798 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
801 sp->parent_pte = parent_pte;
802 --vcpu->kvm->arch.n_free_mmu_pages;
806 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
807 struct kvm_mmu_page *sp, u64 *parent_pte)
809 struct kvm_pte_chain *pte_chain;
810 struct hlist_node *node;
815 if (!sp->multimapped) {
816 u64 *old = sp->parent_pte;
819 sp->parent_pte = parent_pte;
823 pte_chain = mmu_alloc_pte_chain(vcpu);
824 INIT_HLIST_HEAD(&sp->parent_ptes);
825 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
826 pte_chain->parent_ptes[0] = old;
828 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
829 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
831 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
832 if (!pte_chain->parent_ptes[i]) {
833 pte_chain->parent_ptes[i] = parent_pte;
837 pte_chain = mmu_alloc_pte_chain(vcpu);
839 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
840 pte_chain->parent_ptes[0] = parent_pte;
843 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
846 struct kvm_pte_chain *pte_chain;
847 struct hlist_node *node;
850 if (!sp->multimapped) {
851 BUG_ON(sp->parent_pte != parent_pte);
852 sp->parent_pte = NULL;
855 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
856 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
857 if (!pte_chain->parent_ptes[i])
859 if (pte_chain->parent_ptes[i] != parent_pte)
861 while (i + 1 < NR_PTE_CHAIN_ENTRIES
862 && pte_chain->parent_ptes[i + 1]) {
863 pte_chain->parent_ptes[i]
864 = pte_chain->parent_ptes[i + 1];
867 pte_chain->parent_ptes[i] = NULL;
869 hlist_del(&pte_chain->link);
870 mmu_free_pte_chain(pte_chain);
871 if (hlist_empty(&sp->parent_ptes)) {
873 sp->parent_pte = NULL;
882 static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
883 mmu_parent_walk_fn fn)
885 struct kvm_pte_chain *pte_chain;
886 struct hlist_node *node;
887 struct kvm_mmu_page *parent_sp;
890 if (!sp->multimapped && sp->parent_pte) {
891 parent_sp = page_header(__pa(sp->parent_pte));
893 mmu_parent_walk(vcpu, parent_sp, fn);
896 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
897 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
898 if (!pte_chain->parent_ptes[i])
900 parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
902 mmu_parent_walk(vcpu, parent_sp, fn);
906 static void kvm_mmu_update_unsync_bitmap(u64 *spte)
909 struct kvm_mmu_page *sp = page_header(__pa(spte));
911 index = spte - sp->spt;
912 if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
913 sp->unsync_children++;
914 WARN_ON(!sp->unsync_children);
917 static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
919 struct kvm_pte_chain *pte_chain;
920 struct hlist_node *node;
926 if (!sp->multimapped) {
927 kvm_mmu_update_unsync_bitmap(sp->parent_pte);
931 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
932 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
933 if (!pte_chain->parent_ptes[i])
935 kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
939 static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
941 kvm_mmu_update_parents_unsync(sp);
945 static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
946 struct kvm_mmu_page *sp)
948 mmu_parent_walk(vcpu, sp, unsync_walk_fn);
949 kvm_mmu_update_parents_unsync(sp);
952 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
953 struct kvm_mmu_page *sp)
957 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
958 sp->spt[i] = shadow_trap_nonpresent_pte;
961 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
962 struct kvm_mmu_page *sp)
967 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
971 #define KVM_PAGE_ARRAY_NR 16
973 struct kvm_mmu_pages {
974 struct mmu_page_and_offset {
975 struct kvm_mmu_page *sp;
977 } page[KVM_PAGE_ARRAY_NR];
981 #define for_each_unsync_children(bitmap, idx) \
982 for (idx = find_first_bit(bitmap, 512); \
984 idx = find_next_bit(bitmap, 512, idx+1))
986 int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
992 for (i=0; i < pvec->nr; i++)
993 if (pvec->page[i].sp == sp)
996 pvec->page[pvec->nr].sp = sp;
997 pvec->page[pvec->nr].idx = idx;
999 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1002 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1003 struct kvm_mmu_pages *pvec)
1005 int i, ret, nr_unsync_leaf = 0;
1007 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1008 u64 ent = sp->spt[i];
1010 if (is_shadow_present_pte(ent)) {
1011 struct kvm_mmu_page *child;
1012 child = page_header(ent & PT64_BASE_ADDR_MASK);
1014 if (child->unsync_children) {
1015 if (mmu_pages_add(pvec, child, i))
1018 ret = __mmu_unsync_walk(child, pvec);
1020 __clear_bit(i, sp->unsync_child_bitmap);
1022 nr_unsync_leaf += ret;
1027 if (child->unsync) {
1029 if (mmu_pages_add(pvec, child, i))
1035 if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
1036 sp->unsync_children = 0;
1038 return nr_unsync_leaf;
1041 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1042 struct kvm_mmu_pages *pvec)
1044 if (!sp->unsync_children)
1047 mmu_pages_add(pvec, sp, 0);
1048 return __mmu_unsync_walk(sp, pvec);
1051 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
1054 struct hlist_head *bucket;
1055 struct kvm_mmu_page *sp;
1056 struct hlist_node *node;
1058 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1059 index = kvm_page_table_hashfn(gfn);
1060 bucket = &kvm->arch.mmu_page_hash[index];
1061 hlist_for_each_entry(sp, node, bucket, hash_link)
1062 if (sp->gfn == gfn && !sp->role.metaphysical
1063 && !sp->role.invalid) {
1064 pgprintk("%s: found role %x\n",
1065 __func__, sp->role.word);
1071 static void kvm_unlink_unsync_global(struct kvm *kvm, struct kvm_mmu_page *sp)
1073 list_del(&sp->oos_link);
1074 --kvm->stat.mmu_unsync_global;
1077 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1079 WARN_ON(!sp->unsync);
1082 kvm_unlink_unsync_global(kvm, sp);
1083 --kvm->stat.mmu_unsync;
1086 static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
1088 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1090 if (sp->role.glevels != vcpu->arch.mmu.root_level) {
1091 kvm_mmu_zap_page(vcpu->kvm, sp);
1095 if (rmap_write_protect(vcpu->kvm, sp->gfn))
1096 kvm_flush_remote_tlbs(vcpu->kvm);
1097 kvm_unlink_unsync_page(vcpu->kvm, sp);
1098 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1099 kvm_mmu_zap_page(vcpu->kvm, sp);
1103 kvm_mmu_flush_tlb(vcpu);
1107 struct mmu_page_path {
1108 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1109 unsigned int idx[PT64_ROOT_LEVEL-1];
1112 #define for_each_sp(pvec, sp, parents, i) \
1113 for (i = mmu_pages_next(&pvec, &parents, -1), \
1114 sp = pvec.page[i].sp; \
1115 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1116 i = mmu_pages_next(&pvec, &parents, i))
1118 int mmu_pages_next(struct kvm_mmu_pages *pvec, struct mmu_page_path *parents,
1123 for (n = i+1; n < pvec->nr; n++) {
1124 struct kvm_mmu_page *sp = pvec->page[n].sp;
1126 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1127 parents->idx[0] = pvec->page[n].idx;
1131 parents->parent[sp->role.level-2] = sp;
1132 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1138 void mmu_pages_clear_parents(struct mmu_page_path *parents)
1140 struct kvm_mmu_page *sp;
1141 unsigned int level = 0;
1144 unsigned int idx = parents->idx[level];
1146 sp = parents->parent[level];
1150 --sp->unsync_children;
1151 WARN_ON((int)sp->unsync_children < 0);
1152 __clear_bit(idx, sp->unsync_child_bitmap);
1154 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1157 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1158 struct mmu_page_path *parents,
1159 struct kvm_mmu_pages *pvec)
1161 parents->parent[parent->role.level-1] = NULL;
1165 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1166 struct kvm_mmu_page *parent)
1169 struct kvm_mmu_page *sp;
1170 struct mmu_page_path parents;
1171 struct kvm_mmu_pages pages;
1173 kvm_mmu_pages_init(parent, &parents, &pages);
1174 while (mmu_unsync_walk(parent, &pages)) {
1177 for_each_sp(pages, sp, parents, i)
1178 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1181 kvm_flush_remote_tlbs(vcpu->kvm);
1183 for_each_sp(pages, sp, parents, i) {
1184 kvm_sync_page(vcpu, sp);
1185 mmu_pages_clear_parents(&parents);
1187 cond_resched_lock(&vcpu->kvm->mmu_lock);
1188 kvm_mmu_pages_init(parent, &parents, &pages);
1192 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1200 union kvm_mmu_page_role role;
1203 struct hlist_head *bucket;
1204 struct kvm_mmu_page *sp;
1205 struct hlist_node *node, *tmp;
1208 role.glevels = vcpu->arch.mmu.root_level;
1210 role.metaphysical = metaphysical;
1211 role.access = access;
1212 if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1213 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1214 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1215 role.quadrant = quadrant;
1217 pgprintk("%s: looking gfn %lx role %x\n", __func__,
1219 index = kvm_page_table_hashfn(gfn);
1220 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1221 hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
1222 if (sp->gfn == gfn) {
1224 if (kvm_sync_page(vcpu, sp))
1227 if (sp->role.word != role.word)
1230 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1231 if (sp->unsync_children) {
1232 set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
1233 kvm_mmu_mark_parents_unsync(vcpu, sp);
1235 pgprintk("%s: found\n", __func__);
1238 ++vcpu->kvm->stat.mmu_cache_miss;
1239 sp = kvm_mmu_alloc_page(vcpu, parent_pte);
1242 pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
1245 hlist_add_head(&sp->hash_link, bucket);
1246 if (!metaphysical) {
1247 if (rmap_write_protect(vcpu->kvm, gfn))
1248 kvm_flush_remote_tlbs(vcpu->kvm);
1249 account_shadowed(vcpu->kvm, gfn);
1251 if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1252 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1254 nonpaging_prefetch_page(vcpu, sp);
1258 static int walk_shadow(struct kvm_shadow_walk *walker,
1259 struct kvm_vcpu *vcpu, u64 addr)
1267 shadow_addr = vcpu->arch.mmu.root_hpa;
1268 level = vcpu->arch.mmu.shadow_root_level;
1269 if (level == PT32E_ROOT_LEVEL) {
1270 shadow_addr = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1271 shadow_addr &= PT64_BASE_ADDR_MASK;
1275 while (level >= PT_PAGE_TABLE_LEVEL) {
1276 index = SHADOW_PT_INDEX(addr, level);
1277 sptep = ((u64 *)__va(shadow_addr)) + index;
1278 r = walker->entry(walker, vcpu, addr, sptep, level);
1281 shadow_addr = *sptep & PT64_BASE_ADDR_MASK;
1287 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1288 struct kvm_mmu_page *sp)
1296 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1297 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1298 if (is_shadow_present_pte(pt[i]))
1299 rmap_remove(kvm, &pt[i]);
1300 pt[i] = shadow_trap_nonpresent_pte;
1305 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1308 if (is_shadow_present_pte(ent)) {
1309 if (!is_large_pte(ent)) {
1310 ent &= PT64_BASE_ADDR_MASK;
1311 mmu_page_remove_parent_pte(page_header(ent),
1315 rmap_remove(kvm, &pt[i]);
1318 pt[i] = shadow_trap_nonpresent_pte;
1322 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1324 mmu_page_remove_parent_pte(sp, parent_pte);
1327 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1331 for (i = 0; i < KVM_MAX_VCPUS; ++i)
1333 kvm->vcpus[i]->arch.last_pte_updated = NULL;
1336 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1340 while (sp->multimapped || sp->parent_pte) {
1341 if (!sp->multimapped)
1342 parent_pte = sp->parent_pte;
1344 struct kvm_pte_chain *chain;
1346 chain = container_of(sp->parent_ptes.first,
1347 struct kvm_pte_chain, link);
1348 parent_pte = chain->parent_ptes[0];
1350 BUG_ON(!parent_pte);
1351 kvm_mmu_put_page(sp, parent_pte);
1352 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
1356 static int mmu_zap_unsync_children(struct kvm *kvm,
1357 struct kvm_mmu_page *parent)
1360 struct mmu_page_path parents;
1361 struct kvm_mmu_pages pages;
1363 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1366 kvm_mmu_pages_init(parent, &parents, &pages);
1367 while (mmu_unsync_walk(parent, &pages)) {
1368 struct kvm_mmu_page *sp;
1370 for_each_sp(pages, sp, parents, i) {
1371 kvm_mmu_zap_page(kvm, sp);
1372 mmu_pages_clear_parents(&parents);
1375 kvm_mmu_pages_init(parent, &parents, &pages);
1381 static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1384 ++kvm->stat.mmu_shadow_zapped;
1385 ret = mmu_zap_unsync_children(kvm, sp);
1386 kvm_mmu_page_unlink_children(kvm, sp);
1387 kvm_mmu_unlink_parents(kvm, sp);
1388 kvm_flush_remote_tlbs(kvm);
1389 if (!sp->role.invalid && !sp->role.metaphysical)
1390 unaccount_shadowed(kvm, sp->gfn);
1392 kvm_unlink_unsync_page(kvm, sp);
1393 if (!sp->root_count) {
1394 hlist_del(&sp->hash_link);
1395 kvm_mmu_free_page(kvm, sp);
1397 sp->role.invalid = 1;
1398 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1399 kvm_reload_remote_mmus(kvm);
1401 kvm_mmu_reset_last_pte_updated(kvm);
1406 * Changing the number of mmu pages allocated to the vm
1407 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
1409 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
1412 * If we set the number of mmu pages to be smaller be than the
1413 * number of actived pages , we must to free some mmu pages before we
1417 if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
1419 int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
1420 - kvm->arch.n_free_mmu_pages;
1422 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
1423 struct kvm_mmu_page *page;
1425 page = container_of(kvm->arch.active_mmu_pages.prev,
1426 struct kvm_mmu_page, link);
1427 kvm_mmu_zap_page(kvm, page);
1430 kvm->arch.n_free_mmu_pages = 0;
1433 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
1434 - kvm->arch.n_alloc_mmu_pages;
1436 kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
1439 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1442 struct hlist_head *bucket;
1443 struct kvm_mmu_page *sp;
1444 struct hlist_node *node, *n;
1447 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1449 index = kvm_page_table_hashfn(gfn);
1450 bucket = &kvm->arch.mmu_page_hash[index];
1451 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
1452 if (sp->gfn == gfn && !sp->role.metaphysical) {
1453 pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
1456 if (kvm_mmu_zap_page(kvm, sp))
1462 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1464 struct kvm_mmu_page *sp;
1466 while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
1467 pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
1468 kvm_mmu_zap_page(kvm, sp);
1472 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1474 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
1475 struct kvm_mmu_page *sp = page_header(__pa(pte));
1477 __set_bit(slot, sp->slot_bitmap);
1480 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1485 if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1488 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1489 if (pt[i] == shadow_notrap_nonpresent_pte)
1490 set_shadow_pte(&pt[i], shadow_trap_nonpresent_pte);
1494 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
1498 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1500 if (gpa == UNMAPPED_GVA)
1503 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1509 * The function is based on mtrr_type_lookup() in
1510 * arch/x86/kernel/cpu/mtrr/generic.c
1512 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1517 u8 prev_match, curr_match;
1518 int num_var_ranges = KVM_NR_VAR_MTRR;
1520 if (!mtrr_state->enabled)
1523 /* Make end inclusive end, instead of exclusive */
1526 /* Look in fixed ranges. Just return the type as per start */
1527 if (mtrr_state->have_fixed && (start < 0x100000)) {
1530 if (start < 0x80000) {
1532 idx += (start >> 16);
1533 return mtrr_state->fixed_ranges[idx];
1534 } else if (start < 0xC0000) {
1536 idx += ((start - 0x80000) >> 14);
1537 return mtrr_state->fixed_ranges[idx];
1538 } else if (start < 0x1000000) {
1540 idx += ((start - 0xC0000) >> 12);
1541 return mtrr_state->fixed_ranges[idx];
1546 * Look in variable ranges
1547 * Look of multiple ranges matching this address and pick type
1548 * as per MTRR precedence
1550 if (!(mtrr_state->enabled & 2))
1551 return mtrr_state->def_type;
1554 for (i = 0; i < num_var_ranges; ++i) {
1555 unsigned short start_state, end_state;
1557 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1560 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1561 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1562 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1563 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1565 start_state = ((start & mask) == (base & mask));
1566 end_state = ((end & mask) == (base & mask));
1567 if (start_state != end_state)
1570 if ((start & mask) != (base & mask))
1573 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1574 if (prev_match == 0xFF) {
1575 prev_match = curr_match;
1579 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1580 curr_match == MTRR_TYPE_UNCACHABLE)
1581 return MTRR_TYPE_UNCACHABLE;
1583 if ((prev_match == MTRR_TYPE_WRBACK &&
1584 curr_match == MTRR_TYPE_WRTHROUGH) ||
1585 (prev_match == MTRR_TYPE_WRTHROUGH &&
1586 curr_match == MTRR_TYPE_WRBACK)) {
1587 prev_match = MTRR_TYPE_WRTHROUGH;
1588 curr_match = MTRR_TYPE_WRTHROUGH;
1591 if (prev_match != curr_match)
1592 return MTRR_TYPE_UNCACHABLE;
1595 if (prev_match != 0xFF)
1598 return mtrr_state->def_type;
1601 static u8 get_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1605 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1606 (gfn << PAGE_SHIFT) + PAGE_SIZE);
1607 if (mtrr == 0xfe || mtrr == 0xff)
1608 mtrr = MTRR_TYPE_WRBACK;
1612 static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1615 struct hlist_head *bucket;
1616 struct kvm_mmu_page *s;
1617 struct hlist_node *node, *n;
1619 index = kvm_page_table_hashfn(sp->gfn);
1620 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1621 /* don't unsync if pagetable is shadowed with multiple roles */
1622 hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
1623 if (s->gfn != sp->gfn || s->role.metaphysical)
1625 if (s->role.word != sp->role.word)
1628 ++vcpu->kvm->stat.mmu_unsync;
1632 list_add(&sp->oos_link, &vcpu->kvm->arch.oos_global_pages);
1633 ++vcpu->kvm->stat.mmu_unsync_global;
1635 kvm_mmu_mark_parents_unsync(vcpu, sp);
1637 mmu_convert_notrap(sp);
1641 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1644 struct kvm_mmu_page *shadow;
1646 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
1648 if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
1652 if (can_unsync && oos_shadow)
1653 return kvm_unsync_page(vcpu, shadow);
1659 static int set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
1660 unsigned pte_access, int user_fault,
1661 int write_fault, int dirty, int largepage,
1662 int global, gfn_t gfn, pfn_t pfn, bool speculative,
1667 u64 mt_mask = shadow_mt_mask;
1668 struct kvm_mmu_page *sp = page_header(__pa(shadow_pte));
1670 if (!global && sp->global) {
1673 kvm_unlink_unsync_global(vcpu->kvm, sp);
1674 kvm_mmu_mark_parents_unsync(vcpu, sp);
1679 * We don't set the accessed bit, since we sometimes want to see
1680 * whether the guest actually used the pte (in order to detect
1683 spte = shadow_base_present_pte | shadow_dirty_mask;
1685 spte |= shadow_accessed_mask;
1687 pte_access &= ~ACC_WRITE_MASK;
1688 if (pte_access & ACC_EXEC_MASK)
1689 spte |= shadow_x_mask;
1691 spte |= shadow_nx_mask;
1692 if (pte_access & ACC_USER_MASK)
1693 spte |= shadow_user_mask;
1695 spte |= PT_PAGE_SIZE_MASK;
1697 mt_mask = get_memory_type(vcpu, gfn) <<
1698 kvm_x86_ops->get_mt_mask_shift();
1702 spte |= (u64)pfn << PAGE_SHIFT;
1704 if ((pte_access & ACC_WRITE_MASK)
1705 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
1707 if (largepage && has_wrprotected_page(vcpu->kvm, gfn)) {
1709 spte = shadow_trap_nonpresent_pte;
1713 spte |= PT_WRITABLE_MASK;
1716 * Optimization: for pte sync, if spte was writable the hash
1717 * lookup is unnecessary (and expensive). Write protection
1718 * is responsibility of mmu_get_page / kvm_sync_page.
1719 * Same reasoning can be applied to dirty page accounting.
1721 if (!can_unsync && is_writeble_pte(*shadow_pte))
1724 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
1725 pgprintk("%s: found shadow page for %lx, marking ro\n",
1728 pte_access &= ~ACC_WRITE_MASK;
1729 if (is_writeble_pte(spte))
1730 spte &= ~PT_WRITABLE_MASK;
1734 if (pte_access & ACC_WRITE_MASK)
1735 mark_page_dirty(vcpu->kvm, gfn);
1738 set_shadow_pte(shadow_pte, spte);
1742 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
1743 unsigned pt_access, unsigned pte_access,
1744 int user_fault, int write_fault, int dirty,
1745 int *ptwrite, int largepage, int global,
1746 gfn_t gfn, pfn_t pfn, bool speculative)
1748 int was_rmapped = 0;
1749 int was_writeble = is_writeble_pte(*shadow_pte);
1751 pgprintk("%s: spte %llx access %x write_fault %d"
1752 " user_fault %d gfn %lx\n",
1753 __func__, *shadow_pte, pt_access,
1754 write_fault, user_fault, gfn);
1756 if (is_rmap_pte(*shadow_pte)) {
1758 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1759 * the parent of the now unreachable PTE.
1761 if (largepage && !is_large_pte(*shadow_pte)) {
1762 struct kvm_mmu_page *child;
1763 u64 pte = *shadow_pte;
1765 child = page_header(pte & PT64_BASE_ADDR_MASK);
1766 mmu_page_remove_parent_pte(child, shadow_pte);
1767 } else if (pfn != spte_to_pfn(*shadow_pte)) {
1768 pgprintk("hfn old %lx new %lx\n",
1769 spte_to_pfn(*shadow_pte), pfn);
1770 rmap_remove(vcpu->kvm, shadow_pte);
1773 was_rmapped = is_large_pte(*shadow_pte);
1778 if (set_spte(vcpu, shadow_pte, pte_access, user_fault, write_fault,
1779 dirty, largepage, global, gfn, pfn, speculative, true)) {
1782 kvm_x86_ops->tlb_flush(vcpu);
1785 pgprintk("%s: setting spte %llx\n", __func__, *shadow_pte);
1786 pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
1787 is_large_pte(*shadow_pte)? "2MB" : "4kB",
1788 is_present_pte(*shadow_pte)?"RW":"R", gfn,
1789 *shadow_pte, shadow_pte);
1790 if (!was_rmapped && is_large_pte(*shadow_pte))
1791 ++vcpu->kvm->stat.lpages;
1793 page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
1795 rmap_add(vcpu, shadow_pte, gfn, largepage);
1796 if (!is_rmap_pte(*shadow_pte))
1797 kvm_release_pfn_clean(pfn);
1800 kvm_release_pfn_dirty(pfn);
1802 kvm_release_pfn_clean(pfn);
1805 vcpu->arch.last_pte_updated = shadow_pte;
1806 vcpu->arch.last_pte_gfn = gfn;
1810 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
1814 struct direct_shadow_walk {
1815 struct kvm_shadow_walk walker;
1822 static int direct_map_entry(struct kvm_shadow_walk *_walk,
1823 struct kvm_vcpu *vcpu,
1824 u64 addr, u64 *sptep, int level)
1826 struct direct_shadow_walk *walk =
1827 container_of(_walk, struct direct_shadow_walk, walker);
1828 struct kvm_mmu_page *sp;
1830 gfn_t gfn = addr >> PAGE_SHIFT;
1832 if (level == PT_PAGE_TABLE_LEVEL
1833 || (walk->largepage && level == PT_DIRECTORY_LEVEL)) {
1834 mmu_set_spte(vcpu, sptep, ACC_ALL, ACC_ALL,
1835 0, walk->write, 1, &walk->pt_write,
1836 walk->largepage, 0, gfn, walk->pfn, false);
1837 ++vcpu->stat.pf_fixed;
1841 if (*sptep == shadow_trap_nonpresent_pte) {
1842 pseudo_gfn = (addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
1843 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, (gva_t)addr, level - 1,
1846 pgprintk("nonpaging_map: ENOMEM\n");
1847 kvm_release_pfn_clean(walk->pfn);
1851 set_shadow_pte(sptep,
1853 | PT_PRESENT_MASK | PT_WRITABLE_MASK
1854 | shadow_user_mask | shadow_x_mask);
1859 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
1860 int largepage, gfn_t gfn, pfn_t pfn)
1863 struct direct_shadow_walk walker = {
1864 .walker = { .entry = direct_map_entry, },
1866 .largepage = largepage,
1871 r = walk_shadow(&walker.walker, vcpu, gfn << PAGE_SHIFT);
1874 return walker.pt_write;
1877 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1882 unsigned long mmu_seq;
1884 if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1885 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1889 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1891 pfn = gfn_to_pfn(vcpu->kvm, gfn);
1894 if (is_error_pfn(pfn)) {
1895 kvm_release_pfn_clean(pfn);
1899 spin_lock(&vcpu->kvm->mmu_lock);
1900 if (mmu_notifier_retry(vcpu, mmu_seq))
1902 kvm_mmu_free_some_pages(vcpu);
1903 r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
1904 spin_unlock(&vcpu->kvm->mmu_lock);
1910 spin_unlock(&vcpu->kvm->mmu_lock);
1911 kvm_release_pfn_clean(pfn);
1916 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1919 struct kvm_mmu_page *sp;
1921 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1923 spin_lock(&vcpu->kvm->mmu_lock);
1924 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1925 hpa_t root = vcpu->arch.mmu.root_hpa;
1927 sp = page_header(root);
1929 if (!sp->root_count && sp->role.invalid)
1930 kvm_mmu_zap_page(vcpu->kvm, sp);
1931 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1932 spin_unlock(&vcpu->kvm->mmu_lock);
1935 for (i = 0; i < 4; ++i) {
1936 hpa_t root = vcpu->arch.mmu.pae_root[i];
1939 root &= PT64_BASE_ADDR_MASK;
1940 sp = page_header(root);
1942 if (!sp->root_count && sp->role.invalid)
1943 kvm_mmu_zap_page(vcpu->kvm, sp);
1945 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1947 spin_unlock(&vcpu->kvm->mmu_lock);
1948 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1951 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1955 struct kvm_mmu_page *sp;
1956 int metaphysical = 0;
1958 root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1960 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1961 hpa_t root = vcpu->arch.mmu.root_hpa;
1963 ASSERT(!VALID_PAGE(root));
1966 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1967 PT64_ROOT_LEVEL, metaphysical,
1969 root = __pa(sp->spt);
1971 vcpu->arch.mmu.root_hpa = root;
1974 metaphysical = !is_paging(vcpu);
1977 for (i = 0; i < 4; ++i) {
1978 hpa_t root = vcpu->arch.mmu.pae_root[i];
1980 ASSERT(!VALID_PAGE(root));
1981 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1982 if (!is_present_pte(vcpu->arch.pdptrs[i])) {
1983 vcpu->arch.mmu.pae_root[i] = 0;
1986 root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
1987 } else if (vcpu->arch.mmu.root_level == 0)
1989 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1990 PT32_ROOT_LEVEL, metaphysical,
1992 root = __pa(sp->spt);
1994 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
1996 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
1999 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2002 struct kvm_mmu_page *sp;
2004 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2006 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2007 hpa_t root = vcpu->arch.mmu.root_hpa;
2008 sp = page_header(root);
2009 mmu_sync_children(vcpu, sp);
2012 for (i = 0; i < 4; ++i) {
2013 hpa_t root = vcpu->arch.mmu.pae_root[i];
2016 root &= PT64_BASE_ADDR_MASK;
2017 sp = page_header(root);
2018 mmu_sync_children(vcpu, sp);
2023 static void mmu_sync_global(struct kvm_vcpu *vcpu)
2025 struct kvm *kvm = vcpu->kvm;
2026 struct kvm_mmu_page *sp, *n;
2028 list_for_each_entry_safe(sp, n, &kvm->arch.oos_global_pages, oos_link)
2029 kvm_sync_page(vcpu, sp);
2032 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2034 spin_lock(&vcpu->kvm->mmu_lock);
2035 mmu_sync_roots(vcpu);
2036 spin_unlock(&vcpu->kvm->mmu_lock);
2039 void kvm_mmu_sync_global(struct kvm_vcpu *vcpu)
2041 spin_lock(&vcpu->kvm->mmu_lock);
2042 mmu_sync_global(vcpu);
2043 spin_unlock(&vcpu->kvm->mmu_lock);
2046 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
2051 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2057 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2058 r = mmu_topup_memory_caches(vcpu);
2063 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2065 gfn = gva >> PAGE_SHIFT;
2067 return nonpaging_map(vcpu, gva & PAGE_MASK,
2068 error_code & PFERR_WRITE_MASK, gfn);
2071 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
2077 gfn_t gfn = gpa >> PAGE_SHIFT;
2078 unsigned long mmu_seq;
2081 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2083 r = mmu_topup_memory_caches(vcpu);
2087 if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
2088 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
2091 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2093 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2094 if (is_error_pfn(pfn)) {
2095 kvm_release_pfn_clean(pfn);
2098 spin_lock(&vcpu->kvm->mmu_lock);
2099 if (mmu_notifier_retry(vcpu, mmu_seq))
2101 kvm_mmu_free_some_pages(vcpu);
2102 r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
2103 largepage, gfn, pfn);
2104 spin_unlock(&vcpu->kvm->mmu_lock);
2109 spin_unlock(&vcpu->kvm->mmu_lock);
2110 kvm_release_pfn_clean(pfn);
2114 static void nonpaging_free(struct kvm_vcpu *vcpu)
2116 mmu_free_roots(vcpu);
2119 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
2121 struct kvm_mmu *context = &vcpu->arch.mmu;
2123 context->new_cr3 = nonpaging_new_cr3;
2124 context->page_fault = nonpaging_page_fault;
2125 context->gva_to_gpa = nonpaging_gva_to_gpa;
2126 context->free = nonpaging_free;
2127 context->prefetch_page = nonpaging_prefetch_page;
2128 context->sync_page = nonpaging_sync_page;
2129 context->invlpg = nonpaging_invlpg;
2130 context->root_level = 0;
2131 context->shadow_root_level = PT32E_ROOT_LEVEL;
2132 context->root_hpa = INVALID_PAGE;
2136 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2138 ++vcpu->stat.tlb_flush;
2139 kvm_x86_ops->tlb_flush(vcpu);
2142 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2144 pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
2145 mmu_free_roots(vcpu);
2148 static void inject_page_fault(struct kvm_vcpu *vcpu,
2152 kvm_inject_page_fault(vcpu, addr, err_code);
2155 static void paging_free(struct kvm_vcpu *vcpu)
2157 nonpaging_free(vcpu);
2161 #include "paging_tmpl.h"
2165 #include "paging_tmpl.h"
2168 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
2170 struct kvm_mmu *context = &vcpu->arch.mmu;
2172 ASSERT(is_pae(vcpu));
2173 context->new_cr3 = paging_new_cr3;
2174 context->page_fault = paging64_page_fault;
2175 context->gva_to_gpa = paging64_gva_to_gpa;
2176 context->prefetch_page = paging64_prefetch_page;
2177 context->sync_page = paging64_sync_page;
2178 context->invlpg = paging64_invlpg;
2179 context->free = paging_free;
2180 context->root_level = level;
2181 context->shadow_root_level = level;
2182 context->root_hpa = INVALID_PAGE;
2186 static int paging64_init_context(struct kvm_vcpu *vcpu)
2188 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
2191 static int paging32_init_context(struct kvm_vcpu *vcpu)
2193 struct kvm_mmu *context = &vcpu->arch.mmu;
2195 context->new_cr3 = paging_new_cr3;
2196 context->page_fault = paging32_page_fault;
2197 context->gva_to_gpa = paging32_gva_to_gpa;
2198 context->free = paging_free;
2199 context->prefetch_page = paging32_prefetch_page;
2200 context->sync_page = paging32_sync_page;
2201 context->invlpg = paging32_invlpg;
2202 context->root_level = PT32_ROOT_LEVEL;
2203 context->shadow_root_level = PT32E_ROOT_LEVEL;
2204 context->root_hpa = INVALID_PAGE;
2208 static int paging32E_init_context(struct kvm_vcpu *vcpu)
2210 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
2213 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2215 struct kvm_mmu *context = &vcpu->arch.mmu;
2217 context->new_cr3 = nonpaging_new_cr3;
2218 context->page_fault = tdp_page_fault;
2219 context->free = nonpaging_free;
2220 context->prefetch_page = nonpaging_prefetch_page;
2221 context->sync_page = nonpaging_sync_page;
2222 context->invlpg = nonpaging_invlpg;
2223 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2224 context->root_hpa = INVALID_PAGE;
2226 if (!is_paging(vcpu)) {
2227 context->gva_to_gpa = nonpaging_gva_to_gpa;
2228 context->root_level = 0;
2229 } else if (is_long_mode(vcpu)) {
2230 context->gva_to_gpa = paging64_gva_to_gpa;
2231 context->root_level = PT64_ROOT_LEVEL;
2232 } else if (is_pae(vcpu)) {
2233 context->gva_to_gpa = paging64_gva_to_gpa;
2234 context->root_level = PT32E_ROOT_LEVEL;
2236 context->gva_to_gpa = paging32_gva_to_gpa;
2237 context->root_level = PT32_ROOT_LEVEL;
2243 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2246 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2248 if (!is_paging(vcpu))
2249 return nonpaging_init_context(vcpu);
2250 else if (is_long_mode(vcpu))
2251 return paging64_init_context(vcpu);
2252 else if (is_pae(vcpu))
2253 return paging32E_init_context(vcpu);
2255 return paging32_init_context(vcpu);
2258 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
2260 vcpu->arch.update_pte.pfn = bad_pfn;
2263 return init_kvm_tdp_mmu(vcpu);
2265 return init_kvm_softmmu(vcpu);
2268 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
2271 if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
2272 vcpu->arch.mmu.free(vcpu);
2273 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2277 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
2279 destroy_kvm_mmu(vcpu);
2280 return init_kvm_mmu(vcpu);
2282 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
2284 int kvm_mmu_load(struct kvm_vcpu *vcpu)
2288 r = mmu_topup_memory_caches(vcpu);
2291 spin_lock(&vcpu->kvm->mmu_lock);
2292 kvm_mmu_free_some_pages(vcpu);
2293 mmu_alloc_roots(vcpu);
2294 mmu_sync_roots(vcpu);
2295 spin_unlock(&vcpu->kvm->mmu_lock);
2296 kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
2297 kvm_mmu_flush_tlb(vcpu);
2301 EXPORT_SYMBOL_GPL(kvm_mmu_load);
2303 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
2305 mmu_free_roots(vcpu);
2308 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
2309 struct kvm_mmu_page *sp,
2313 struct kvm_mmu_page *child;
2316 if (is_shadow_present_pte(pte)) {
2317 if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
2319 rmap_remove(vcpu->kvm, spte);
2321 child = page_header(pte & PT64_BASE_ADDR_MASK);
2322 mmu_page_remove_parent_pte(child, spte);
2325 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
2326 if (is_large_pte(pte))
2327 --vcpu->kvm->stat.lpages;
2330 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
2331 struct kvm_mmu_page *sp,
2335 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
2336 if (!vcpu->arch.update_pte.largepage ||
2337 sp->role.glevels == PT32_ROOT_LEVEL) {
2338 ++vcpu->kvm->stat.mmu_pde_zapped;
2343 ++vcpu->kvm->stat.mmu_pte_updated;
2344 if (sp->role.glevels == PT32_ROOT_LEVEL)
2345 paging32_update_pte(vcpu, sp, spte, new);
2347 paging64_update_pte(vcpu, sp, spte, new);
2350 static bool need_remote_flush(u64 old, u64 new)
2352 if (!is_shadow_present_pte(old))
2354 if (!is_shadow_present_pte(new))
2356 if ((old ^ new) & PT64_BASE_ADDR_MASK)
2358 old ^= PT64_NX_MASK;
2359 new ^= PT64_NX_MASK;
2360 return (old & ~new & PT64_PERM_MASK) != 0;
2363 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
2365 if (need_remote_flush(old, new))
2366 kvm_flush_remote_tlbs(vcpu->kvm);
2368 kvm_mmu_flush_tlb(vcpu);
2371 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
2373 u64 *spte = vcpu->arch.last_pte_updated;
2375 return !!(spte && (*spte & shadow_accessed_mask));
2378 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2379 const u8 *new, int bytes)
2386 vcpu->arch.update_pte.largepage = 0;
2388 if (bytes != 4 && bytes != 8)
2392 * Assume that the pte write on a page table of the same type
2393 * as the current vcpu paging mode. This is nearly always true
2394 * (might be false while changing modes). Note it is verified later
2398 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
2399 if ((bytes == 4) && (gpa % 4 == 0)) {
2400 r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
2403 memcpy((void *)&gpte + (gpa % 8), new, 4);
2404 } else if ((bytes == 8) && (gpa % 8 == 0)) {
2405 memcpy((void *)&gpte, new, 8);
2408 if ((bytes == 4) && (gpa % 4 == 0))
2409 memcpy((void *)&gpte, new, 4);
2411 if (!is_present_pte(gpte))
2413 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
2415 if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
2416 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
2417 vcpu->arch.update_pte.largepage = 1;
2419 vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
2421 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2423 if (is_error_pfn(pfn)) {
2424 kvm_release_pfn_clean(pfn);
2427 vcpu->arch.update_pte.gfn = gfn;
2428 vcpu->arch.update_pte.pfn = pfn;
2431 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2433 u64 *spte = vcpu->arch.last_pte_updated;
2436 && vcpu->arch.last_pte_gfn == gfn
2437 && shadow_accessed_mask
2438 && !(*spte & shadow_accessed_mask)
2439 && is_shadow_present_pte(*spte))
2440 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
2443 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2444 const u8 *new, int bytes,
2445 bool guest_initiated)
2447 gfn_t gfn = gpa >> PAGE_SHIFT;
2448 struct kvm_mmu_page *sp;
2449 struct hlist_node *node, *n;
2450 struct hlist_head *bucket;
2454 unsigned offset = offset_in_page(gpa);
2456 unsigned page_offset;
2457 unsigned misaligned;
2464 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
2465 mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
2466 spin_lock(&vcpu->kvm->mmu_lock);
2467 kvm_mmu_access_page(vcpu, gfn);
2468 kvm_mmu_free_some_pages(vcpu);
2469 ++vcpu->kvm->stat.mmu_pte_write;
2470 kvm_mmu_audit(vcpu, "pre pte write");
2471 if (guest_initiated) {
2472 if (gfn == vcpu->arch.last_pt_write_gfn
2473 && !last_updated_pte_accessed(vcpu)) {
2474 ++vcpu->arch.last_pt_write_count;
2475 if (vcpu->arch.last_pt_write_count >= 3)
2478 vcpu->arch.last_pt_write_gfn = gfn;
2479 vcpu->arch.last_pt_write_count = 1;
2480 vcpu->arch.last_pte_updated = NULL;
2483 index = kvm_page_table_hashfn(gfn);
2484 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
2485 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
2486 if (sp->gfn != gfn || sp->role.metaphysical || sp->role.invalid)
2488 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
2489 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
2490 misaligned |= bytes < 4;
2491 if (misaligned || flooded) {
2493 * Misaligned accesses are too much trouble to fix
2494 * up; also, they usually indicate a page is not used
2497 * If we're seeing too many writes to a page,
2498 * it may no longer be a page table, or we may be
2499 * forking, in which case it is better to unmap the
2502 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
2503 gpa, bytes, sp->role.word);
2504 if (kvm_mmu_zap_page(vcpu->kvm, sp))
2506 ++vcpu->kvm->stat.mmu_flooded;
2509 page_offset = offset;
2510 level = sp->role.level;
2512 if (sp->role.glevels == PT32_ROOT_LEVEL) {
2513 page_offset <<= 1; /* 32->64 */
2515 * A 32-bit pde maps 4MB while the shadow pdes map
2516 * only 2MB. So we need to double the offset again
2517 * and zap two pdes instead of one.
2519 if (level == PT32_ROOT_LEVEL) {
2520 page_offset &= ~7; /* kill rounding error */
2524 quadrant = page_offset >> PAGE_SHIFT;
2525 page_offset &= ~PAGE_MASK;
2526 if (quadrant != sp->role.quadrant)
2529 spte = &sp->spt[page_offset / sizeof(*spte)];
2530 if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
2532 r = kvm_read_guest_atomic(vcpu->kvm,
2533 gpa & ~(u64)(pte_size - 1),
2535 new = (const void *)&gentry;
2541 mmu_pte_write_zap_pte(vcpu, sp, spte);
2543 mmu_pte_write_new_pte(vcpu, sp, spte, new);
2544 mmu_pte_write_flush_tlb(vcpu, entry, *spte);
2548 kvm_mmu_audit(vcpu, "post pte write");
2549 spin_unlock(&vcpu->kvm->mmu_lock);
2550 if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
2551 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
2552 vcpu->arch.update_pte.pfn = bad_pfn;
2556 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2561 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
2563 spin_lock(&vcpu->kvm->mmu_lock);
2564 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2565 spin_unlock(&vcpu->kvm->mmu_lock);
2568 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
2570 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
2572 while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
2573 struct kvm_mmu_page *sp;
2575 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
2576 struct kvm_mmu_page, link);
2577 kvm_mmu_zap_page(vcpu->kvm, sp);
2578 ++vcpu->kvm->stat.mmu_recycled;
2582 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
2585 enum emulation_result er;
2587 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
2596 r = mmu_topup_memory_caches(vcpu);
2600 er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
2605 case EMULATE_DO_MMIO:
2606 ++vcpu->stat.mmio_exits;
2609 kvm_report_emulation_failure(vcpu, "pagetable");
2617 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
2619 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
2621 vcpu->arch.mmu.invlpg(vcpu, gva);
2622 kvm_mmu_flush_tlb(vcpu);
2623 ++vcpu->stat.invlpg;
2625 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
2627 void kvm_enable_tdp(void)
2631 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
2633 void kvm_disable_tdp(void)
2635 tdp_enabled = false;
2637 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
2639 static void free_mmu_pages(struct kvm_vcpu *vcpu)
2641 struct kvm_mmu_page *sp;
2643 while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
2644 sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
2645 struct kvm_mmu_page, link);
2646 kvm_mmu_zap_page(vcpu->kvm, sp);
2649 free_page((unsigned long)vcpu->arch.mmu.pae_root);
2652 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
2659 if (vcpu->kvm->arch.n_requested_mmu_pages)
2660 vcpu->kvm->arch.n_free_mmu_pages =
2661 vcpu->kvm->arch.n_requested_mmu_pages;
2663 vcpu->kvm->arch.n_free_mmu_pages =
2664 vcpu->kvm->arch.n_alloc_mmu_pages;
2666 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
2667 * Therefore we need to allocate shadow page tables in the first
2668 * 4GB of memory, which happens to fit the DMA32 zone.
2670 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
2673 vcpu->arch.mmu.pae_root = page_address(page);
2674 for (i = 0; i < 4; ++i)
2675 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2680 free_mmu_pages(vcpu);
2684 int kvm_mmu_create(struct kvm_vcpu *vcpu)
2687 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2689 return alloc_mmu_pages(vcpu);
2692 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
2695 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2697 return init_kvm_mmu(vcpu);
2700 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
2704 destroy_kvm_mmu(vcpu);
2705 free_mmu_pages(vcpu);
2706 mmu_free_memory_caches(vcpu);
2709 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
2711 struct kvm_mmu_page *sp;
2713 spin_lock(&kvm->mmu_lock);
2714 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
2718 if (!test_bit(slot, sp->slot_bitmap))
2722 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2724 if (pt[i] & PT_WRITABLE_MASK)
2725 pt[i] &= ~PT_WRITABLE_MASK;
2727 kvm_flush_remote_tlbs(kvm);
2728 spin_unlock(&kvm->mmu_lock);
2731 void kvm_mmu_zap_all(struct kvm *kvm)
2733 struct kvm_mmu_page *sp, *node;
2735 spin_lock(&kvm->mmu_lock);
2736 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
2737 if (kvm_mmu_zap_page(kvm, sp))
2738 node = container_of(kvm->arch.active_mmu_pages.next,
2739 struct kvm_mmu_page, link);
2740 spin_unlock(&kvm->mmu_lock);
2742 kvm_flush_remote_tlbs(kvm);
2745 static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
2747 struct kvm_mmu_page *page;
2749 page = container_of(kvm->arch.active_mmu_pages.prev,
2750 struct kvm_mmu_page, link);
2751 kvm_mmu_zap_page(kvm, page);
2754 static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
2757 struct kvm *kvm_freed = NULL;
2758 int cache_count = 0;
2760 spin_lock(&kvm_lock);
2762 list_for_each_entry(kvm, &vm_list, vm_list) {
2765 if (!down_read_trylock(&kvm->slots_lock))
2767 spin_lock(&kvm->mmu_lock);
2768 npages = kvm->arch.n_alloc_mmu_pages -
2769 kvm->arch.n_free_mmu_pages;
2770 cache_count += npages;
2771 if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
2772 kvm_mmu_remove_one_alloc_mmu_page(kvm);
2778 spin_unlock(&kvm->mmu_lock);
2779 up_read(&kvm->slots_lock);
2782 list_move_tail(&kvm_freed->vm_list, &vm_list);
2784 spin_unlock(&kvm_lock);
2789 static struct shrinker mmu_shrinker = {
2790 .shrink = mmu_shrink,
2791 .seeks = DEFAULT_SEEKS * 10,
2794 static void mmu_destroy_caches(void)
2796 if (pte_chain_cache)
2797 kmem_cache_destroy(pte_chain_cache);
2798 if (rmap_desc_cache)
2799 kmem_cache_destroy(rmap_desc_cache);
2800 if (mmu_page_header_cache)
2801 kmem_cache_destroy(mmu_page_header_cache);
2804 void kvm_mmu_module_exit(void)
2806 mmu_destroy_caches();
2807 unregister_shrinker(&mmu_shrinker);
2810 int kvm_mmu_module_init(void)
2812 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
2813 sizeof(struct kvm_pte_chain),
2815 if (!pte_chain_cache)
2817 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
2818 sizeof(struct kvm_rmap_desc),
2820 if (!rmap_desc_cache)
2823 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
2824 sizeof(struct kvm_mmu_page),
2826 if (!mmu_page_header_cache)
2829 register_shrinker(&mmu_shrinker);
2834 mmu_destroy_caches();
2839 * Caculate mmu pages needed for kvm.
2841 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
2844 unsigned int nr_mmu_pages;
2845 unsigned int nr_pages = 0;
2847 for (i = 0; i < kvm->nmemslots; i++)
2848 nr_pages += kvm->memslots[i].npages;
2850 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
2851 nr_mmu_pages = max(nr_mmu_pages,
2852 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
2854 return nr_mmu_pages;
2857 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2860 if (len > buffer->len)
2865 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2870 ret = pv_mmu_peek_buffer(buffer, len);
2875 buffer->processed += len;
2879 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
2880 gpa_t addr, gpa_t value)
2885 if (!is_long_mode(vcpu) && !is_pae(vcpu))
2888 r = mmu_topup_memory_caches(vcpu);
2892 if (!emulator_write_phys(vcpu, addr, &value, bytes))
2898 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2900 kvm_x86_ops->tlb_flush(vcpu);
2901 set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
2905 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
2907 spin_lock(&vcpu->kvm->mmu_lock);
2908 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
2909 spin_unlock(&vcpu->kvm->mmu_lock);
2913 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
2914 struct kvm_pv_mmu_op_buffer *buffer)
2916 struct kvm_mmu_op_header *header;
2918 header = pv_mmu_peek_buffer(buffer, sizeof *header);
2921 switch (header->op) {
2922 case KVM_MMU_OP_WRITE_PTE: {
2923 struct kvm_mmu_op_write_pte *wpte;
2925 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
2928 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
2931 case KVM_MMU_OP_FLUSH_TLB: {
2932 struct kvm_mmu_op_flush_tlb *ftlb;
2934 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
2937 return kvm_pv_mmu_flush_tlb(vcpu);
2939 case KVM_MMU_OP_RELEASE_PT: {
2940 struct kvm_mmu_op_release_pt *rpt;
2942 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
2945 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
2951 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
2952 gpa_t addr, unsigned long *ret)
2955 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
2957 buffer->ptr = buffer->buf;
2958 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
2959 buffer->processed = 0;
2961 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
2965 while (buffer->len) {
2966 r = kvm_pv_mmu_op_one(vcpu, buffer);
2975 *ret = buffer->processed;
2981 static const char *audit_msg;
2983 static gva_t canonicalize(gva_t gva)
2985 #ifdef CONFIG_X86_64
2986 gva = (long long)(gva << 16) >> 16;
2991 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
2992 gva_t va, int level)
2994 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
2996 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
2998 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
3001 if (ent == shadow_trap_nonpresent_pte)
3004 va = canonicalize(va);
3006 if (ent == shadow_notrap_nonpresent_pte)
3007 printk(KERN_ERR "audit: (%s) nontrapping pte"
3008 " in nonleaf level: levels %d gva %lx"
3009 " level %d pte %llx\n", audit_msg,
3010 vcpu->arch.mmu.root_level, va, level, ent);
3012 audit_mappings_page(vcpu, ent, va, level - 1);
3014 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
3015 hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
3017 if (is_shadow_present_pte(ent)
3018 && (ent & PT64_BASE_ADDR_MASK) != hpa)
3019 printk(KERN_ERR "xx audit error: (%s) levels %d"
3020 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
3021 audit_msg, vcpu->arch.mmu.root_level,
3023 is_shadow_present_pte(ent));
3024 else if (ent == shadow_notrap_nonpresent_pte
3025 && !is_error_hpa(hpa))
3026 printk(KERN_ERR "audit: (%s) notrap shadow,"
3027 " valid guest gva %lx\n", audit_msg, va);
3028 kvm_release_pfn_clean(pfn);
3034 static void audit_mappings(struct kvm_vcpu *vcpu)
3038 if (vcpu->arch.mmu.root_level == 4)
3039 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
3041 for (i = 0; i < 4; ++i)
3042 if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
3043 audit_mappings_page(vcpu,
3044 vcpu->arch.mmu.pae_root[i],
3049 static int count_rmaps(struct kvm_vcpu *vcpu)
3054 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
3055 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
3056 struct kvm_rmap_desc *d;
3058 for (j = 0; j < m->npages; ++j) {
3059 unsigned long *rmapp = &m->rmap[j];
3063 if (!(*rmapp & 1)) {
3067 d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
3069 for (k = 0; k < RMAP_EXT; ++k)
3070 if (d->shadow_ptes[k])
3081 static int count_writable_mappings(struct kvm_vcpu *vcpu)
3084 struct kvm_mmu_page *sp;
3087 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3090 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
3093 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3096 if (!(ent & PT_PRESENT_MASK))
3098 if (!(ent & PT_WRITABLE_MASK))
3106 static void audit_rmap(struct kvm_vcpu *vcpu)
3108 int n_rmap = count_rmaps(vcpu);
3109 int n_actual = count_writable_mappings(vcpu);
3111 if (n_rmap != n_actual)
3112 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
3113 __func__, audit_msg, n_rmap, n_actual);
3116 static void audit_write_protection(struct kvm_vcpu *vcpu)
3118 struct kvm_mmu_page *sp;
3119 struct kvm_memory_slot *slot;
3120 unsigned long *rmapp;
3123 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3124 if (sp->role.metaphysical)
3127 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
3128 slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
3129 rmapp = &slot->rmap[gfn - slot->base_gfn];
3131 printk(KERN_ERR "%s: (%s) shadow page has writable"
3132 " mappings: gfn %lx role %x\n",
3133 __func__, audit_msg, sp->gfn,
3138 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
3145 audit_write_protection(vcpu);
3146 audit_mappings(vcpu);