[NETFILTER]: Fix undersized skb allocation in ipt_ULOG/ebt_ulog/nfnetlink_log
[linux-2.6] / crypto / twofish.c
1 /*
2  * Twofish for CryptoAPI
3  *
4  * Originally Twofish for GPG
5  * By Matthew Skala <mskala@ansuz.sooke.bc.ca>, July 26, 1998
6  * 256-bit key length added March 20, 1999
7  * Some modifications to reduce the text size by Werner Koch, April, 1998
8  * Ported to the kerneli patch by Marc Mutz <Marc@Mutz.com>
9  * Ported to CryptoAPI by Colin Slater <hoho@tacomeat.net>
10  *
11  * The original author has disclaimed all copyright interest in this
12  * code and thus put it in the public domain. The subsequent authors 
13  * have put this under the GNU General Public License.
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  * This program is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23  * GNU General Public License for more details.
24  * 
25  * You should have received a copy of the GNU General Public License
26  * along with this program; if not, write to the Free Software
27  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307
28  * USA
29  *
30  * This code is a "clean room" implementation, written from the paper
31  * _Twofish: A 128-Bit Block Cipher_ by Bruce Schneier, John Kelsey,
32  * Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson, available
33  * through http://www.counterpane.com/twofish.html
34  *
35  * For background information on multiplication in finite fields, used for
36  * the matrix operations in the key schedule, see the book _Contemporary
37  * Abstract Algebra_ by Joseph A. Gallian, especially chapter 22 in the
38  * Third Edition.
39  */
40
41 #include <asm/byteorder.h>
42 #include <linux/module.h>
43 #include <linux/init.h>
44 #include <linux/types.h>
45 #include <linux/errno.h>
46 #include <linux/crypto.h>
47
48
49 /* The large precomputed tables for the Twofish cipher (twofish.c)
50  * Taken from the same source as twofish.c
51  * Marc Mutz <Marc@Mutz.com>
52  */
53
54 /* These two tables are the q0 and q1 permutations, exactly as described in
55  * the Twofish paper. */
56
57 static const u8 q0[256] = {
58    0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76, 0x9A, 0x92, 0x80, 0x78,
59    0xE4, 0xDD, 0xD1, 0x38, 0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C,
60    0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48, 0xF2, 0xD0, 0x8B, 0x30,
61    0x84, 0x54, 0xDF, 0x23, 0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82,
62    0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C, 0xA6, 0xEB, 0xA5, 0xBE,
63    0x16, 0x0C, 0xE3, 0x61, 0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B,
64    0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1, 0xE1, 0xE6, 0xBD, 0x45,
65    0xE2, 0xF4, 0xB6, 0x66, 0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7,
66    0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA, 0xEA, 0x77, 0x39, 0xAF,
67    0x33, 0xC9, 0x62, 0x71, 0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8,
68    0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7, 0xA1, 0x1D, 0xAA, 0xED,
69    0x06, 0x70, 0xB2, 0xD2, 0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90,
70    0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB, 0x9E, 0x9C, 0x52, 0x1B,
71    0x5F, 0x93, 0x0A, 0xEF, 0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B,
72    0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64, 0x2A, 0xCE, 0xCB, 0x2F,
73    0xFC, 0x97, 0x05, 0x7A, 0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A,
74    0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02, 0xB8, 0xDA, 0xB0, 0x17,
75    0x55, 0x1F, 0x8A, 0x7D, 0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72,
76    0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34, 0x6E, 0x50, 0xDE, 0x68,
77    0x65, 0xBC, 0xDB, 0xF8, 0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4,
78    0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00, 0x6F, 0x9D, 0x36, 0x42,
79    0x4A, 0x5E, 0xC1, 0xE0
80 };
81
82 static const u8 q1[256] = {
83    0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8, 0x4A, 0xD3, 0xE6, 0x6B,
84    0x45, 0x7D, 0xE8, 0x4B, 0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1,
85    0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F, 0x5E, 0xBA, 0xAE, 0x5B,
86    0x8A, 0x00, 0xBC, 0x9D, 0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5,
87    0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3, 0xB2, 0x73, 0x4C, 0x54,
88    0x92, 0x74, 0x36, 0x51, 0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96,
89    0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C, 0x13, 0x95, 0x9C, 0xC7,
90    0x24, 0x46, 0x3B, 0x70, 0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8,
91    0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC, 0x03, 0x6F, 0x08, 0xBF,
92    0x40, 0xE7, 0x2B, 0xE2, 0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9,
93    0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17, 0x66, 0x94, 0xA1, 0x1D,
94    0x3D, 0xF0, 0xDE, 0xB3, 0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E,
95    0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49, 0x81, 0x88, 0xEE, 0x21,
96    0xC4, 0x1A, 0xEB, 0xD9, 0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01,
97    0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48, 0x4F, 0xF2, 0x65, 0x8E,
98    0x78, 0x5C, 0x58, 0x19, 0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64,
99    0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5, 0xCE, 0xE9, 0x68, 0x44,
100    0xE0, 0x4D, 0x43, 0x69, 0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E,
101    0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC, 0x22, 0xC9, 0xC0, 0x9B,
102    0x89, 0xD4, 0xED, 0xAB, 0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9,
103    0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2, 0x16, 0x25, 0x86, 0x56,
104    0x55, 0x09, 0xBE, 0x91
105 };
106
107 /* These MDS tables are actually tables of MDS composed with q0 and q1,
108  * because it is only ever used that way and we can save some time by
109  * precomputing.  Of course the main saving comes from precomputing the
110  * GF(2^8) multiplication involved in the MDS matrix multiply; by looking
111  * things up in these tables we reduce the matrix multiply to four lookups
112  * and three XORs.  Semi-formally, the definition of these tables is:
113  * mds[0][i] = MDS (q1[i] 0 0 0)^T  mds[1][i] = MDS (0 q0[i] 0 0)^T
114  * mds[2][i] = MDS (0 0 q1[i] 0)^T  mds[3][i] = MDS (0 0 0 q0[i])^T
115  * where ^T means "transpose", the matrix multiply is performed in GF(2^8)
116  * represented as GF(2)[x]/v(x) where v(x)=x^8+x^6+x^5+x^3+1 as described
117  * by Schneier et al, and I'm casually glossing over the byte/word
118  * conversion issues. */
119
120 static const u32 mds[4][256] = {
121    {0xBCBC3275, 0xECEC21F3, 0x202043C6, 0xB3B3C9F4, 0xDADA03DB, 0x02028B7B,
122     0xE2E22BFB, 0x9E9EFAC8, 0xC9C9EC4A, 0xD4D409D3, 0x18186BE6, 0x1E1E9F6B,
123     0x98980E45, 0xB2B2387D, 0xA6A6D2E8, 0x2626B74B, 0x3C3C57D6, 0x93938A32,
124     0x8282EED8, 0x525298FD, 0x7B7BD437, 0xBBBB3771, 0x5B5B97F1, 0x474783E1,
125     0x24243C30, 0x5151E20F, 0xBABAC6F8, 0x4A4AF31B, 0xBFBF4887, 0x0D0D70FA,
126     0xB0B0B306, 0x7575DE3F, 0xD2D2FD5E, 0x7D7D20BA, 0x666631AE, 0x3A3AA35B,
127     0x59591C8A, 0x00000000, 0xCDCD93BC, 0x1A1AE09D, 0xAEAE2C6D, 0x7F7FABC1,
128     0x2B2BC7B1, 0xBEBEB90E, 0xE0E0A080, 0x8A8A105D, 0x3B3B52D2, 0x6464BAD5,
129     0xD8D888A0, 0xE7E7A584, 0x5F5FE807, 0x1B1B1114, 0x2C2CC2B5, 0xFCFCB490,
130     0x3131272C, 0x808065A3, 0x73732AB2, 0x0C0C8173, 0x79795F4C, 0x6B6B4154,
131     0x4B4B0292, 0x53536974, 0x94948F36, 0x83831F51, 0x2A2A3638, 0xC4C49CB0,
132     0x2222C8BD, 0xD5D5F85A, 0xBDBDC3FC, 0x48487860, 0xFFFFCE62, 0x4C4C0796,
133     0x4141776C, 0xC7C7E642, 0xEBEB24F7, 0x1C1C1410, 0x5D5D637C, 0x36362228,
134     0x6767C027, 0xE9E9AF8C, 0x4444F913, 0x1414EA95, 0xF5F5BB9C, 0xCFCF18C7,
135     0x3F3F2D24, 0xC0C0E346, 0x7272DB3B, 0x54546C70, 0x29294CCA, 0xF0F035E3,
136     0x0808FE85, 0xC6C617CB, 0xF3F34F11, 0x8C8CE4D0, 0xA4A45993, 0xCACA96B8,
137     0x68683BA6, 0xB8B84D83, 0x38382820, 0xE5E52EFF, 0xADAD569F, 0x0B0B8477,
138     0xC8C81DC3, 0x9999FFCC, 0x5858ED03, 0x19199A6F, 0x0E0E0A08, 0x95957EBF,
139     0x70705040, 0xF7F730E7, 0x6E6ECF2B, 0x1F1F6EE2, 0xB5B53D79, 0x09090F0C,
140     0x616134AA, 0x57571682, 0x9F9F0B41, 0x9D9D803A, 0x111164EA, 0x2525CDB9,
141     0xAFAFDDE4, 0x4545089A, 0xDFDF8DA4, 0xA3A35C97, 0xEAEAD57E, 0x353558DA,
142     0xEDEDD07A, 0x4343FC17, 0xF8F8CB66, 0xFBFBB194, 0x3737D3A1, 0xFAFA401D,
143     0xC2C2683D, 0xB4B4CCF0, 0x32325DDE, 0x9C9C71B3, 0x5656E70B, 0xE3E3DA72,
144     0x878760A7, 0x15151B1C, 0xF9F93AEF, 0x6363BFD1, 0x3434A953, 0x9A9A853E,
145     0xB1B1428F, 0x7C7CD133, 0x88889B26, 0x3D3DA65F, 0xA1A1D7EC, 0xE4E4DF76,
146     0x8181942A, 0x91910149, 0x0F0FFB81, 0xEEEEAA88, 0x161661EE, 0xD7D77321,
147     0x9797F5C4, 0xA5A5A81A, 0xFEFE3FEB, 0x6D6DB5D9, 0x7878AEC5, 0xC5C56D39,
148     0x1D1DE599, 0x7676A4CD, 0x3E3EDCAD, 0xCBCB6731, 0xB6B6478B, 0xEFEF5B01,
149     0x12121E18, 0x6060C523, 0x6A6AB0DD, 0x4D4DF61F, 0xCECEE94E, 0xDEDE7C2D,
150     0x55559DF9, 0x7E7E5A48, 0x2121B24F, 0x03037AF2, 0xA0A02665, 0x5E5E198E,
151     0x5A5A6678, 0x65654B5C, 0x62624E58, 0xFDFD4519, 0x0606F48D, 0x404086E5,
152     0xF2F2BE98, 0x3333AC57, 0x17179067, 0x05058E7F, 0xE8E85E05, 0x4F4F7D64,
153     0x89896AAF, 0x10109563, 0x74742FB6, 0x0A0A75FE, 0x5C5C92F5, 0x9B9B74B7,
154     0x2D2D333C, 0x3030D6A5, 0x2E2E49CE, 0x494989E9, 0x46467268, 0x77775544,
155     0xA8A8D8E0, 0x9696044D, 0x2828BD43, 0xA9A92969, 0xD9D97929, 0x8686912E,
156     0xD1D187AC, 0xF4F44A15, 0x8D8D1559, 0xD6D682A8, 0xB9B9BC0A, 0x42420D9E,
157     0xF6F6C16E, 0x2F2FB847, 0xDDDD06DF, 0x23233934, 0xCCCC6235, 0xF1F1C46A,
158     0xC1C112CF, 0x8585EBDC, 0x8F8F9E22, 0x7171A1C9, 0x9090F0C0, 0xAAAA539B,
159     0x0101F189, 0x8B8BE1D4, 0x4E4E8CED, 0x8E8E6FAB, 0xABABA212, 0x6F6F3EA2,
160     0xE6E6540D, 0xDBDBF252, 0x92927BBB, 0xB7B7B602, 0x6969CA2F, 0x3939D9A9,
161     0xD3D30CD7, 0xA7A72361, 0xA2A2AD1E, 0xC3C399B4, 0x6C6C4450, 0x07070504,
162     0x04047FF6, 0x272746C2, 0xACACA716, 0xD0D07625, 0x50501386, 0xDCDCF756,
163     0x84841A55, 0xE1E15109, 0x7A7A25BE, 0x1313EF91},
164
165    {0xA9D93939, 0x67901717, 0xB3719C9C, 0xE8D2A6A6, 0x04050707, 0xFD985252,
166     0xA3658080, 0x76DFE4E4, 0x9A084545, 0x92024B4B, 0x80A0E0E0, 0x78665A5A,
167     0xE4DDAFAF, 0xDDB06A6A, 0xD1BF6363, 0x38362A2A, 0x0D54E6E6, 0xC6432020,
168     0x3562CCCC, 0x98BEF2F2, 0x181E1212, 0xF724EBEB, 0xECD7A1A1, 0x6C774141,
169     0x43BD2828, 0x7532BCBC, 0x37D47B7B, 0x269B8888, 0xFA700D0D, 0x13F94444,
170     0x94B1FBFB, 0x485A7E7E, 0xF27A0303, 0xD0E48C8C, 0x8B47B6B6, 0x303C2424,
171     0x84A5E7E7, 0x54416B6B, 0xDF06DDDD, 0x23C56060, 0x1945FDFD, 0x5BA33A3A,
172     0x3D68C2C2, 0x59158D8D, 0xF321ECEC, 0xAE316666, 0xA23E6F6F, 0x82165757,
173     0x63951010, 0x015BEFEF, 0x834DB8B8, 0x2E918686, 0xD9B56D6D, 0x511F8383,
174     0x9B53AAAA, 0x7C635D5D, 0xA63B6868, 0xEB3FFEFE, 0xA5D63030, 0xBE257A7A,
175     0x16A7ACAC, 0x0C0F0909, 0xE335F0F0, 0x6123A7A7, 0xC0F09090, 0x8CAFE9E9,
176     0x3A809D9D, 0xF5925C5C, 0x73810C0C, 0x2C273131, 0x2576D0D0, 0x0BE75656,
177     0xBB7B9292, 0x4EE9CECE, 0x89F10101, 0x6B9F1E1E, 0x53A93434, 0x6AC4F1F1,
178     0xB499C3C3, 0xF1975B5B, 0xE1834747, 0xE66B1818, 0xBDC82222, 0x450E9898,
179     0xE26E1F1F, 0xF4C9B3B3, 0xB62F7474, 0x66CBF8F8, 0xCCFF9999, 0x95EA1414,
180     0x03ED5858, 0x56F7DCDC, 0xD4E18B8B, 0x1C1B1515, 0x1EADA2A2, 0xD70CD3D3,
181     0xFB2BE2E2, 0xC31DC8C8, 0x8E195E5E, 0xB5C22C2C, 0xE9894949, 0xCF12C1C1,
182     0xBF7E9595, 0xBA207D7D, 0xEA641111, 0x77840B0B, 0x396DC5C5, 0xAF6A8989,
183     0x33D17C7C, 0xC9A17171, 0x62CEFFFF, 0x7137BBBB, 0x81FB0F0F, 0x793DB5B5,
184     0x0951E1E1, 0xADDC3E3E, 0x242D3F3F, 0xCDA47676, 0xF99D5555, 0xD8EE8282,
185     0xE5864040, 0xC5AE7878, 0xB9CD2525, 0x4D049696, 0x44557777, 0x080A0E0E,
186     0x86135050, 0xE730F7F7, 0xA1D33737, 0x1D40FAFA, 0xAA346161, 0xED8C4E4E,
187     0x06B3B0B0, 0x706C5454, 0xB22A7373, 0xD2523B3B, 0x410B9F9F, 0x7B8B0202,
188     0xA088D8D8, 0x114FF3F3, 0x3167CBCB, 0xC2462727, 0x27C06767, 0x90B4FCFC,
189     0x20283838, 0xF67F0404, 0x60784848, 0xFF2EE5E5, 0x96074C4C, 0x5C4B6565,
190     0xB1C72B2B, 0xAB6F8E8E, 0x9E0D4242, 0x9CBBF5F5, 0x52F2DBDB, 0x1BF34A4A,
191     0x5FA63D3D, 0x9359A4A4, 0x0ABCB9B9, 0xEF3AF9F9, 0x91EF1313, 0x85FE0808,
192     0x49019191, 0xEE611616, 0x2D7CDEDE, 0x4FB22121, 0x8F42B1B1, 0x3BDB7272,
193     0x47B82F2F, 0x8748BFBF, 0x6D2CAEAE, 0x46E3C0C0, 0xD6573C3C, 0x3E859A9A,
194     0x6929A9A9, 0x647D4F4F, 0x2A948181, 0xCE492E2E, 0xCB17C6C6, 0x2FCA6969,
195     0xFCC3BDBD, 0x975CA3A3, 0x055EE8E8, 0x7AD0EDED, 0xAC87D1D1, 0x7F8E0505,
196     0xD5BA6464, 0x1AA8A5A5, 0x4BB72626, 0x0EB9BEBE, 0xA7608787, 0x5AF8D5D5,
197     0x28223636, 0x14111B1B, 0x3FDE7575, 0x2979D9D9, 0x88AAEEEE, 0x3C332D2D,
198     0x4C5F7979, 0x02B6B7B7, 0xB896CACA, 0xDA583535, 0xB09CC4C4, 0x17FC4343,
199     0x551A8484, 0x1FF64D4D, 0x8A1C5959, 0x7D38B2B2, 0x57AC3333, 0xC718CFCF,
200     0x8DF40606, 0x74695353, 0xB7749B9B, 0xC4F59797, 0x9F56ADAD, 0x72DAE3E3,
201     0x7ED5EAEA, 0x154AF4F4, 0x229E8F8F, 0x12A2ABAB, 0x584E6262, 0x07E85F5F,
202     0x99E51D1D, 0x34392323, 0x6EC1F6F6, 0x50446C6C, 0xDE5D3232, 0x68724646,
203     0x6526A0A0, 0xBC93CDCD, 0xDB03DADA, 0xF8C6BABA, 0xC8FA9E9E, 0xA882D6D6,
204     0x2BCF6E6E, 0x40507070, 0xDCEB8585, 0xFE750A0A, 0x328A9393, 0xA48DDFDF,
205     0xCA4C2929, 0x10141C1C, 0x2173D7D7, 0xF0CCB4B4, 0xD309D4D4, 0x5D108A8A,
206     0x0FE25151, 0x00000000, 0x6F9A1919, 0x9DE01A1A, 0x368F9494, 0x42E6C7C7,
207     0x4AECC9C9, 0x5EFDD2D2, 0xC1AB7F7F, 0xE0D8A8A8},
208
209    {0xBC75BC32, 0xECF3EC21, 0x20C62043, 0xB3F4B3C9, 0xDADBDA03, 0x027B028B,
210     0xE2FBE22B, 0x9EC89EFA, 0xC94AC9EC, 0xD4D3D409, 0x18E6186B, 0x1E6B1E9F,
211     0x9845980E, 0xB27DB238, 0xA6E8A6D2, 0x264B26B7, 0x3CD63C57, 0x9332938A,
212     0x82D882EE, 0x52FD5298, 0x7B377BD4, 0xBB71BB37, 0x5BF15B97, 0x47E14783,
213     0x2430243C, 0x510F51E2, 0xBAF8BAC6, 0x4A1B4AF3, 0xBF87BF48, 0x0DFA0D70,
214     0xB006B0B3, 0x753F75DE, 0xD25ED2FD, 0x7DBA7D20, 0x66AE6631, 0x3A5B3AA3,
215     0x598A591C, 0x00000000, 0xCDBCCD93, 0x1A9D1AE0, 0xAE6DAE2C, 0x7FC17FAB,
216     0x2BB12BC7, 0xBE0EBEB9, 0xE080E0A0, 0x8A5D8A10, 0x3BD23B52, 0x64D564BA,
217     0xD8A0D888, 0xE784E7A5, 0x5F075FE8, 0x1B141B11, 0x2CB52CC2, 0xFC90FCB4,
218     0x312C3127, 0x80A38065, 0x73B2732A, 0x0C730C81, 0x794C795F, 0x6B546B41,
219     0x4B924B02, 0x53745369, 0x9436948F, 0x8351831F, 0x2A382A36, 0xC4B0C49C,
220     0x22BD22C8, 0xD55AD5F8, 0xBDFCBDC3, 0x48604878, 0xFF62FFCE, 0x4C964C07,
221     0x416C4177, 0xC742C7E6, 0xEBF7EB24, 0x1C101C14, 0x5D7C5D63, 0x36283622,
222     0x672767C0, 0xE98CE9AF, 0x441344F9, 0x149514EA, 0xF59CF5BB, 0xCFC7CF18,
223     0x3F243F2D, 0xC046C0E3, 0x723B72DB, 0x5470546C, 0x29CA294C, 0xF0E3F035,
224     0x088508FE, 0xC6CBC617, 0xF311F34F, 0x8CD08CE4, 0xA493A459, 0xCAB8CA96,
225     0x68A6683B, 0xB883B84D, 0x38203828, 0xE5FFE52E, 0xAD9FAD56, 0x0B770B84,
226     0xC8C3C81D, 0x99CC99FF, 0x580358ED, 0x196F199A, 0x0E080E0A, 0x95BF957E,
227     0x70407050, 0xF7E7F730, 0x6E2B6ECF, 0x1FE21F6E, 0xB579B53D, 0x090C090F,
228     0x61AA6134, 0x57825716, 0x9F419F0B, 0x9D3A9D80, 0x11EA1164, 0x25B925CD,
229     0xAFE4AFDD, 0x459A4508, 0xDFA4DF8D, 0xA397A35C, 0xEA7EEAD5, 0x35DA3558,
230     0xED7AEDD0, 0x431743FC, 0xF866F8CB, 0xFB94FBB1, 0x37A137D3, 0xFA1DFA40,
231     0xC23DC268, 0xB4F0B4CC, 0x32DE325D, 0x9CB39C71, 0x560B56E7, 0xE372E3DA,
232     0x87A78760, 0x151C151B, 0xF9EFF93A, 0x63D163BF, 0x345334A9, 0x9A3E9A85,
233     0xB18FB142, 0x7C337CD1, 0x8826889B, 0x3D5F3DA6, 0xA1ECA1D7, 0xE476E4DF,
234     0x812A8194, 0x91499101, 0x0F810FFB, 0xEE88EEAA, 0x16EE1661, 0xD721D773,
235     0x97C497F5, 0xA51AA5A8, 0xFEEBFE3F, 0x6DD96DB5, 0x78C578AE, 0xC539C56D,
236     0x1D991DE5, 0x76CD76A4, 0x3EAD3EDC, 0xCB31CB67, 0xB68BB647, 0xEF01EF5B,
237     0x1218121E, 0x602360C5, 0x6ADD6AB0, 0x4D1F4DF6, 0xCE4ECEE9, 0xDE2DDE7C,
238     0x55F9559D, 0x7E487E5A, 0x214F21B2, 0x03F2037A, 0xA065A026, 0x5E8E5E19,
239     0x5A785A66, 0x655C654B, 0x6258624E, 0xFD19FD45, 0x068D06F4, 0x40E54086,
240     0xF298F2BE, 0x335733AC, 0x17671790, 0x057F058E, 0xE805E85E, 0x4F644F7D,
241     0x89AF896A, 0x10631095, 0x74B6742F, 0x0AFE0A75, 0x5CF55C92, 0x9BB79B74,
242     0x2D3C2D33, 0x30A530D6, 0x2ECE2E49, 0x49E94989, 0x46684672, 0x77447755,
243     0xA8E0A8D8, 0x964D9604, 0x284328BD, 0xA969A929, 0xD929D979, 0x862E8691,
244     0xD1ACD187, 0xF415F44A, 0x8D598D15, 0xD6A8D682, 0xB90AB9BC, 0x429E420D,
245     0xF66EF6C1, 0x2F472FB8, 0xDDDFDD06, 0x23342339, 0xCC35CC62, 0xF16AF1C4,
246     0xC1CFC112, 0x85DC85EB, 0x8F228F9E, 0x71C971A1, 0x90C090F0, 0xAA9BAA53,
247     0x018901F1, 0x8BD48BE1, 0x4EED4E8C, 0x8EAB8E6F, 0xAB12ABA2, 0x6FA26F3E,
248     0xE60DE654, 0xDB52DBF2, 0x92BB927B, 0xB702B7B6, 0x692F69CA, 0x39A939D9,
249     0xD3D7D30C, 0xA761A723, 0xA21EA2AD, 0xC3B4C399, 0x6C506C44, 0x07040705,
250     0x04F6047F, 0x27C22746, 0xAC16ACA7, 0xD025D076, 0x50865013, 0xDC56DCF7,
251     0x8455841A, 0xE109E151, 0x7ABE7A25, 0x139113EF},
252
253    {0xD939A9D9, 0x90176790, 0x719CB371, 0xD2A6E8D2, 0x05070405, 0x9852FD98,
254     0x6580A365, 0xDFE476DF, 0x08459A08, 0x024B9202, 0xA0E080A0, 0x665A7866,
255     0xDDAFE4DD, 0xB06ADDB0, 0xBF63D1BF, 0x362A3836, 0x54E60D54, 0x4320C643,
256     0x62CC3562, 0xBEF298BE, 0x1E12181E, 0x24EBF724, 0xD7A1ECD7, 0x77416C77,
257     0xBD2843BD, 0x32BC7532, 0xD47B37D4, 0x9B88269B, 0x700DFA70, 0xF94413F9,
258     0xB1FB94B1, 0x5A7E485A, 0x7A03F27A, 0xE48CD0E4, 0x47B68B47, 0x3C24303C,
259     0xA5E784A5, 0x416B5441, 0x06DDDF06, 0xC56023C5, 0x45FD1945, 0xA33A5BA3,
260     0x68C23D68, 0x158D5915, 0x21ECF321, 0x3166AE31, 0x3E6FA23E, 0x16578216,
261     0x95106395, 0x5BEF015B, 0x4DB8834D, 0x91862E91, 0xB56DD9B5, 0x1F83511F,
262     0x53AA9B53, 0x635D7C63, 0x3B68A63B, 0x3FFEEB3F, 0xD630A5D6, 0x257ABE25,
263     0xA7AC16A7, 0x0F090C0F, 0x35F0E335, 0x23A76123, 0xF090C0F0, 0xAFE98CAF,
264     0x809D3A80, 0x925CF592, 0x810C7381, 0x27312C27, 0x76D02576, 0xE7560BE7,
265     0x7B92BB7B, 0xE9CE4EE9, 0xF10189F1, 0x9F1E6B9F, 0xA93453A9, 0xC4F16AC4,
266     0x99C3B499, 0x975BF197, 0x8347E183, 0x6B18E66B, 0xC822BDC8, 0x0E98450E,
267     0x6E1FE26E, 0xC9B3F4C9, 0x2F74B62F, 0xCBF866CB, 0xFF99CCFF, 0xEA1495EA,
268     0xED5803ED, 0xF7DC56F7, 0xE18BD4E1, 0x1B151C1B, 0xADA21EAD, 0x0CD3D70C,
269     0x2BE2FB2B, 0x1DC8C31D, 0x195E8E19, 0xC22CB5C2, 0x8949E989, 0x12C1CF12,
270     0x7E95BF7E, 0x207DBA20, 0x6411EA64, 0x840B7784, 0x6DC5396D, 0x6A89AF6A,
271     0xD17C33D1, 0xA171C9A1, 0xCEFF62CE, 0x37BB7137, 0xFB0F81FB, 0x3DB5793D,
272     0x51E10951, 0xDC3EADDC, 0x2D3F242D, 0xA476CDA4, 0x9D55F99D, 0xEE82D8EE,
273     0x8640E586, 0xAE78C5AE, 0xCD25B9CD, 0x04964D04, 0x55774455, 0x0A0E080A,
274     0x13508613, 0x30F7E730, 0xD337A1D3, 0x40FA1D40, 0x3461AA34, 0x8C4EED8C,
275     0xB3B006B3, 0x6C54706C, 0x2A73B22A, 0x523BD252, 0x0B9F410B, 0x8B027B8B,
276     0x88D8A088, 0x4FF3114F, 0x67CB3167, 0x4627C246, 0xC06727C0, 0xB4FC90B4,
277     0x28382028, 0x7F04F67F, 0x78486078, 0x2EE5FF2E, 0x074C9607, 0x4B655C4B,
278     0xC72BB1C7, 0x6F8EAB6F, 0x0D429E0D, 0xBBF59CBB, 0xF2DB52F2, 0xF34A1BF3,
279     0xA63D5FA6, 0x59A49359, 0xBCB90ABC, 0x3AF9EF3A, 0xEF1391EF, 0xFE0885FE,
280     0x01914901, 0x6116EE61, 0x7CDE2D7C, 0xB2214FB2, 0x42B18F42, 0xDB723BDB,
281     0xB82F47B8, 0x48BF8748, 0x2CAE6D2C, 0xE3C046E3, 0x573CD657, 0x859A3E85,
282     0x29A96929, 0x7D4F647D, 0x94812A94, 0x492ECE49, 0x17C6CB17, 0xCA692FCA,
283     0xC3BDFCC3, 0x5CA3975C, 0x5EE8055E, 0xD0ED7AD0, 0x87D1AC87, 0x8E057F8E,
284     0xBA64D5BA, 0xA8A51AA8, 0xB7264BB7, 0xB9BE0EB9, 0x6087A760, 0xF8D55AF8,
285     0x22362822, 0x111B1411, 0xDE753FDE, 0x79D92979, 0xAAEE88AA, 0x332D3C33,
286     0x5F794C5F, 0xB6B702B6, 0x96CAB896, 0x5835DA58, 0x9CC4B09C, 0xFC4317FC,
287     0x1A84551A, 0xF64D1FF6, 0x1C598A1C, 0x38B27D38, 0xAC3357AC, 0x18CFC718,
288     0xF4068DF4, 0x69537469, 0x749BB774, 0xF597C4F5, 0x56AD9F56, 0xDAE372DA,
289     0xD5EA7ED5, 0x4AF4154A, 0x9E8F229E, 0xA2AB12A2, 0x4E62584E, 0xE85F07E8,
290     0xE51D99E5, 0x39233439, 0xC1F66EC1, 0x446C5044, 0x5D32DE5D, 0x72466872,
291     0x26A06526, 0x93CDBC93, 0x03DADB03, 0xC6BAF8C6, 0xFA9EC8FA, 0x82D6A882,
292     0xCF6E2BCF, 0x50704050, 0xEB85DCEB, 0x750AFE75, 0x8A93328A, 0x8DDFA48D,
293     0x4C29CA4C, 0x141C1014, 0x73D72173, 0xCCB4F0CC, 0x09D4D309, 0x108A5D10,
294     0xE2510FE2, 0x00000000, 0x9A196F9A, 0xE01A9DE0, 0x8F94368F, 0xE6C742E6,
295     0xECC94AEC, 0xFDD25EFD, 0xAB7FC1AB, 0xD8A8E0D8}
296 };
297
298 /* The exp_to_poly and poly_to_exp tables are used to perform efficient
299  * operations in GF(2^8) represented as GF(2)[x]/w(x) where
300  * w(x)=x^8+x^6+x^3+x^2+1.  We care about doing that because it's part of the
301  * definition of the RS matrix in the key schedule.  Elements of that field
302  * are polynomials of degree not greater than 7 and all coefficients 0 or 1,
303  * which can be represented naturally by bytes (just substitute x=2).  In that
304  * form, GF(2^8) addition is the same as bitwise XOR, but GF(2^8)
305  * multiplication is inefficient without hardware support.  To multiply
306  * faster, I make use of the fact x is a generator for the nonzero elements,
307  * so that every element p of GF(2)[x]/w(x) is either 0 or equal to (x)^n for
308  * some n in 0..254.  Note that that caret is exponentiation in GF(2^8),
309  * *not* polynomial notation.  So if I want to compute pq where p and q are
310  * in GF(2^8), I can just say:
311  *    1. if p=0 or q=0 then pq=0
312  *    2. otherwise, find m and n such that p=x^m and q=x^n
313  *    3. pq=(x^m)(x^n)=x^(m+n), so add m and n and find pq
314  * The translations in steps 2 and 3 are looked up in the tables
315  * poly_to_exp (for step 2) and exp_to_poly (for step 3).  To see this
316  * in action, look at the CALC_S macro.  As additional wrinkles, note that
317  * one of my operands is always a constant, so the poly_to_exp lookup on it
318  * is done in advance; I included the original values in the comments so
319  * readers can have some chance of recognizing that this *is* the RS matrix
320  * from the Twofish paper.  I've only included the table entries I actually
321  * need; I never do a lookup on a variable input of zero and the biggest
322  * exponents I'll ever see are 254 (variable) and 237 (constant), so they'll
323  * never sum to more than 491.  I'm repeating part of the exp_to_poly table
324  * so that I don't have to do mod-255 reduction in the exponent arithmetic.
325  * Since I know my constant operands are never zero, I only have to worry
326  * about zero values in the variable operand, and I do it with a simple
327  * conditional branch.  I know conditionals are expensive, but I couldn't
328  * see a non-horrible way of avoiding them, and I did manage to group the
329  * statements so that each if covers four group multiplications. */
330
331 static const u8 poly_to_exp[255] = {
332    0x00, 0x01, 0x17, 0x02, 0x2E, 0x18, 0x53, 0x03, 0x6A, 0x2F, 0x93, 0x19,
333    0x34, 0x54, 0x45, 0x04, 0x5C, 0x6B, 0xB6, 0x30, 0xA6, 0x94, 0x4B, 0x1A,
334    0x8C, 0x35, 0x81, 0x55, 0xAA, 0x46, 0x0D, 0x05, 0x24, 0x5D, 0x87, 0x6C,
335    0x9B, 0xB7, 0xC1, 0x31, 0x2B, 0xA7, 0xA3, 0x95, 0x98, 0x4C, 0xCA, 0x1B,
336    0xE6, 0x8D, 0x73, 0x36, 0xCD, 0x82, 0x12, 0x56, 0x62, 0xAB, 0xF0, 0x47,
337    0x4F, 0x0E, 0xBD, 0x06, 0xD4, 0x25, 0xD2, 0x5E, 0x27, 0x88, 0x66, 0x6D,
338    0xD6, 0x9C, 0x79, 0xB8, 0x08, 0xC2, 0xDF, 0x32, 0x68, 0x2C, 0xFD, 0xA8,
339    0x8A, 0xA4, 0x5A, 0x96, 0x29, 0x99, 0x22, 0x4D, 0x60, 0xCB, 0xE4, 0x1C,
340    0x7B, 0xE7, 0x3B, 0x8E, 0x9E, 0x74, 0xF4, 0x37, 0xD8, 0xCE, 0xF9, 0x83,
341    0x6F, 0x13, 0xB2, 0x57, 0xE1, 0x63, 0xDC, 0xAC, 0xC4, 0xF1, 0xAF, 0x48,
342    0x0A, 0x50, 0x42, 0x0F, 0xBA, 0xBE, 0xC7, 0x07, 0xDE, 0xD5, 0x78, 0x26,
343    0x65, 0xD3, 0xD1, 0x5F, 0xE3, 0x28, 0x21, 0x89, 0x59, 0x67, 0xFC, 0x6E,
344    0xB1, 0xD7, 0xF8, 0x9D, 0xF3, 0x7A, 0x3A, 0xB9, 0xC6, 0x09, 0x41, 0xC3,
345    0xAE, 0xE0, 0xDB, 0x33, 0x44, 0x69, 0x92, 0x2D, 0x52, 0xFE, 0x16, 0xA9,
346    0x0C, 0x8B, 0x80, 0xA5, 0x4A, 0x5B, 0xB5, 0x97, 0xC9, 0x2A, 0xA2, 0x9A,
347    0xC0, 0x23, 0x86, 0x4E, 0xBC, 0x61, 0xEF, 0xCC, 0x11, 0xE5, 0x72, 0x1D,
348    0x3D, 0x7C, 0xEB, 0xE8, 0xE9, 0x3C, 0xEA, 0x8F, 0x7D, 0x9F, 0xEC, 0x75,
349    0x1E, 0xF5, 0x3E, 0x38, 0xF6, 0xD9, 0x3F, 0xCF, 0x76, 0xFA, 0x1F, 0x84,
350    0xA0, 0x70, 0xED, 0x14, 0x90, 0xB3, 0x7E, 0x58, 0xFB, 0xE2, 0x20, 0x64,
351    0xD0, 0xDD, 0x77, 0xAD, 0xDA, 0xC5, 0x40, 0xF2, 0x39, 0xB0, 0xF7, 0x49,
352    0xB4, 0x0B, 0x7F, 0x51, 0x15, 0x43, 0x91, 0x10, 0x71, 0xBB, 0xEE, 0xBF,
353    0x85, 0xC8, 0xA1
354 };
355
356 static const u8 exp_to_poly[492] = {
357    0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D, 0x9A, 0x79, 0xF2,
358    0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC, 0xF5, 0xA7, 0x03,
359    0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3, 0x8B, 0x5B, 0xB6,
360    0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52, 0xA4, 0x05, 0x0A,
361    0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0, 0xED, 0x97, 0x63,
362    0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1, 0x0F, 0x1E, 0x3C,
363    0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A, 0xF4, 0xA5, 0x07,
364    0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11, 0x22, 0x44, 0x88,
365    0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51, 0xA2, 0x09, 0x12,
366    0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66, 0xCC, 0xD5, 0xE7,
367    0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB, 0x1B, 0x36, 0x6C,
368    0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19, 0x32, 0x64, 0xC8,
369    0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D, 0x5A, 0xB4, 0x25,
370    0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56, 0xAC, 0x15, 0x2A,
371    0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE, 0x91, 0x6F, 0xDE,
372    0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9, 0x3F, 0x7E, 0xFC,
373    0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE, 0xB1, 0x2F, 0x5E,
374    0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41, 0x82, 0x49, 0x92,
375    0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E, 0x71, 0xE2, 0x89,
376    0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB, 0xDB, 0xFB, 0xBB,
377    0x3B, 0x76, 0xEC, 0x95, 0x67, 0xCE, 0xD1, 0xEF, 0x93, 0x6B, 0xD6, 0xE1,
378    0x8F, 0x53, 0xA6, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D,
379    0x9A, 0x79, 0xF2, 0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC,
380    0xF5, 0xA7, 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3,
381    0x8B, 0x5B, 0xB6, 0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52,
382    0xA4, 0x05, 0x0A, 0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0,
383    0xED, 0x97, 0x63, 0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1,
384    0x0F, 0x1E, 0x3C, 0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A,
385    0xF4, 0xA5, 0x07, 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11,
386    0x22, 0x44, 0x88, 0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51,
387    0xA2, 0x09, 0x12, 0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66,
388    0xCC, 0xD5, 0xE7, 0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB,
389    0x1B, 0x36, 0x6C, 0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19,
390    0x32, 0x64, 0xC8, 0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D,
391    0x5A, 0xB4, 0x25, 0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56,
392    0xAC, 0x15, 0x2A, 0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE,
393    0x91, 0x6F, 0xDE, 0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9,
394    0x3F, 0x7E, 0xFC, 0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE,
395    0xB1, 0x2F, 0x5E, 0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41,
396    0x82, 0x49, 0x92, 0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E,
397    0x71, 0xE2, 0x89, 0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB
398 };
399
400
401 /* The table constants are indices of
402  * S-box entries, preprocessed through q0 and q1. */
403 static const u8 calc_sb_tbl[512] = {
404     0xA9, 0x75, 0x67, 0xF3, 0xB3, 0xC6, 0xE8, 0xF4,
405     0x04, 0xDB, 0xFD, 0x7B, 0xA3, 0xFB, 0x76, 0xC8,
406     0x9A, 0x4A, 0x92, 0xD3, 0x80, 0xE6, 0x78, 0x6B,
407     0xE4, 0x45, 0xDD, 0x7D, 0xD1, 0xE8, 0x38, 0x4B,
408     0x0D, 0xD6, 0xC6, 0x32, 0x35, 0xD8, 0x98, 0xFD,
409     0x18, 0x37, 0xF7, 0x71, 0xEC, 0xF1, 0x6C, 0xE1,
410     0x43, 0x30, 0x75, 0x0F, 0x37, 0xF8, 0x26, 0x1B,
411     0xFA, 0x87, 0x13, 0xFA, 0x94, 0x06, 0x48, 0x3F,
412     0xF2, 0x5E, 0xD0, 0xBA, 0x8B, 0xAE, 0x30, 0x5B,
413     0x84, 0x8A, 0x54, 0x00, 0xDF, 0xBC, 0x23, 0x9D,
414     0x19, 0x6D, 0x5B, 0xC1, 0x3D, 0xB1, 0x59, 0x0E,
415     0xF3, 0x80, 0xAE, 0x5D, 0xA2, 0xD2, 0x82, 0xD5,
416     0x63, 0xA0, 0x01, 0x84, 0x83, 0x07, 0x2E, 0x14,
417     0xD9, 0xB5, 0x51, 0x90, 0x9B, 0x2C, 0x7C, 0xA3,
418     0xA6, 0xB2, 0xEB, 0x73, 0xA5, 0x4C, 0xBE, 0x54,
419     0x16, 0x92, 0x0C, 0x74, 0xE3, 0x36, 0x61, 0x51,
420     0xC0, 0x38, 0x8C, 0xB0, 0x3A, 0xBD, 0xF5, 0x5A,
421     0x73, 0xFC, 0x2C, 0x60, 0x25, 0x62, 0x0B, 0x96,
422     0xBB, 0x6C, 0x4E, 0x42, 0x89, 0xF7, 0x6B, 0x10,
423     0x53, 0x7C, 0x6A, 0x28, 0xB4, 0x27, 0xF1, 0x8C,
424     0xE1, 0x13, 0xE6, 0x95, 0xBD, 0x9C, 0x45, 0xC7,
425     0xE2, 0x24, 0xF4, 0x46, 0xB6, 0x3B, 0x66, 0x70,
426     0xCC, 0xCA, 0x95, 0xE3, 0x03, 0x85, 0x56, 0xCB,
427     0xD4, 0x11, 0x1C, 0xD0, 0x1E, 0x93, 0xD7, 0xB8,
428     0xFB, 0xA6, 0xC3, 0x83, 0x8E, 0x20, 0xB5, 0xFF,
429     0xE9, 0x9F, 0xCF, 0x77, 0xBF, 0xC3, 0xBA, 0xCC,
430     0xEA, 0x03, 0x77, 0x6F, 0x39, 0x08, 0xAF, 0xBF,
431     0x33, 0x40, 0xC9, 0xE7, 0x62, 0x2B, 0x71, 0xE2,
432     0x81, 0x79, 0x79, 0x0C, 0x09, 0xAA, 0xAD, 0x82,
433     0x24, 0x41, 0xCD, 0x3A, 0xF9, 0xEA, 0xD8, 0xB9,
434     0xE5, 0xE4, 0xC5, 0x9A, 0xB9, 0xA4, 0x4D, 0x97,
435     0x44, 0x7E, 0x08, 0xDA, 0x86, 0x7A, 0xE7, 0x17,
436     0xA1, 0x66, 0x1D, 0x94, 0xAA, 0xA1, 0xED, 0x1D,
437     0x06, 0x3D, 0x70, 0xF0, 0xB2, 0xDE, 0xD2, 0xB3,
438     0x41, 0x0B, 0x7B, 0x72, 0xA0, 0xA7, 0x11, 0x1C,
439     0x31, 0xEF, 0xC2, 0xD1, 0x27, 0x53, 0x90, 0x3E,
440     0x20, 0x8F, 0xF6, 0x33, 0x60, 0x26, 0xFF, 0x5F,
441     0x96, 0xEC, 0x5C, 0x76, 0xB1, 0x2A, 0xAB, 0x49,
442     0x9E, 0x81, 0x9C, 0x88, 0x52, 0xEE, 0x1B, 0x21,
443     0x5F, 0xC4, 0x93, 0x1A, 0x0A, 0xEB, 0xEF, 0xD9,
444     0x91, 0xC5, 0x85, 0x39, 0x49, 0x99, 0xEE, 0xCD,
445     0x2D, 0xAD, 0x4F, 0x31, 0x8F, 0x8B, 0x3B, 0x01,
446     0x47, 0x18, 0x87, 0x23, 0x6D, 0xDD, 0x46, 0x1F,
447     0xD6, 0x4E, 0x3E, 0x2D, 0x69, 0xF9, 0x64, 0x48,
448     0x2A, 0x4F, 0xCE, 0xF2, 0xCB, 0x65, 0x2F, 0x8E,
449     0xFC, 0x78, 0x97, 0x5C, 0x05, 0x58, 0x7A, 0x19,
450     0xAC, 0x8D, 0x7F, 0xE5, 0xD5, 0x98, 0x1A, 0x57,
451     0x4B, 0x67, 0x0E, 0x7F, 0xA7, 0x05, 0x5A, 0x64,
452     0x28, 0xAF, 0x14, 0x63, 0x3F, 0xB6, 0x29, 0xFE,
453     0x88, 0xF5, 0x3C, 0xB7, 0x4C, 0x3C, 0x02, 0xA5,
454     0xB8, 0xCE, 0xDA, 0xE9, 0xB0, 0x68, 0x17, 0x44,
455     0x55, 0xE0, 0x1F, 0x4D, 0x8A, 0x43, 0x7D, 0x69,
456     0x57, 0x29, 0xC7, 0x2E, 0x8D, 0xAC, 0x74, 0x15,
457     0xB7, 0x59, 0xC4, 0xA8, 0x9F, 0x0A, 0x72, 0x9E,
458     0x7E, 0x6E, 0x15, 0x47, 0x22, 0xDF, 0x12, 0x34,
459     0x58, 0x35, 0x07, 0x6A, 0x99, 0xCF, 0x34, 0xDC,
460     0x6E, 0x22, 0x50, 0xC9, 0xDE, 0xC0, 0x68, 0x9B,
461     0x65, 0x89, 0xBC, 0xD4, 0xDB, 0xED, 0xF8, 0xAB,
462     0xC8, 0x12, 0xA8, 0xA2, 0x2B, 0x0D, 0x40, 0x52,
463     0xDC, 0xBB, 0xFE, 0x02, 0x32, 0x2F, 0xA4, 0xA9,
464     0xCA, 0xD7, 0x10, 0x61, 0x21, 0x1E, 0xF0, 0xB4,
465     0xD3, 0x50, 0x5D, 0x04, 0x0F, 0xF6, 0x00, 0xC2,
466     0x6F, 0x16, 0x9D, 0x25, 0x36, 0x86, 0x42, 0x56,
467     0x4A, 0x55, 0x5E, 0x09, 0xC1, 0xBE, 0xE0, 0x91
468 };
469
470 /* Macro to perform one column of the RS matrix multiplication.  The
471  * parameters a, b, c, and d are the four bytes of output; i is the index
472  * of the key bytes, and w, x, y, and z, are the column of constants from
473  * the RS matrix, preprocessed through the poly_to_exp table. */
474
475 #define CALC_S(a, b, c, d, i, w, x, y, z) \
476    if (key[i]) { \
477       tmp = poly_to_exp[key[i] - 1]; \
478       (a) ^= exp_to_poly[tmp + (w)]; \
479       (b) ^= exp_to_poly[tmp + (x)]; \
480       (c) ^= exp_to_poly[tmp + (y)]; \
481       (d) ^= exp_to_poly[tmp + (z)]; \
482    }
483
484 /* Macros to calculate the key-dependent S-boxes for a 128-bit key using
485  * the S vector from CALC_S.  CALC_SB_2 computes a single entry in all
486  * four S-boxes, where i is the index of the entry to compute, and a and b
487  * are the index numbers preprocessed through the q0 and q1 tables
488  * respectively. */
489
490 #define CALC_SB_2(i, a, b) \
491    ctx->s[0][i] = mds[0][q0[(a) ^ sa] ^ se]; \
492    ctx->s[1][i] = mds[1][q0[(b) ^ sb] ^ sf]; \
493    ctx->s[2][i] = mds[2][q1[(a) ^ sc] ^ sg]; \
494    ctx->s[3][i] = mds[3][q1[(b) ^ sd] ^ sh]
495
496 /* Macro exactly like CALC_SB_2, but for 192-bit keys. */
497
498 #define CALC_SB192_2(i, a, b) \
499    ctx->s[0][i] = mds[0][q0[q0[(b) ^ sa] ^ se] ^ si]; \
500    ctx->s[1][i] = mds[1][q0[q1[(b) ^ sb] ^ sf] ^ sj]; \
501    ctx->s[2][i] = mds[2][q1[q0[(a) ^ sc] ^ sg] ^ sk]; \
502    ctx->s[3][i] = mds[3][q1[q1[(a) ^ sd] ^ sh] ^ sl];
503
504 /* Macro exactly like CALC_SB_2, but for 256-bit keys. */
505
506 #define CALC_SB256_2(i, a, b) \
507    ctx->s[0][i] = mds[0][q0[q0[q1[(b) ^ sa] ^ se] ^ si] ^ sm]; \
508    ctx->s[1][i] = mds[1][q0[q1[q1[(a) ^ sb] ^ sf] ^ sj] ^ sn]; \
509    ctx->s[2][i] = mds[2][q1[q0[q0[(a) ^ sc] ^ sg] ^ sk] ^ so]; \
510    ctx->s[3][i] = mds[3][q1[q1[q0[(b) ^ sd] ^ sh] ^ sl] ^ sp];
511
512 /* Macros to calculate the whitening and round subkeys.  CALC_K_2 computes the
513  * last two stages of the h() function for a given index (either 2i or 2i+1).
514  * a, b, c, and d are the four bytes going into the last two stages.  For
515  * 128-bit keys, this is the entire h() function and a and c are the index
516  * preprocessed through q0 and q1 respectively; for longer keys they are the
517  * output of previous stages.  j is the index of the first key byte to use.
518  * CALC_K computes a pair of subkeys for 128-bit Twofish, by calling CALC_K_2
519  * twice, doing the Pseudo-Hadamard Transform, and doing the necessary
520  * rotations.  Its parameters are: a, the array to write the results into,
521  * j, the index of the first output entry, k and l, the preprocessed indices
522  * for index 2i, and m and n, the preprocessed indices for index 2i+1.
523  * CALC_K192_2 expands CALC_K_2 to handle 192-bit keys, by doing an
524  * additional lookup-and-XOR stage.  The parameters a, b, c and d are the
525  * four bytes going into the last three stages.  For 192-bit keys, c = d
526  * are the index preprocessed through q0, and a = b are the index
527  * preprocessed through q1; j is the index of the first key byte to use.
528  * CALC_K192 is identical to CALC_K but for using the CALC_K192_2 macro
529  * instead of CALC_K_2.
530  * CALC_K256_2 expands CALC_K192_2 to handle 256-bit keys, by doing an
531  * additional lookup-and-XOR stage.  The parameters a and b are the index
532  * preprocessed through q0 and q1 respectively; j is the index of the first
533  * key byte to use.  CALC_K256 is identical to CALC_K but for using the
534  * CALC_K256_2 macro instead of CALC_K_2. */
535
536 #define CALC_K_2(a, b, c, d, j) \
537      mds[0][q0[a ^ key[(j) + 8]] ^ key[j]] \
538    ^ mds[1][q0[b ^ key[(j) + 9]] ^ key[(j) + 1]] \
539    ^ mds[2][q1[c ^ key[(j) + 10]] ^ key[(j) + 2]] \
540    ^ mds[3][q1[d ^ key[(j) + 11]] ^ key[(j) + 3]]
541
542 #define CALC_K(a, j, k, l, m, n) \
543    x = CALC_K_2 (k, l, k, l, 0); \
544    y = CALC_K_2 (m, n, m, n, 4); \
545    y = (y << 8) + (y >> 24); \
546    x += y; y += x; ctx->a[j] = x; \
547    ctx->a[(j) + 1] = (y << 9) + (y >> 23)
548
549 #define CALC_K192_2(a, b, c, d, j) \
550    CALC_K_2 (q0[a ^ key[(j) + 16]], \
551              q1[b ^ key[(j) + 17]], \
552              q0[c ^ key[(j) + 18]], \
553              q1[d ^ key[(j) + 19]], j)
554
555 #define CALC_K192(a, j, k, l, m, n) \
556    x = CALC_K192_2 (l, l, k, k, 0); \
557    y = CALC_K192_2 (n, n, m, m, 4); \
558    y = (y << 8) + (y >> 24); \
559    x += y; y += x; ctx->a[j] = x; \
560    ctx->a[(j) + 1] = (y << 9) + (y >> 23)
561
562 #define CALC_K256_2(a, b, j) \
563    CALC_K192_2 (q1[b ^ key[(j) + 24]], \
564                 q1[a ^ key[(j) + 25]], \
565                 q0[a ^ key[(j) + 26]], \
566                 q0[b ^ key[(j) + 27]], j)
567
568 #define CALC_K256(a, j, k, l, m, n) \
569    x = CALC_K256_2 (k, l, 0); \
570    y = CALC_K256_2 (m, n, 4); \
571    y = (y << 8) + (y >> 24); \
572    x += y; y += x; ctx->a[j] = x; \
573    ctx->a[(j) + 1] = (y << 9) + (y >> 23)
574
575
576 /* Macros to compute the g() function in the encryption and decryption
577  * rounds.  G1 is the straight g() function; G2 includes the 8-bit
578  * rotation for the high 32-bit word. */
579
580 #define G1(a) \
581      (ctx->s[0][(a) & 0xFF]) ^ (ctx->s[1][((a) >> 8) & 0xFF]) \
582    ^ (ctx->s[2][((a) >> 16) & 0xFF]) ^ (ctx->s[3][(a) >> 24])
583
584 #define G2(b) \
585      (ctx->s[1][(b) & 0xFF]) ^ (ctx->s[2][((b) >> 8) & 0xFF]) \
586    ^ (ctx->s[3][((b) >> 16) & 0xFF]) ^ (ctx->s[0][(b) >> 24])
587
588 /* Encryption and decryption Feistel rounds.  Each one calls the two g()
589  * macros, does the PHT, and performs the XOR and the appropriate bit
590  * rotations.  The parameters are the round number (used to select subkeys),
591  * and the four 32-bit chunks of the text. */
592
593 #define ENCROUND(n, a, b, c, d) \
594    x = G1 (a); y = G2 (b); \
595    x += y; y += x + ctx->k[2 * (n) + 1]; \
596    (c) ^= x + ctx->k[2 * (n)]; \
597    (c) = ((c) >> 1) + ((c) << 31); \
598    (d) = (((d) << 1)+((d) >> 31)) ^ y
599
600 #define DECROUND(n, a, b, c, d) \
601    x = G1 (a); y = G2 (b); \
602    x += y; y += x; \
603    (d) ^= y + ctx->k[2 * (n) + 1]; \
604    (d) = ((d) >> 1) + ((d) << 31); \
605    (c) = (((c) << 1)+((c) >> 31)); \
606    (c) ^= (x + ctx->k[2 * (n)])
607
608 /* Encryption and decryption cycles; each one is simply two Feistel rounds
609  * with the 32-bit chunks re-ordered to simulate the "swap" */
610
611 #define ENCCYCLE(n) \
612    ENCROUND (2 * (n), a, b, c, d); \
613    ENCROUND (2 * (n) + 1, c, d, a, b)
614
615 #define DECCYCLE(n) \
616    DECROUND (2 * (n) + 1, c, d, a, b); \
617    DECROUND (2 * (n), a, b, c, d)
618
619 /* Macros to convert the input and output bytes into 32-bit words,
620  * and simultaneously perform the whitening step.  INPACK packs word
621  * number n into the variable named by x, using whitening subkey number m.
622  * OUTUNPACK unpacks word number n from the variable named by x, using
623  * whitening subkey number m. */
624
625 #define INPACK(n, x, m) \
626    x = le32_to_cpu(src[n]) ^ ctx->w[m]
627
628 #define OUTUNPACK(n, x, m) \
629    x ^= ctx->w[m]; \
630    dst[n] = cpu_to_le32(x)
631
632 #define TF_MIN_KEY_SIZE 16
633 #define TF_MAX_KEY_SIZE 32
634 #define TF_BLOCK_SIZE 16
635
636 /* Structure for an expanded Twofish key.  s contains the key-dependent
637  * S-boxes composed with the MDS matrix; w contains the eight "whitening"
638  * subkeys, K[0] through K[7].  k holds the remaining, "round" subkeys.  Note
639  * that k[i] corresponds to what the Twofish paper calls K[i+8]. */
640 struct twofish_ctx {
641    u32 s[4][256], w[8], k[32];
642 };
643
644 /* Perform the key setup. */
645 static int twofish_setkey(void *cx, const u8 *key,
646                           unsigned int key_len, u32 *flags)
647 {
648         
649         struct twofish_ctx *ctx = cx;
650
651         int i, j, k;
652
653         /* Temporaries for CALC_K. */
654         u32 x, y;
655
656         /* The S vector used to key the S-boxes, split up into individual bytes.
657          * 128-bit keys use only sa through sh; 256-bit use all of them. */
658         u8 sa = 0, sb = 0, sc = 0, sd = 0, se = 0, sf = 0, sg = 0, sh = 0;
659         u8 si = 0, sj = 0, sk = 0, sl = 0, sm = 0, sn = 0, so = 0, sp = 0;
660
661         /* Temporary for CALC_S. */
662         u8 tmp;
663
664         /* Check key length. */
665         if (key_len != 16 && key_len != 24 && key_len != 32)
666         {
667                 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
668                 return -EINVAL; /* unsupported key length */
669         }
670
671         /* Compute the first two words of the S vector.  The magic numbers are
672          * the entries of the RS matrix, preprocessed through poly_to_exp. The
673          * numbers in the comments are the original (polynomial form) matrix
674          * entries. */
675         CALC_S (sa, sb, sc, sd, 0, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
676         CALC_S (sa, sb, sc, sd, 1, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
677         CALC_S (sa, sb, sc, sd, 2, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
678         CALC_S (sa, sb, sc, sd, 3, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
679         CALC_S (sa, sb, sc, sd, 4, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
680         CALC_S (sa, sb, sc, sd, 5, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
681         CALC_S (sa, sb, sc, sd, 6, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
682         CALC_S (sa, sb, sc, sd, 7, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
683         CALC_S (se, sf, sg, sh, 8, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
684         CALC_S (se, sf, sg, sh, 9, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
685         CALC_S (se, sf, sg, sh, 10, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
686         CALC_S (se, sf, sg, sh, 11, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
687         CALC_S (se, sf, sg, sh, 12, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
688         CALC_S (se, sf, sg, sh, 13, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
689         CALC_S (se, sf, sg, sh, 14, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
690         CALC_S (se, sf, sg, sh, 15, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
691
692         if (key_len == 24 || key_len == 32) { /* 192- or 256-bit key */
693                 /* Calculate the third word of the S vector */
694                 CALC_S (si, sj, sk, sl, 16, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
695                 CALC_S (si, sj, sk, sl, 17, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
696                 CALC_S (si, sj, sk, sl, 18, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
697                 CALC_S (si, sj, sk, sl, 19, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
698                 CALC_S (si, sj, sk, sl, 20, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
699                 CALC_S (si, sj, sk, sl, 21, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
700                 CALC_S (si, sj, sk, sl, 22, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
701                 CALC_S (si, sj, sk, sl, 23, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
702         }
703
704         if (key_len == 32) { /* 256-bit key */
705                 /* Calculate the fourth word of the S vector */
706                 CALC_S (sm, sn, so, sp, 24, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
707                 CALC_S (sm, sn, so, sp, 25, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
708                 CALC_S (sm, sn, so, sp, 26, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
709                 CALC_S (sm, sn, so, sp, 27, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
710                 CALC_S (sm, sn, so, sp, 28, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
711                 CALC_S (sm, sn, so, sp, 29, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
712                 CALC_S (sm, sn, so, sp, 30, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
713                 CALC_S (sm, sn, so, sp, 31, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
714
715                 /* Compute the S-boxes. */
716                 for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) {
717                         CALC_SB256_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
718                 }
719
720                 /* Calculate whitening and round subkeys.  The constants are
721                  * indices of subkeys, preprocessed through q0 and q1. */
722                 CALC_K256 (w, 0, 0xA9, 0x75, 0x67, 0xF3);
723                 CALC_K256 (w, 2, 0xB3, 0xC6, 0xE8, 0xF4);
724                 CALC_K256 (w, 4, 0x04, 0xDB, 0xFD, 0x7B);
725                 CALC_K256 (w, 6, 0xA3, 0xFB, 0x76, 0xC8);
726                 CALC_K256 (k, 0, 0x9A, 0x4A, 0x92, 0xD3);
727                 CALC_K256 (k, 2, 0x80, 0xE6, 0x78, 0x6B);
728                 CALC_K256 (k, 4, 0xE4, 0x45, 0xDD, 0x7D);
729                 CALC_K256 (k, 6, 0xD1, 0xE8, 0x38, 0x4B);
730                 CALC_K256 (k, 8, 0x0D, 0xD6, 0xC6, 0x32);
731                 CALC_K256 (k, 10, 0x35, 0xD8, 0x98, 0xFD);
732                 CALC_K256 (k, 12, 0x18, 0x37, 0xF7, 0x71);
733                 CALC_K256 (k, 14, 0xEC, 0xF1, 0x6C, 0xE1);
734                 CALC_K256 (k, 16, 0x43, 0x30, 0x75, 0x0F);
735                 CALC_K256 (k, 18, 0x37, 0xF8, 0x26, 0x1B);
736                 CALC_K256 (k, 20, 0xFA, 0x87, 0x13, 0xFA);
737                 CALC_K256 (k, 22, 0x94, 0x06, 0x48, 0x3F);
738                 CALC_K256 (k, 24, 0xF2, 0x5E, 0xD0, 0xBA);
739                 CALC_K256 (k, 26, 0x8B, 0xAE, 0x30, 0x5B);
740                 CALC_K256 (k, 28, 0x84, 0x8A, 0x54, 0x00);
741                 CALC_K256 (k, 30, 0xDF, 0xBC, 0x23, 0x9D);
742         } else if (key_len == 24) { /* 192-bit key */
743                 /* Compute the S-boxes. */
744                 for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) {
745                         CALC_SB192_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
746                 }
747
748                 /* Calculate whitening and round subkeys.  The constants are
749                  * indices of subkeys, preprocessed through q0 and q1. */
750                 CALC_K192 (w, 0, 0xA9, 0x75, 0x67, 0xF3);
751                 CALC_K192 (w, 2, 0xB3, 0xC6, 0xE8, 0xF4);
752                 CALC_K192 (w, 4, 0x04, 0xDB, 0xFD, 0x7B);
753                 CALC_K192 (w, 6, 0xA3, 0xFB, 0x76, 0xC8);
754                 CALC_K192 (k, 0, 0x9A, 0x4A, 0x92, 0xD3);
755                 CALC_K192 (k, 2, 0x80, 0xE6, 0x78, 0x6B);
756                 CALC_K192 (k, 4, 0xE4, 0x45, 0xDD, 0x7D);
757                 CALC_K192 (k, 6, 0xD1, 0xE8, 0x38, 0x4B);
758                 CALC_K192 (k, 8, 0x0D, 0xD6, 0xC6, 0x32);
759                 CALC_K192 (k, 10, 0x35, 0xD8, 0x98, 0xFD);
760                 CALC_K192 (k, 12, 0x18, 0x37, 0xF7, 0x71);
761                 CALC_K192 (k, 14, 0xEC, 0xF1, 0x6C, 0xE1);
762                 CALC_K192 (k, 16, 0x43, 0x30, 0x75, 0x0F);
763                 CALC_K192 (k, 18, 0x37, 0xF8, 0x26, 0x1B);
764                 CALC_K192 (k, 20, 0xFA, 0x87, 0x13, 0xFA);
765                 CALC_K192 (k, 22, 0x94, 0x06, 0x48, 0x3F);
766                 CALC_K192 (k, 24, 0xF2, 0x5E, 0xD0, 0xBA);
767                 CALC_K192 (k, 26, 0x8B, 0xAE, 0x30, 0x5B);
768                 CALC_K192 (k, 28, 0x84, 0x8A, 0x54, 0x00);
769                 CALC_K192 (k, 30, 0xDF, 0xBC, 0x23, 0x9D);
770         } else { /* 128-bit key */
771                 /* Compute the S-boxes. */
772                 for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) {
773                         CALC_SB_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
774                 }
775
776                 /* Calculate whitening and round subkeys.  The constants are
777                  * indices of subkeys, preprocessed through q0 and q1. */
778                 CALC_K (w, 0, 0xA9, 0x75, 0x67, 0xF3);
779                 CALC_K (w, 2, 0xB3, 0xC6, 0xE8, 0xF4);
780                 CALC_K (w, 4, 0x04, 0xDB, 0xFD, 0x7B);
781                 CALC_K (w, 6, 0xA3, 0xFB, 0x76, 0xC8);
782                 CALC_K (k, 0, 0x9A, 0x4A, 0x92, 0xD3);
783                 CALC_K (k, 2, 0x80, 0xE6, 0x78, 0x6B);
784                 CALC_K (k, 4, 0xE4, 0x45, 0xDD, 0x7D);
785                 CALC_K (k, 6, 0xD1, 0xE8, 0x38, 0x4B);
786                 CALC_K (k, 8, 0x0D, 0xD6, 0xC6, 0x32);
787                 CALC_K (k, 10, 0x35, 0xD8, 0x98, 0xFD);
788                 CALC_K (k, 12, 0x18, 0x37, 0xF7, 0x71);
789                 CALC_K (k, 14, 0xEC, 0xF1, 0x6C, 0xE1);
790                 CALC_K (k, 16, 0x43, 0x30, 0x75, 0x0F);
791                 CALC_K (k, 18, 0x37, 0xF8, 0x26, 0x1B);
792                 CALC_K (k, 20, 0xFA, 0x87, 0x13, 0xFA);
793                 CALC_K (k, 22, 0x94, 0x06, 0x48, 0x3F);
794                 CALC_K (k, 24, 0xF2, 0x5E, 0xD0, 0xBA);
795                 CALC_K (k, 26, 0x8B, 0xAE, 0x30, 0x5B);
796                 CALC_K (k, 28, 0x84, 0x8A, 0x54, 0x00);
797                 CALC_K (k, 30, 0xDF, 0xBC, 0x23, 0x9D);
798         }
799
800         return 0;
801 }
802
803 /* Encrypt one block.  in and out may be the same. */
804 static void twofish_encrypt(void *cx, u8 *out, const u8 *in)
805 {
806         struct twofish_ctx *ctx = cx;
807         const __le32 *src = (const __le32 *)in;
808         __le32 *dst = (__le32 *)out;
809
810         /* The four 32-bit chunks of the text. */
811         u32 a, b, c, d;
812         
813         /* Temporaries used by the round function. */
814         u32 x, y;
815
816         /* Input whitening and packing. */
817         INPACK (0, a, 0);
818         INPACK (1, b, 1);
819         INPACK (2, c, 2);
820         INPACK (3, d, 3);
821         
822         /* Encryption Feistel cycles. */
823         ENCCYCLE (0);
824         ENCCYCLE (1);
825         ENCCYCLE (2);
826         ENCCYCLE (3);
827         ENCCYCLE (4);
828         ENCCYCLE (5);
829         ENCCYCLE (6);
830         ENCCYCLE (7);
831         
832         /* Output whitening and unpacking. */
833         OUTUNPACK (0, c, 4);
834         OUTUNPACK (1, d, 5);
835         OUTUNPACK (2, a, 6);
836         OUTUNPACK (3, b, 7);
837         
838 }
839
840 /* Decrypt one block.  in and out may be the same. */
841 static void twofish_decrypt(void *cx, u8 *out, const u8 *in)
842 {
843         struct twofish_ctx *ctx = cx;
844         const __le32 *src = (const __le32 *)in;
845         __le32 *dst = (__le32 *)out;
846   
847         /* The four 32-bit chunks of the text. */
848         u32 a, b, c, d;
849         
850         /* Temporaries used by the round function. */
851         u32 x, y;
852         
853         /* Input whitening and packing. */
854         INPACK (0, c, 4);
855         INPACK (1, d, 5);
856         INPACK (2, a, 6);
857         INPACK (3, b, 7);
858         
859         /* Encryption Feistel cycles. */
860         DECCYCLE (7);
861         DECCYCLE (6);
862         DECCYCLE (5);
863         DECCYCLE (4);
864         DECCYCLE (3);
865         DECCYCLE (2);
866         DECCYCLE (1);
867         DECCYCLE (0);
868
869         /* Output whitening and unpacking. */
870         OUTUNPACK (0, a, 0);
871         OUTUNPACK (1, b, 1);
872         OUTUNPACK (2, c, 2);
873         OUTUNPACK (3, d, 3);
874
875 }
876
877 static struct crypto_alg alg = {
878         .cra_name           =   "twofish",
879         .cra_flags          =   CRYPTO_ALG_TYPE_CIPHER,
880         .cra_blocksize      =   TF_BLOCK_SIZE,
881         .cra_ctxsize        =   sizeof(struct twofish_ctx),
882         .cra_alignmask      =   3,
883         .cra_module         =   THIS_MODULE,
884         .cra_list           =   LIST_HEAD_INIT(alg.cra_list),
885         .cra_u              =   { .cipher = {
886         .cia_min_keysize    =   TF_MIN_KEY_SIZE,
887         .cia_max_keysize    =   TF_MAX_KEY_SIZE,
888         .cia_setkey         =   twofish_setkey,
889         .cia_encrypt        =   twofish_encrypt,
890         .cia_decrypt        =   twofish_decrypt } }
891 };
892
893 static int __init init(void)
894 {
895         return crypto_register_alg(&alg);
896 }
897
898 static void __exit fini(void)
899 {
900         crypto_unregister_alg(&alg);
901 }
902
903 module_init(init);
904 module_exit(fini);
905
906 MODULE_LICENSE("GPL");
907 MODULE_DESCRIPTION ("Twofish Cipher Algorithm");