4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
52 #include <asm/unistd.h>
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
59 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
68 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
73 * Some helpers for converting nanosecond timing to jiffy resolution
75 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
79 * These are the 'tuning knobs' of the scheduler:
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
85 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT 30
88 #define CHILD_PENALTY 95
89 #define PARENT_PENALTY 100
91 #define PRIO_BONUS_RATIO 25
92 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA 2
94 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
104 * This part scales the interactivity limit depending on niceness.
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
126 #define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
130 #define GRANULARITY (10 * HZ / 1000 ? : 1)
133 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
141 #define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
147 #define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
150 #define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
154 #define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
166 #define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
169 static unsigned int task_timeslice(task_t *p)
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
179 void __put_task_struct_cb(struct rcu_head *rhp)
181 __put_task_struct(container_of(rhp, struct task_struct, rcu));
184 EXPORT_SYMBOL_GPL(__put_task_struct_cb);
187 * These are the runqueue data structures:
190 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
192 typedef struct runqueue runqueue_t;
195 unsigned int nr_active;
196 unsigned long bitmap[BITMAP_SIZE];
197 struct list_head queue[MAX_PRIO];
201 * This is the main, per-CPU runqueue data structure.
203 * Locking rule: those places that want to lock multiple runqueues
204 * (such as the load balancing or the thread migration code), lock
205 * acquire operations must be ordered by ascending &runqueue.
211 * nr_running and cpu_load should be in the same cacheline because
212 * remote CPUs use both these fields when doing load calculation.
214 unsigned long nr_running;
216 unsigned long prio_bias;
217 unsigned long cpu_load[3];
219 unsigned long long nr_switches;
222 * This is part of a global counter where only the total sum
223 * over all CPUs matters. A task can increase this counter on
224 * one CPU and if it got migrated afterwards it may decrease
225 * it on another CPU. Always updated under the runqueue lock:
227 unsigned long nr_uninterruptible;
229 unsigned long expired_timestamp;
230 unsigned long long timestamp_last_tick;
232 struct mm_struct *prev_mm;
233 prio_array_t *active, *expired, arrays[2];
234 int best_expired_prio;
238 struct sched_domain *sd;
240 /* For active balancing */
244 task_t *migration_thread;
245 struct list_head migration_queue;
248 #ifdef CONFIG_SCHEDSTATS
250 struct sched_info rq_sched_info;
252 /* sys_sched_yield() stats */
253 unsigned long yld_exp_empty;
254 unsigned long yld_act_empty;
255 unsigned long yld_both_empty;
256 unsigned long yld_cnt;
258 /* schedule() stats */
259 unsigned long sched_switch;
260 unsigned long sched_cnt;
261 unsigned long sched_goidle;
263 /* try_to_wake_up() stats */
264 unsigned long ttwu_cnt;
265 unsigned long ttwu_local;
269 static DEFINE_PER_CPU(struct runqueue, runqueues);
272 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
273 * See detach_destroy_domains: synchronize_sched for details.
275 * The domain tree of any CPU may only be accessed from within
276 * preempt-disabled sections.
278 #define for_each_domain(cpu, domain) \
279 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
281 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
282 #define this_rq() (&__get_cpu_var(runqueues))
283 #define task_rq(p) cpu_rq(task_cpu(p))
284 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
286 #ifndef prepare_arch_switch
287 # define prepare_arch_switch(next) do { } while (0)
289 #ifndef finish_arch_switch
290 # define finish_arch_switch(prev) do { } while (0)
293 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
294 static inline int task_running(runqueue_t *rq, task_t *p)
296 return rq->curr == p;
299 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
303 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
305 #ifdef CONFIG_DEBUG_SPINLOCK
306 /* this is a valid case when another task releases the spinlock */
307 rq->lock.owner = current;
309 spin_unlock_irq(&rq->lock);
312 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
313 static inline int task_running(runqueue_t *rq, task_t *p)
318 return rq->curr == p;
322 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
326 * We can optimise this out completely for !SMP, because the
327 * SMP rebalancing from interrupt is the only thing that cares
332 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
333 spin_unlock_irq(&rq->lock);
335 spin_unlock(&rq->lock);
339 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
343 * After ->oncpu is cleared, the task can be moved to a different CPU.
344 * We must ensure this doesn't happen until the switch is completely
350 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
354 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
357 * task_rq_lock - lock the runqueue a given task resides on and disable
358 * interrupts. Note the ordering: we can safely lookup the task_rq without
359 * explicitly disabling preemption.
361 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
367 local_irq_save(*flags);
369 spin_lock(&rq->lock);
370 if (unlikely(rq != task_rq(p))) {
371 spin_unlock_irqrestore(&rq->lock, *flags);
372 goto repeat_lock_task;
377 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
380 spin_unlock_irqrestore(&rq->lock, *flags);
383 #ifdef CONFIG_SCHEDSTATS
385 * bump this up when changing the output format or the meaning of an existing
386 * format, so that tools can adapt (or abort)
388 #define SCHEDSTAT_VERSION 12
390 static int show_schedstat(struct seq_file *seq, void *v)
394 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
395 seq_printf(seq, "timestamp %lu\n", jiffies);
396 for_each_online_cpu(cpu) {
397 runqueue_t *rq = cpu_rq(cpu);
399 struct sched_domain *sd;
403 /* runqueue-specific stats */
405 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
406 cpu, rq->yld_both_empty,
407 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
408 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
409 rq->ttwu_cnt, rq->ttwu_local,
410 rq->rq_sched_info.cpu_time,
411 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
413 seq_printf(seq, "\n");
416 /* domain-specific stats */
418 for_each_domain(cpu, sd) {
419 enum idle_type itype;
420 char mask_str[NR_CPUS];
422 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
423 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
424 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
426 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
428 sd->lb_balanced[itype],
429 sd->lb_failed[itype],
430 sd->lb_imbalance[itype],
431 sd->lb_gained[itype],
432 sd->lb_hot_gained[itype],
433 sd->lb_nobusyq[itype],
434 sd->lb_nobusyg[itype]);
436 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
437 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
438 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
439 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
440 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
448 static int schedstat_open(struct inode *inode, struct file *file)
450 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
451 char *buf = kmalloc(size, GFP_KERNEL);
457 res = single_open(file, show_schedstat, NULL);
459 m = file->private_data;
467 struct file_operations proc_schedstat_operations = {
468 .open = schedstat_open,
471 .release = single_release,
474 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
475 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
476 #else /* !CONFIG_SCHEDSTATS */
477 # define schedstat_inc(rq, field) do { } while (0)
478 # define schedstat_add(rq, field, amt) do { } while (0)
482 * rq_lock - lock a given runqueue and disable interrupts.
484 static inline runqueue_t *this_rq_lock(void)
491 spin_lock(&rq->lock);
496 #ifdef CONFIG_SCHEDSTATS
498 * Called when a process is dequeued from the active array and given
499 * the cpu. We should note that with the exception of interactive
500 * tasks, the expired queue will become the active queue after the active
501 * queue is empty, without explicitly dequeuing and requeuing tasks in the
502 * expired queue. (Interactive tasks may be requeued directly to the
503 * active queue, thus delaying tasks in the expired queue from running;
504 * see scheduler_tick()).
506 * This function is only called from sched_info_arrive(), rather than
507 * dequeue_task(). Even though a task may be queued and dequeued multiple
508 * times as it is shuffled about, we're really interested in knowing how
509 * long it was from the *first* time it was queued to the time that it
512 static inline void sched_info_dequeued(task_t *t)
514 t->sched_info.last_queued = 0;
518 * Called when a task finally hits the cpu. We can now calculate how
519 * long it was waiting to run. We also note when it began so that we
520 * can keep stats on how long its timeslice is.
522 static inline void sched_info_arrive(task_t *t)
524 unsigned long now = jiffies, diff = 0;
525 struct runqueue *rq = task_rq(t);
527 if (t->sched_info.last_queued)
528 diff = now - t->sched_info.last_queued;
529 sched_info_dequeued(t);
530 t->sched_info.run_delay += diff;
531 t->sched_info.last_arrival = now;
532 t->sched_info.pcnt++;
537 rq->rq_sched_info.run_delay += diff;
538 rq->rq_sched_info.pcnt++;
542 * Called when a process is queued into either the active or expired
543 * array. The time is noted and later used to determine how long we
544 * had to wait for us to reach the cpu. Since the expired queue will
545 * become the active queue after active queue is empty, without dequeuing
546 * and requeuing any tasks, we are interested in queuing to either. It
547 * is unusual but not impossible for tasks to be dequeued and immediately
548 * requeued in the same or another array: this can happen in sched_yield(),
549 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
552 * This function is only called from enqueue_task(), but also only updates
553 * the timestamp if it is already not set. It's assumed that
554 * sched_info_dequeued() will clear that stamp when appropriate.
556 static inline void sched_info_queued(task_t *t)
558 if (!t->sched_info.last_queued)
559 t->sched_info.last_queued = jiffies;
563 * Called when a process ceases being the active-running process, either
564 * voluntarily or involuntarily. Now we can calculate how long we ran.
566 static inline void sched_info_depart(task_t *t)
568 struct runqueue *rq = task_rq(t);
569 unsigned long diff = jiffies - t->sched_info.last_arrival;
571 t->sched_info.cpu_time += diff;
574 rq->rq_sched_info.cpu_time += diff;
578 * Called when tasks are switched involuntarily due, typically, to expiring
579 * their time slice. (This may also be called when switching to or from
580 * the idle task.) We are only called when prev != next.
582 static inline void sched_info_switch(task_t *prev, task_t *next)
584 struct runqueue *rq = task_rq(prev);
587 * prev now departs the cpu. It's not interesting to record
588 * stats about how efficient we were at scheduling the idle
591 if (prev != rq->idle)
592 sched_info_depart(prev);
594 if (next != rq->idle)
595 sched_info_arrive(next);
598 #define sched_info_queued(t) do { } while (0)
599 #define sched_info_switch(t, next) do { } while (0)
600 #endif /* CONFIG_SCHEDSTATS */
603 * Adding/removing a task to/from a priority array:
605 static void dequeue_task(struct task_struct *p, prio_array_t *array)
608 list_del(&p->run_list);
609 if (list_empty(array->queue + p->prio))
610 __clear_bit(p->prio, array->bitmap);
613 static void enqueue_task(struct task_struct *p, prio_array_t *array)
615 sched_info_queued(p);
616 list_add_tail(&p->run_list, array->queue + p->prio);
617 __set_bit(p->prio, array->bitmap);
623 * Put task to the end of the run list without the overhead of dequeue
624 * followed by enqueue.
626 static void requeue_task(struct task_struct *p, prio_array_t *array)
628 list_move_tail(&p->run_list, array->queue + p->prio);
631 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
633 list_add(&p->run_list, array->queue + p->prio);
634 __set_bit(p->prio, array->bitmap);
640 * effective_prio - return the priority that is based on the static
641 * priority but is modified by bonuses/penalties.
643 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
644 * into the -5 ... 0 ... +5 bonus/penalty range.
646 * We use 25% of the full 0...39 priority range so that:
648 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
649 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
651 * Both properties are important to certain workloads.
653 static int effective_prio(task_t *p)
660 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
662 prio = p->static_prio - bonus;
663 if (prio < MAX_RT_PRIO)
665 if (prio > MAX_PRIO-1)
671 static inline void inc_prio_bias(runqueue_t *rq, int prio)
673 rq->prio_bias += MAX_PRIO - prio;
676 static inline void dec_prio_bias(runqueue_t *rq, int prio)
678 rq->prio_bias -= MAX_PRIO - prio;
681 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
685 if (p != rq->migration_thread)
687 * The migration thread does the actual balancing. Do
688 * not bias by its priority as the ultra high priority
689 * will skew balancing adversely.
691 inc_prio_bias(rq, p->prio);
693 inc_prio_bias(rq, p->static_prio);
696 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
700 if (p != rq->migration_thread)
701 dec_prio_bias(rq, p->prio);
703 dec_prio_bias(rq, p->static_prio);
706 static inline void inc_prio_bias(runqueue_t *rq, int prio)
710 static inline void dec_prio_bias(runqueue_t *rq, int prio)
714 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
719 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
726 * __activate_task - move a task to the runqueue.
728 static inline void __activate_task(task_t *p, runqueue_t *rq)
730 enqueue_task(p, rq->active);
731 inc_nr_running(p, rq);
735 * __activate_idle_task - move idle task to the _front_ of runqueue.
737 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
739 enqueue_task_head(p, rq->active);
740 inc_nr_running(p, rq);
743 static int recalc_task_prio(task_t *p, unsigned long long now)
745 /* Caller must always ensure 'now >= p->timestamp' */
746 unsigned long long __sleep_time = now - p->timestamp;
747 unsigned long sleep_time;
749 if (__sleep_time > NS_MAX_SLEEP_AVG)
750 sleep_time = NS_MAX_SLEEP_AVG;
752 sleep_time = (unsigned long)__sleep_time;
754 if (likely(sleep_time > 0)) {
756 * User tasks that sleep a long time are categorised as
757 * idle and will get just interactive status to stay active &
758 * prevent them suddenly becoming cpu hogs and starving
761 if (p->mm && p->activated != -1 &&
762 sleep_time > INTERACTIVE_SLEEP(p)) {
763 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
767 * The lower the sleep avg a task has the more
768 * rapidly it will rise with sleep time.
770 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
773 * Tasks waking from uninterruptible sleep are
774 * limited in their sleep_avg rise as they
775 * are likely to be waiting on I/O
777 if (p->activated == -1 && p->mm) {
778 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
780 else if (p->sleep_avg + sleep_time >=
781 INTERACTIVE_SLEEP(p)) {
782 p->sleep_avg = INTERACTIVE_SLEEP(p);
788 * This code gives a bonus to interactive tasks.
790 * The boost works by updating the 'average sleep time'
791 * value here, based on ->timestamp. The more time a
792 * task spends sleeping, the higher the average gets -
793 * and the higher the priority boost gets as well.
795 p->sleep_avg += sleep_time;
797 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
798 p->sleep_avg = NS_MAX_SLEEP_AVG;
802 return effective_prio(p);
806 * activate_task - move a task to the runqueue and do priority recalculation
808 * Update all the scheduling statistics stuff. (sleep average
809 * calculation, priority modifiers, etc.)
811 static void activate_task(task_t *p, runqueue_t *rq, int local)
813 unsigned long long now;
818 /* Compensate for drifting sched_clock */
819 runqueue_t *this_rq = this_rq();
820 now = (now - this_rq->timestamp_last_tick)
821 + rq->timestamp_last_tick;
826 p->prio = recalc_task_prio(p, now);
829 * This checks to make sure it's not an uninterruptible task
830 * that is now waking up.
834 * Tasks which were woken up by interrupts (ie. hw events)
835 * are most likely of interactive nature. So we give them
836 * the credit of extending their sleep time to the period
837 * of time they spend on the runqueue, waiting for execution
838 * on a CPU, first time around:
844 * Normal first-time wakeups get a credit too for
845 * on-runqueue time, but it will be weighted down:
852 __activate_task(p, rq);
856 * deactivate_task - remove a task from the runqueue.
858 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
860 dec_nr_running(p, rq);
861 dequeue_task(p, p->array);
866 * resched_task - mark a task 'to be rescheduled now'.
868 * On UP this means the setting of the need_resched flag, on SMP it
869 * might also involve a cross-CPU call to trigger the scheduler on
873 static void resched_task(task_t *p)
877 assert_spin_locked(&task_rq(p)->lock);
879 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
882 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
885 if (cpu == smp_processor_id())
888 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
890 if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
891 smp_send_reschedule(cpu);
894 static inline void resched_task(task_t *p)
896 assert_spin_locked(&task_rq(p)->lock);
897 set_tsk_need_resched(p);
902 * task_curr - is this task currently executing on a CPU?
903 * @p: the task in question.
905 inline int task_curr(const task_t *p)
907 return cpu_curr(task_cpu(p)) == p;
912 struct list_head list;
917 struct completion done;
921 * The task's runqueue lock must be held.
922 * Returns true if you have to wait for migration thread.
924 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
926 runqueue_t *rq = task_rq(p);
929 * If the task is not on a runqueue (and not running), then
930 * it is sufficient to simply update the task's cpu field.
932 if (!p->array && !task_running(rq, p)) {
933 set_task_cpu(p, dest_cpu);
937 init_completion(&req->done);
939 req->dest_cpu = dest_cpu;
940 list_add(&req->list, &rq->migration_queue);
945 * wait_task_inactive - wait for a thread to unschedule.
947 * The caller must ensure that the task *will* unschedule sometime soon,
948 * else this function might spin for a *long* time. This function can't
949 * be called with interrupts off, or it may introduce deadlock with
950 * smp_call_function() if an IPI is sent by the same process we are
951 * waiting to become inactive.
953 void wait_task_inactive(task_t *p)
960 rq = task_rq_lock(p, &flags);
961 /* Must be off runqueue entirely, not preempted. */
962 if (unlikely(p->array || task_running(rq, p))) {
963 /* If it's preempted, we yield. It could be a while. */
964 preempted = !task_running(rq, p);
965 task_rq_unlock(rq, &flags);
971 task_rq_unlock(rq, &flags);
975 * kick_process - kick a running thread to enter/exit the kernel
976 * @p: the to-be-kicked thread
978 * Cause a process which is running on another CPU to enter
979 * kernel-mode, without any delay. (to get signals handled.)
981 * NOTE: this function doesnt have to take the runqueue lock,
982 * because all it wants to ensure is that the remote task enters
983 * the kernel. If the IPI races and the task has been migrated
984 * to another CPU then no harm is done and the purpose has been
987 void kick_process(task_t *p)
993 if ((cpu != smp_processor_id()) && task_curr(p))
994 smp_send_reschedule(cpu);
999 * Return a low guess at the load of a migration-source cpu.
1001 * We want to under-estimate the load of migration sources, to
1002 * balance conservatively.
1004 static inline unsigned long __source_load(int cpu, int type, enum idle_type idle)
1006 runqueue_t *rq = cpu_rq(cpu);
1007 unsigned long running = rq->nr_running;
1008 unsigned long source_load, cpu_load = rq->cpu_load[type-1],
1009 load_now = running * SCHED_LOAD_SCALE;
1012 source_load = load_now;
1014 source_load = min(cpu_load, load_now);
1016 if (running > 1 || (idle == NOT_IDLE && running))
1018 * If we are busy rebalancing the load is biased by
1019 * priority to create 'nice' support across cpus. When
1020 * idle rebalancing we should only bias the source_load if
1021 * there is more than one task running on that queue to
1022 * prevent idle rebalance from trying to pull tasks from a
1023 * queue with only one running task.
1025 source_load = source_load * rq->prio_bias / running;
1030 static inline unsigned long source_load(int cpu, int type)
1032 return __source_load(cpu, type, NOT_IDLE);
1036 * Return a high guess at the load of a migration-target cpu
1038 static inline unsigned long __target_load(int cpu, int type, enum idle_type idle)
1040 runqueue_t *rq = cpu_rq(cpu);
1041 unsigned long running = rq->nr_running;
1042 unsigned long target_load, cpu_load = rq->cpu_load[type-1],
1043 load_now = running * SCHED_LOAD_SCALE;
1046 target_load = load_now;
1048 target_load = max(cpu_load, load_now);
1050 if (running > 1 || (idle == NOT_IDLE && running))
1051 target_load = target_load * rq->prio_bias / running;
1056 static inline unsigned long target_load(int cpu, int type)
1058 return __target_load(cpu, type, NOT_IDLE);
1062 * find_idlest_group finds and returns the least busy CPU group within the
1065 static struct sched_group *
1066 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1068 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1069 unsigned long min_load = ULONG_MAX, this_load = 0;
1070 int load_idx = sd->forkexec_idx;
1071 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1074 unsigned long load, avg_load;
1078 /* Skip over this group if it has no CPUs allowed */
1079 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1082 local_group = cpu_isset(this_cpu, group->cpumask);
1084 /* Tally up the load of all CPUs in the group */
1087 for_each_cpu_mask(i, group->cpumask) {
1088 /* Bias balancing toward cpus of our domain */
1090 load = source_load(i, load_idx);
1092 load = target_load(i, load_idx);
1097 /* Adjust by relative CPU power of the group */
1098 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1101 this_load = avg_load;
1103 } else if (avg_load < min_load) {
1104 min_load = avg_load;
1108 group = group->next;
1109 } while (group != sd->groups);
1111 if (!idlest || 100*this_load < imbalance*min_load)
1117 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1120 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1123 unsigned long load, min_load = ULONG_MAX;
1127 /* Traverse only the allowed CPUs */
1128 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1130 for_each_cpu_mask(i, tmp) {
1131 load = source_load(i, 0);
1133 if (load < min_load || (load == min_load && i == this_cpu)) {
1143 * sched_balance_self: balance the current task (running on cpu) in domains
1144 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1147 * Balance, ie. select the least loaded group.
1149 * Returns the target CPU number, or the same CPU if no balancing is needed.
1151 * preempt must be disabled.
1153 static int sched_balance_self(int cpu, int flag)
1155 struct task_struct *t = current;
1156 struct sched_domain *tmp, *sd = NULL;
1158 for_each_domain(cpu, tmp)
1159 if (tmp->flags & flag)
1164 struct sched_group *group;
1169 group = find_idlest_group(sd, t, cpu);
1173 new_cpu = find_idlest_cpu(group, t, cpu);
1174 if (new_cpu == -1 || new_cpu == cpu)
1177 /* Now try balancing at a lower domain level */
1181 weight = cpus_weight(span);
1182 for_each_domain(cpu, tmp) {
1183 if (weight <= cpus_weight(tmp->span))
1185 if (tmp->flags & flag)
1188 /* while loop will break here if sd == NULL */
1194 #endif /* CONFIG_SMP */
1197 * wake_idle() will wake a task on an idle cpu if task->cpu is
1198 * not idle and an idle cpu is available. The span of cpus to
1199 * search starts with cpus closest then further out as needed,
1200 * so we always favor a closer, idle cpu.
1202 * Returns the CPU we should wake onto.
1204 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1205 static int wake_idle(int cpu, task_t *p)
1208 struct sched_domain *sd;
1214 for_each_domain(cpu, sd) {
1215 if (sd->flags & SD_WAKE_IDLE) {
1216 cpus_and(tmp, sd->span, p->cpus_allowed);
1217 for_each_cpu_mask(i, tmp) {
1228 static inline int wake_idle(int cpu, task_t *p)
1235 * try_to_wake_up - wake up a thread
1236 * @p: the to-be-woken-up thread
1237 * @state: the mask of task states that can be woken
1238 * @sync: do a synchronous wakeup?
1240 * Put it on the run-queue if it's not already there. The "current"
1241 * thread is always on the run-queue (except when the actual
1242 * re-schedule is in progress), and as such you're allowed to do
1243 * the simpler "current->state = TASK_RUNNING" to mark yourself
1244 * runnable without the overhead of this.
1246 * returns failure only if the task is already active.
1248 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1250 int cpu, this_cpu, success = 0;
1251 unsigned long flags;
1255 unsigned long load, this_load;
1256 struct sched_domain *sd, *this_sd = NULL;
1260 rq = task_rq_lock(p, &flags);
1261 old_state = p->state;
1262 if (!(old_state & state))
1269 this_cpu = smp_processor_id();
1272 if (unlikely(task_running(rq, p)))
1277 schedstat_inc(rq, ttwu_cnt);
1278 if (cpu == this_cpu) {
1279 schedstat_inc(rq, ttwu_local);
1283 for_each_domain(this_cpu, sd) {
1284 if (cpu_isset(cpu, sd->span)) {
1285 schedstat_inc(sd, ttwu_wake_remote);
1291 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1295 * Check for affine wakeup and passive balancing possibilities.
1298 int idx = this_sd->wake_idx;
1299 unsigned int imbalance;
1301 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1303 load = source_load(cpu, idx);
1304 this_load = target_load(this_cpu, idx);
1306 new_cpu = this_cpu; /* Wake to this CPU if we can */
1308 if (this_sd->flags & SD_WAKE_AFFINE) {
1309 unsigned long tl = this_load;
1311 * If sync wakeup then subtract the (maximum possible)
1312 * effect of the currently running task from the load
1313 * of the current CPU:
1316 tl -= SCHED_LOAD_SCALE;
1319 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1320 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1322 * This domain has SD_WAKE_AFFINE and
1323 * p is cache cold in this domain, and
1324 * there is no bad imbalance.
1326 schedstat_inc(this_sd, ttwu_move_affine);
1332 * Start passive balancing when half the imbalance_pct
1335 if (this_sd->flags & SD_WAKE_BALANCE) {
1336 if (imbalance*this_load <= 100*load) {
1337 schedstat_inc(this_sd, ttwu_move_balance);
1343 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1345 new_cpu = wake_idle(new_cpu, p);
1346 if (new_cpu != cpu) {
1347 set_task_cpu(p, new_cpu);
1348 task_rq_unlock(rq, &flags);
1349 /* might preempt at this point */
1350 rq = task_rq_lock(p, &flags);
1351 old_state = p->state;
1352 if (!(old_state & state))
1357 this_cpu = smp_processor_id();
1362 #endif /* CONFIG_SMP */
1363 if (old_state == TASK_UNINTERRUPTIBLE) {
1364 rq->nr_uninterruptible--;
1366 * Tasks on involuntary sleep don't earn
1367 * sleep_avg beyond just interactive state.
1373 * Tasks that have marked their sleep as noninteractive get
1374 * woken up without updating their sleep average. (i.e. their
1375 * sleep is handled in a priority-neutral manner, no priority
1376 * boost and no penalty.)
1378 if (old_state & TASK_NONINTERACTIVE)
1379 __activate_task(p, rq);
1381 activate_task(p, rq, cpu == this_cpu);
1383 * Sync wakeups (i.e. those types of wakeups where the waker
1384 * has indicated that it will leave the CPU in short order)
1385 * don't trigger a preemption, if the woken up task will run on
1386 * this cpu. (in this case the 'I will reschedule' promise of
1387 * the waker guarantees that the freshly woken up task is going
1388 * to be considered on this CPU.)
1390 if (!sync || cpu != this_cpu) {
1391 if (TASK_PREEMPTS_CURR(p, rq))
1392 resched_task(rq->curr);
1397 p->state = TASK_RUNNING;
1399 task_rq_unlock(rq, &flags);
1404 int fastcall wake_up_process(task_t *p)
1406 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1407 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1410 EXPORT_SYMBOL(wake_up_process);
1412 int fastcall wake_up_state(task_t *p, unsigned int state)
1414 return try_to_wake_up(p, state, 0);
1418 * Perform scheduler related setup for a newly forked process p.
1419 * p is forked by current.
1421 void fastcall sched_fork(task_t *p, int clone_flags)
1423 int cpu = get_cpu();
1426 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1428 set_task_cpu(p, cpu);
1431 * We mark the process as running here, but have not actually
1432 * inserted it onto the runqueue yet. This guarantees that
1433 * nobody will actually run it, and a signal or other external
1434 * event cannot wake it up and insert it on the runqueue either.
1436 p->state = TASK_RUNNING;
1437 INIT_LIST_HEAD(&p->run_list);
1439 #ifdef CONFIG_SCHEDSTATS
1440 memset(&p->sched_info, 0, sizeof(p->sched_info));
1442 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1445 #ifdef CONFIG_PREEMPT
1446 /* Want to start with kernel preemption disabled. */
1447 task_thread_info(p)->preempt_count = 1;
1450 * Share the timeslice between parent and child, thus the
1451 * total amount of pending timeslices in the system doesn't change,
1452 * resulting in more scheduling fairness.
1454 local_irq_disable();
1455 p->time_slice = (current->time_slice + 1) >> 1;
1457 * The remainder of the first timeslice might be recovered by
1458 * the parent if the child exits early enough.
1460 p->first_time_slice = 1;
1461 current->time_slice >>= 1;
1462 p->timestamp = sched_clock();
1463 if (unlikely(!current->time_slice)) {
1465 * This case is rare, it happens when the parent has only
1466 * a single jiffy left from its timeslice. Taking the
1467 * runqueue lock is not a problem.
1469 current->time_slice = 1;
1477 * wake_up_new_task - wake up a newly created task for the first time.
1479 * This function will do some initial scheduler statistics housekeeping
1480 * that must be done for every newly created context, then puts the task
1481 * on the runqueue and wakes it.
1483 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1485 unsigned long flags;
1487 runqueue_t *rq, *this_rq;
1489 rq = task_rq_lock(p, &flags);
1490 BUG_ON(p->state != TASK_RUNNING);
1491 this_cpu = smp_processor_id();
1495 * We decrease the sleep average of forking parents
1496 * and children as well, to keep max-interactive tasks
1497 * from forking tasks that are max-interactive. The parent
1498 * (current) is done further down, under its lock.
1500 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1501 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1503 p->prio = effective_prio(p);
1505 if (likely(cpu == this_cpu)) {
1506 if (!(clone_flags & CLONE_VM)) {
1508 * The VM isn't cloned, so we're in a good position to
1509 * do child-runs-first in anticipation of an exec. This
1510 * usually avoids a lot of COW overhead.
1512 if (unlikely(!current->array))
1513 __activate_task(p, rq);
1515 p->prio = current->prio;
1516 list_add_tail(&p->run_list, ¤t->run_list);
1517 p->array = current->array;
1518 p->array->nr_active++;
1519 inc_nr_running(p, rq);
1523 /* Run child last */
1524 __activate_task(p, rq);
1526 * We skip the following code due to cpu == this_cpu
1528 * task_rq_unlock(rq, &flags);
1529 * this_rq = task_rq_lock(current, &flags);
1533 this_rq = cpu_rq(this_cpu);
1536 * Not the local CPU - must adjust timestamp. This should
1537 * get optimised away in the !CONFIG_SMP case.
1539 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1540 + rq->timestamp_last_tick;
1541 __activate_task(p, rq);
1542 if (TASK_PREEMPTS_CURR(p, rq))
1543 resched_task(rq->curr);
1546 * Parent and child are on different CPUs, now get the
1547 * parent runqueue to update the parent's ->sleep_avg:
1549 task_rq_unlock(rq, &flags);
1550 this_rq = task_rq_lock(current, &flags);
1552 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1553 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1554 task_rq_unlock(this_rq, &flags);
1558 * Potentially available exiting-child timeslices are
1559 * retrieved here - this way the parent does not get
1560 * penalized for creating too many threads.
1562 * (this cannot be used to 'generate' timeslices
1563 * artificially, because any timeslice recovered here
1564 * was given away by the parent in the first place.)
1566 void fastcall sched_exit(task_t *p)
1568 unsigned long flags;
1572 * If the child was a (relative-) CPU hog then decrease
1573 * the sleep_avg of the parent as well.
1575 rq = task_rq_lock(p->parent, &flags);
1576 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1577 p->parent->time_slice += p->time_slice;
1578 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1579 p->parent->time_slice = task_timeslice(p);
1581 if (p->sleep_avg < p->parent->sleep_avg)
1582 p->parent->sleep_avg = p->parent->sleep_avg /
1583 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1585 task_rq_unlock(rq, &flags);
1589 * prepare_task_switch - prepare to switch tasks
1590 * @rq: the runqueue preparing to switch
1591 * @next: the task we are going to switch to.
1593 * This is called with the rq lock held and interrupts off. It must
1594 * be paired with a subsequent finish_task_switch after the context
1597 * prepare_task_switch sets up locking and calls architecture specific
1600 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1602 prepare_lock_switch(rq, next);
1603 prepare_arch_switch(next);
1607 * finish_task_switch - clean up after a task-switch
1608 * @rq: runqueue associated with task-switch
1609 * @prev: the thread we just switched away from.
1611 * finish_task_switch must be called after the context switch, paired
1612 * with a prepare_task_switch call before the context switch.
1613 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1614 * and do any other architecture-specific cleanup actions.
1616 * Note that we may have delayed dropping an mm in context_switch(). If
1617 * so, we finish that here outside of the runqueue lock. (Doing it
1618 * with the lock held can cause deadlocks; see schedule() for
1621 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1622 __releases(rq->lock)
1624 struct mm_struct *mm = rq->prev_mm;
1625 unsigned long prev_task_flags;
1630 * A task struct has one reference for the use as "current".
1631 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1632 * calls schedule one last time. The schedule call will never return,
1633 * and the scheduled task must drop that reference.
1634 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1635 * still held, otherwise prev could be scheduled on another cpu, die
1636 * there before we look at prev->state, and then the reference would
1638 * Manfred Spraul <manfred@colorfullife.com>
1640 prev_task_flags = prev->flags;
1641 finish_arch_switch(prev);
1642 finish_lock_switch(rq, prev);
1645 if (unlikely(prev_task_flags & PF_DEAD))
1646 put_task_struct(prev);
1650 * schedule_tail - first thing a freshly forked thread must call.
1651 * @prev: the thread we just switched away from.
1653 asmlinkage void schedule_tail(task_t *prev)
1654 __releases(rq->lock)
1656 runqueue_t *rq = this_rq();
1657 finish_task_switch(rq, prev);
1658 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1659 /* In this case, finish_task_switch does not reenable preemption */
1662 if (current->set_child_tid)
1663 put_user(current->pid, current->set_child_tid);
1667 * context_switch - switch to the new MM and the new
1668 * thread's register state.
1671 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1673 struct mm_struct *mm = next->mm;
1674 struct mm_struct *oldmm = prev->active_mm;
1676 if (unlikely(!mm)) {
1677 next->active_mm = oldmm;
1678 atomic_inc(&oldmm->mm_count);
1679 enter_lazy_tlb(oldmm, next);
1681 switch_mm(oldmm, mm, next);
1683 if (unlikely(!prev->mm)) {
1684 prev->active_mm = NULL;
1685 WARN_ON(rq->prev_mm);
1686 rq->prev_mm = oldmm;
1689 /* Here we just switch the register state and the stack. */
1690 switch_to(prev, next, prev);
1696 * nr_running, nr_uninterruptible and nr_context_switches:
1698 * externally visible scheduler statistics: current number of runnable
1699 * threads, current number of uninterruptible-sleeping threads, total
1700 * number of context switches performed since bootup.
1702 unsigned long nr_running(void)
1704 unsigned long i, sum = 0;
1706 for_each_online_cpu(i)
1707 sum += cpu_rq(i)->nr_running;
1712 unsigned long nr_uninterruptible(void)
1714 unsigned long i, sum = 0;
1717 sum += cpu_rq(i)->nr_uninterruptible;
1720 * Since we read the counters lockless, it might be slightly
1721 * inaccurate. Do not allow it to go below zero though:
1723 if (unlikely((long)sum < 0))
1729 unsigned long long nr_context_switches(void)
1731 unsigned long long i, sum = 0;
1734 sum += cpu_rq(i)->nr_switches;
1739 unsigned long nr_iowait(void)
1741 unsigned long i, sum = 0;
1744 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1752 * double_rq_lock - safely lock two runqueues
1754 * Note this does not disable interrupts like task_rq_lock,
1755 * you need to do so manually before calling.
1757 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1758 __acquires(rq1->lock)
1759 __acquires(rq2->lock)
1762 spin_lock(&rq1->lock);
1763 __acquire(rq2->lock); /* Fake it out ;) */
1766 spin_lock(&rq1->lock);
1767 spin_lock(&rq2->lock);
1769 spin_lock(&rq2->lock);
1770 spin_lock(&rq1->lock);
1776 * double_rq_unlock - safely unlock two runqueues
1778 * Note this does not restore interrupts like task_rq_unlock,
1779 * you need to do so manually after calling.
1781 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1782 __releases(rq1->lock)
1783 __releases(rq2->lock)
1785 spin_unlock(&rq1->lock);
1787 spin_unlock(&rq2->lock);
1789 __release(rq2->lock);
1793 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1795 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1796 __releases(this_rq->lock)
1797 __acquires(busiest->lock)
1798 __acquires(this_rq->lock)
1800 if (unlikely(!spin_trylock(&busiest->lock))) {
1801 if (busiest < this_rq) {
1802 spin_unlock(&this_rq->lock);
1803 spin_lock(&busiest->lock);
1804 spin_lock(&this_rq->lock);
1806 spin_lock(&busiest->lock);
1811 * If dest_cpu is allowed for this process, migrate the task to it.
1812 * This is accomplished by forcing the cpu_allowed mask to only
1813 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1814 * the cpu_allowed mask is restored.
1816 static void sched_migrate_task(task_t *p, int dest_cpu)
1818 migration_req_t req;
1820 unsigned long flags;
1822 rq = task_rq_lock(p, &flags);
1823 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1824 || unlikely(cpu_is_offline(dest_cpu)))
1827 /* force the process onto the specified CPU */
1828 if (migrate_task(p, dest_cpu, &req)) {
1829 /* Need to wait for migration thread (might exit: take ref). */
1830 struct task_struct *mt = rq->migration_thread;
1831 get_task_struct(mt);
1832 task_rq_unlock(rq, &flags);
1833 wake_up_process(mt);
1834 put_task_struct(mt);
1835 wait_for_completion(&req.done);
1839 task_rq_unlock(rq, &flags);
1843 * sched_exec - execve() is a valuable balancing opportunity, because at
1844 * this point the task has the smallest effective memory and cache footprint.
1846 void sched_exec(void)
1848 int new_cpu, this_cpu = get_cpu();
1849 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1851 if (new_cpu != this_cpu)
1852 sched_migrate_task(current, new_cpu);
1856 * pull_task - move a task from a remote runqueue to the local runqueue.
1857 * Both runqueues must be locked.
1860 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1861 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1863 dequeue_task(p, src_array);
1864 dec_nr_running(p, src_rq);
1865 set_task_cpu(p, this_cpu);
1866 inc_nr_running(p, this_rq);
1867 enqueue_task(p, this_array);
1868 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1869 + this_rq->timestamp_last_tick;
1871 * Note that idle threads have a prio of MAX_PRIO, for this test
1872 * to be always true for them.
1874 if (TASK_PREEMPTS_CURR(p, this_rq))
1875 resched_task(this_rq->curr);
1879 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1882 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1883 struct sched_domain *sd, enum idle_type idle,
1887 * We do not migrate tasks that are:
1888 * 1) running (obviously), or
1889 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1890 * 3) are cache-hot on their current CPU.
1892 if (!cpu_isset(this_cpu, p->cpus_allowed))
1896 if (task_running(rq, p))
1900 * Aggressive migration if:
1901 * 1) task is cache cold, or
1902 * 2) too many balance attempts have failed.
1905 if (sd->nr_balance_failed > sd->cache_nice_tries)
1908 if (task_hot(p, rq->timestamp_last_tick, sd))
1914 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1915 * as part of a balancing operation within "domain". Returns the number of
1918 * Called with both runqueues locked.
1920 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1921 unsigned long max_nr_move, struct sched_domain *sd,
1922 enum idle_type idle, int *all_pinned)
1924 prio_array_t *array, *dst_array;
1925 struct list_head *head, *curr;
1926 int idx, pulled = 0, pinned = 0;
1929 if (max_nr_move == 0)
1935 * We first consider expired tasks. Those will likely not be
1936 * executed in the near future, and they are most likely to
1937 * be cache-cold, thus switching CPUs has the least effect
1940 if (busiest->expired->nr_active) {
1941 array = busiest->expired;
1942 dst_array = this_rq->expired;
1944 array = busiest->active;
1945 dst_array = this_rq->active;
1949 /* Start searching at priority 0: */
1953 idx = sched_find_first_bit(array->bitmap);
1955 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1956 if (idx >= MAX_PRIO) {
1957 if (array == busiest->expired && busiest->active->nr_active) {
1958 array = busiest->active;
1959 dst_array = this_rq->active;
1965 head = array->queue + idx;
1968 tmp = list_entry(curr, task_t, run_list);
1972 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1979 #ifdef CONFIG_SCHEDSTATS
1980 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1981 schedstat_inc(sd, lb_hot_gained[idle]);
1984 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1987 /* We only want to steal up to the prescribed number of tasks. */
1988 if (pulled < max_nr_move) {
1996 * Right now, this is the only place pull_task() is called,
1997 * so we can safely collect pull_task() stats here rather than
1998 * inside pull_task().
2000 schedstat_add(sd, lb_gained[idle], pulled);
2003 *all_pinned = pinned;
2008 * find_busiest_group finds and returns the busiest CPU group within the
2009 * domain. It calculates and returns the number of tasks which should be
2010 * moved to restore balance via the imbalance parameter.
2012 static struct sched_group *
2013 find_busiest_group(struct sched_domain *sd, int this_cpu,
2014 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
2016 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2017 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2018 unsigned long max_pull;
2021 max_load = this_load = total_load = total_pwr = 0;
2022 if (idle == NOT_IDLE)
2023 load_idx = sd->busy_idx;
2024 else if (idle == NEWLY_IDLE)
2025 load_idx = sd->newidle_idx;
2027 load_idx = sd->idle_idx;
2034 local_group = cpu_isset(this_cpu, group->cpumask);
2036 /* Tally up the load of all CPUs in the group */
2039 for_each_cpu_mask(i, group->cpumask) {
2040 if (*sd_idle && !idle_cpu(i))
2043 /* Bias balancing toward cpus of our domain */
2045 load = __target_load(i, load_idx, idle);
2047 load = __source_load(i, load_idx, idle);
2052 total_load += avg_load;
2053 total_pwr += group->cpu_power;
2055 /* Adjust by relative CPU power of the group */
2056 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2059 this_load = avg_load;
2061 } else if (avg_load > max_load) {
2062 max_load = avg_load;
2065 group = group->next;
2066 } while (group != sd->groups);
2068 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
2071 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2073 if (this_load >= avg_load ||
2074 100*max_load <= sd->imbalance_pct*this_load)
2078 * We're trying to get all the cpus to the average_load, so we don't
2079 * want to push ourselves above the average load, nor do we wish to
2080 * reduce the max loaded cpu below the average load, as either of these
2081 * actions would just result in more rebalancing later, and ping-pong
2082 * tasks around. Thus we look for the minimum possible imbalance.
2083 * Negative imbalances (*we* are more loaded than anyone else) will
2084 * be counted as no imbalance for these purposes -- we can't fix that
2085 * by pulling tasks to us. Be careful of negative numbers as they'll
2086 * appear as very large values with unsigned longs.
2089 /* Don't want to pull so many tasks that a group would go idle */
2090 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2092 /* How much load to actually move to equalise the imbalance */
2093 *imbalance = min(max_pull * busiest->cpu_power,
2094 (avg_load - this_load) * this->cpu_power)
2097 if (*imbalance < SCHED_LOAD_SCALE) {
2098 unsigned long pwr_now = 0, pwr_move = 0;
2101 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2107 * OK, we don't have enough imbalance to justify moving tasks,
2108 * however we may be able to increase total CPU power used by
2112 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2113 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2114 pwr_now /= SCHED_LOAD_SCALE;
2116 /* Amount of load we'd subtract */
2117 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2119 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2122 /* Amount of load we'd add */
2123 if (max_load*busiest->cpu_power <
2124 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2125 tmp = max_load*busiest->cpu_power/this->cpu_power;
2127 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2128 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2129 pwr_move /= SCHED_LOAD_SCALE;
2131 /* Move if we gain throughput */
2132 if (pwr_move <= pwr_now)
2139 /* Get rid of the scaling factor, rounding down as we divide */
2140 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2150 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2152 static runqueue_t *find_busiest_queue(struct sched_group *group,
2153 enum idle_type idle)
2155 unsigned long load, max_load = 0;
2156 runqueue_t *busiest = NULL;
2159 for_each_cpu_mask(i, group->cpumask) {
2160 load = __source_load(i, 0, idle);
2162 if (load > max_load) {
2164 busiest = cpu_rq(i);
2172 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2173 * so long as it is large enough.
2175 #define MAX_PINNED_INTERVAL 512
2178 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2179 * tasks if there is an imbalance.
2181 * Called with this_rq unlocked.
2183 static int load_balance(int this_cpu, runqueue_t *this_rq,
2184 struct sched_domain *sd, enum idle_type idle)
2186 struct sched_group *group;
2187 runqueue_t *busiest;
2188 unsigned long imbalance;
2189 int nr_moved, all_pinned = 0;
2190 int active_balance = 0;
2193 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2196 schedstat_inc(sd, lb_cnt[idle]);
2198 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2200 schedstat_inc(sd, lb_nobusyg[idle]);
2204 busiest = find_busiest_queue(group, idle);
2206 schedstat_inc(sd, lb_nobusyq[idle]);
2210 BUG_ON(busiest == this_rq);
2212 schedstat_add(sd, lb_imbalance[idle], imbalance);
2215 if (busiest->nr_running > 1) {
2217 * Attempt to move tasks. If find_busiest_group has found
2218 * an imbalance but busiest->nr_running <= 1, the group is
2219 * still unbalanced. nr_moved simply stays zero, so it is
2220 * correctly treated as an imbalance.
2222 double_rq_lock(this_rq, busiest);
2223 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2224 imbalance, sd, idle, &all_pinned);
2225 double_rq_unlock(this_rq, busiest);
2227 /* All tasks on this runqueue were pinned by CPU affinity */
2228 if (unlikely(all_pinned))
2233 schedstat_inc(sd, lb_failed[idle]);
2234 sd->nr_balance_failed++;
2236 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2238 spin_lock(&busiest->lock);
2240 /* don't kick the migration_thread, if the curr
2241 * task on busiest cpu can't be moved to this_cpu
2243 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2244 spin_unlock(&busiest->lock);
2246 goto out_one_pinned;
2249 if (!busiest->active_balance) {
2250 busiest->active_balance = 1;
2251 busiest->push_cpu = this_cpu;
2254 spin_unlock(&busiest->lock);
2256 wake_up_process(busiest->migration_thread);
2259 * We've kicked active balancing, reset the failure
2262 sd->nr_balance_failed = sd->cache_nice_tries+1;
2265 sd->nr_balance_failed = 0;
2267 if (likely(!active_balance)) {
2268 /* We were unbalanced, so reset the balancing interval */
2269 sd->balance_interval = sd->min_interval;
2272 * If we've begun active balancing, start to back off. This
2273 * case may not be covered by the all_pinned logic if there
2274 * is only 1 task on the busy runqueue (because we don't call
2277 if (sd->balance_interval < sd->max_interval)
2278 sd->balance_interval *= 2;
2281 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2286 schedstat_inc(sd, lb_balanced[idle]);
2288 sd->nr_balance_failed = 0;
2291 /* tune up the balancing interval */
2292 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2293 (sd->balance_interval < sd->max_interval))
2294 sd->balance_interval *= 2;
2296 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2302 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2303 * tasks if there is an imbalance.
2305 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2306 * this_rq is locked.
2308 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2309 struct sched_domain *sd)
2311 struct sched_group *group;
2312 runqueue_t *busiest = NULL;
2313 unsigned long imbalance;
2317 if (sd->flags & SD_SHARE_CPUPOWER)
2320 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2321 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2323 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2327 busiest = find_busiest_queue(group, NEWLY_IDLE);
2329 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2333 BUG_ON(busiest == this_rq);
2335 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2338 if (busiest->nr_running > 1) {
2339 /* Attempt to move tasks */
2340 double_lock_balance(this_rq, busiest);
2341 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2342 imbalance, sd, NEWLY_IDLE, NULL);
2343 spin_unlock(&busiest->lock);
2347 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2348 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2351 sd->nr_balance_failed = 0;
2356 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2357 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2359 sd->nr_balance_failed = 0;
2364 * idle_balance is called by schedule() if this_cpu is about to become
2365 * idle. Attempts to pull tasks from other CPUs.
2367 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2369 struct sched_domain *sd;
2371 for_each_domain(this_cpu, sd) {
2372 if (sd->flags & SD_BALANCE_NEWIDLE) {
2373 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2374 /* We've pulled tasks over so stop searching */
2382 * active_load_balance is run by migration threads. It pushes running tasks
2383 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2384 * running on each physical CPU where possible, and avoids physical /
2385 * logical imbalances.
2387 * Called with busiest_rq locked.
2389 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2391 struct sched_domain *sd;
2392 runqueue_t *target_rq;
2393 int target_cpu = busiest_rq->push_cpu;
2395 if (busiest_rq->nr_running <= 1)
2396 /* no task to move */
2399 target_rq = cpu_rq(target_cpu);
2402 * This condition is "impossible", if it occurs
2403 * we need to fix it. Originally reported by
2404 * Bjorn Helgaas on a 128-cpu setup.
2406 BUG_ON(busiest_rq == target_rq);
2408 /* move a task from busiest_rq to target_rq */
2409 double_lock_balance(busiest_rq, target_rq);
2411 /* Search for an sd spanning us and the target CPU. */
2412 for_each_domain(target_cpu, sd)
2413 if ((sd->flags & SD_LOAD_BALANCE) &&
2414 cpu_isset(busiest_cpu, sd->span))
2417 if (unlikely(sd == NULL))
2420 schedstat_inc(sd, alb_cnt);
2422 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2423 schedstat_inc(sd, alb_pushed);
2425 schedstat_inc(sd, alb_failed);
2427 spin_unlock(&target_rq->lock);
2431 * rebalance_tick will get called every timer tick, on every CPU.
2433 * It checks each scheduling domain to see if it is due to be balanced,
2434 * and initiates a balancing operation if so.
2436 * Balancing parameters are set up in arch_init_sched_domains.
2439 /* Don't have all balancing operations going off at once */
2440 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2442 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2443 enum idle_type idle)
2445 unsigned long old_load, this_load;
2446 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2447 struct sched_domain *sd;
2450 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2451 /* Update our load */
2452 for (i = 0; i < 3; i++) {
2453 unsigned long new_load = this_load;
2455 old_load = this_rq->cpu_load[i];
2457 * Round up the averaging division if load is increasing. This
2458 * prevents us from getting stuck on 9 if the load is 10, for
2461 if (new_load > old_load)
2462 new_load += scale-1;
2463 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2466 for_each_domain(this_cpu, sd) {
2467 unsigned long interval;
2469 if (!(sd->flags & SD_LOAD_BALANCE))
2472 interval = sd->balance_interval;
2473 if (idle != SCHED_IDLE)
2474 interval *= sd->busy_factor;
2476 /* scale ms to jiffies */
2477 interval = msecs_to_jiffies(interval);
2478 if (unlikely(!interval))
2481 if (j - sd->last_balance >= interval) {
2482 if (load_balance(this_cpu, this_rq, sd, idle)) {
2484 * We've pulled tasks over so either we're no
2485 * longer idle, or one of our SMT siblings is
2490 sd->last_balance += interval;
2496 * on UP we do not need to balance between CPUs:
2498 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2501 static inline void idle_balance(int cpu, runqueue_t *rq)
2506 static inline int wake_priority_sleeper(runqueue_t *rq)
2509 #ifdef CONFIG_SCHED_SMT
2510 spin_lock(&rq->lock);
2512 * If an SMT sibling task has been put to sleep for priority
2513 * reasons reschedule the idle task to see if it can now run.
2515 if (rq->nr_running) {
2516 resched_task(rq->idle);
2519 spin_unlock(&rq->lock);
2524 DEFINE_PER_CPU(struct kernel_stat, kstat);
2526 EXPORT_PER_CPU_SYMBOL(kstat);
2529 * This is called on clock ticks and on context switches.
2530 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2532 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2533 unsigned long long now)
2535 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2536 p->sched_time += now - last;
2540 * Return current->sched_time plus any more ns on the sched_clock
2541 * that have not yet been banked.
2543 unsigned long long current_sched_time(const task_t *tsk)
2545 unsigned long long ns;
2546 unsigned long flags;
2547 local_irq_save(flags);
2548 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2549 ns = tsk->sched_time + (sched_clock() - ns);
2550 local_irq_restore(flags);
2555 * We place interactive tasks back into the active array, if possible.
2557 * To guarantee that this does not starve expired tasks we ignore the
2558 * interactivity of a task if the first expired task had to wait more
2559 * than a 'reasonable' amount of time. This deadline timeout is
2560 * load-dependent, as the frequency of array switched decreases with
2561 * increasing number of running tasks. We also ignore the interactivity
2562 * if a better static_prio task has expired:
2564 #define EXPIRED_STARVING(rq) \
2565 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2566 (jiffies - (rq)->expired_timestamp >= \
2567 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2568 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2571 * Account user cpu time to a process.
2572 * @p: the process that the cpu time gets accounted to
2573 * @hardirq_offset: the offset to subtract from hardirq_count()
2574 * @cputime: the cpu time spent in user space since the last update
2576 void account_user_time(struct task_struct *p, cputime_t cputime)
2578 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2581 p->utime = cputime_add(p->utime, cputime);
2583 /* Add user time to cpustat. */
2584 tmp = cputime_to_cputime64(cputime);
2585 if (TASK_NICE(p) > 0)
2586 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2588 cpustat->user = cputime64_add(cpustat->user, tmp);
2592 * Account system cpu time to a process.
2593 * @p: the process that the cpu time gets accounted to
2594 * @hardirq_offset: the offset to subtract from hardirq_count()
2595 * @cputime: the cpu time spent in kernel space since the last update
2597 void account_system_time(struct task_struct *p, int hardirq_offset,
2600 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2601 runqueue_t *rq = this_rq();
2604 p->stime = cputime_add(p->stime, cputime);
2606 /* Add system time to cpustat. */
2607 tmp = cputime_to_cputime64(cputime);
2608 if (hardirq_count() - hardirq_offset)
2609 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2610 else if (softirq_count())
2611 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2612 else if (p != rq->idle)
2613 cpustat->system = cputime64_add(cpustat->system, tmp);
2614 else if (atomic_read(&rq->nr_iowait) > 0)
2615 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2617 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2618 /* Account for system time used */
2619 acct_update_integrals(p);
2623 * Account for involuntary wait time.
2624 * @p: the process from which the cpu time has been stolen
2625 * @steal: the cpu time spent in involuntary wait
2627 void account_steal_time(struct task_struct *p, cputime_t steal)
2629 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2630 cputime64_t tmp = cputime_to_cputime64(steal);
2631 runqueue_t *rq = this_rq();
2633 if (p == rq->idle) {
2634 p->stime = cputime_add(p->stime, steal);
2635 if (atomic_read(&rq->nr_iowait) > 0)
2636 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2638 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2640 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2644 * This function gets called by the timer code, with HZ frequency.
2645 * We call it with interrupts disabled.
2647 * It also gets called by the fork code, when changing the parent's
2650 void scheduler_tick(void)
2652 int cpu = smp_processor_id();
2653 runqueue_t *rq = this_rq();
2654 task_t *p = current;
2655 unsigned long long now = sched_clock();
2657 update_cpu_clock(p, rq, now);
2659 rq->timestamp_last_tick = now;
2661 if (p == rq->idle) {
2662 if (wake_priority_sleeper(rq))
2664 rebalance_tick(cpu, rq, SCHED_IDLE);
2668 /* Task might have expired already, but not scheduled off yet */
2669 if (p->array != rq->active) {
2670 set_tsk_need_resched(p);
2673 spin_lock(&rq->lock);
2675 * The task was running during this tick - update the
2676 * time slice counter. Note: we do not update a thread's
2677 * priority until it either goes to sleep or uses up its
2678 * timeslice. This makes it possible for interactive tasks
2679 * to use up their timeslices at their highest priority levels.
2683 * RR tasks need a special form of timeslice management.
2684 * FIFO tasks have no timeslices.
2686 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2687 p->time_slice = task_timeslice(p);
2688 p->first_time_slice = 0;
2689 set_tsk_need_resched(p);
2691 /* put it at the end of the queue: */
2692 requeue_task(p, rq->active);
2696 if (!--p->time_slice) {
2697 dequeue_task(p, rq->active);
2698 set_tsk_need_resched(p);
2699 p->prio = effective_prio(p);
2700 p->time_slice = task_timeslice(p);
2701 p->first_time_slice = 0;
2703 if (!rq->expired_timestamp)
2704 rq->expired_timestamp = jiffies;
2705 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2706 enqueue_task(p, rq->expired);
2707 if (p->static_prio < rq->best_expired_prio)
2708 rq->best_expired_prio = p->static_prio;
2710 enqueue_task(p, rq->active);
2713 * Prevent a too long timeslice allowing a task to monopolize
2714 * the CPU. We do this by splitting up the timeslice into
2717 * Note: this does not mean the task's timeslices expire or
2718 * get lost in any way, they just might be preempted by
2719 * another task of equal priority. (one with higher
2720 * priority would have preempted this task already.) We
2721 * requeue this task to the end of the list on this priority
2722 * level, which is in essence a round-robin of tasks with
2725 * This only applies to tasks in the interactive
2726 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2728 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2729 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2730 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2731 (p->array == rq->active)) {
2733 requeue_task(p, rq->active);
2734 set_tsk_need_resched(p);
2738 spin_unlock(&rq->lock);
2740 rebalance_tick(cpu, rq, NOT_IDLE);
2743 #ifdef CONFIG_SCHED_SMT
2744 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2746 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2747 if (rq->curr == rq->idle && rq->nr_running)
2748 resched_task(rq->idle);
2751 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2753 struct sched_domain *tmp, *sd = NULL;
2754 cpumask_t sibling_map;
2757 for_each_domain(this_cpu, tmp)
2758 if (tmp->flags & SD_SHARE_CPUPOWER)
2765 * Unlock the current runqueue because we have to lock in
2766 * CPU order to avoid deadlocks. Caller knows that we might
2767 * unlock. We keep IRQs disabled.
2769 spin_unlock(&this_rq->lock);
2771 sibling_map = sd->span;
2773 for_each_cpu_mask(i, sibling_map)
2774 spin_lock(&cpu_rq(i)->lock);
2776 * We clear this CPU from the mask. This both simplifies the
2777 * inner loop and keps this_rq locked when we exit:
2779 cpu_clear(this_cpu, sibling_map);
2781 for_each_cpu_mask(i, sibling_map) {
2782 runqueue_t *smt_rq = cpu_rq(i);
2784 wakeup_busy_runqueue(smt_rq);
2787 for_each_cpu_mask(i, sibling_map)
2788 spin_unlock(&cpu_rq(i)->lock);
2790 * We exit with this_cpu's rq still held and IRQs
2796 * number of 'lost' timeslices this task wont be able to fully
2797 * utilize, if another task runs on a sibling. This models the
2798 * slowdown effect of other tasks running on siblings:
2800 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2802 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2805 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2807 struct sched_domain *tmp, *sd = NULL;
2808 cpumask_t sibling_map;
2809 prio_array_t *array;
2813 for_each_domain(this_cpu, tmp)
2814 if (tmp->flags & SD_SHARE_CPUPOWER)
2821 * The same locking rules and details apply as for
2822 * wake_sleeping_dependent():
2824 spin_unlock(&this_rq->lock);
2825 sibling_map = sd->span;
2826 for_each_cpu_mask(i, sibling_map)
2827 spin_lock(&cpu_rq(i)->lock);
2828 cpu_clear(this_cpu, sibling_map);
2831 * Establish next task to be run - it might have gone away because
2832 * we released the runqueue lock above:
2834 if (!this_rq->nr_running)
2836 array = this_rq->active;
2837 if (!array->nr_active)
2838 array = this_rq->expired;
2839 BUG_ON(!array->nr_active);
2841 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2844 for_each_cpu_mask(i, sibling_map) {
2845 runqueue_t *smt_rq = cpu_rq(i);
2846 task_t *smt_curr = smt_rq->curr;
2848 /* Kernel threads do not participate in dependent sleeping */
2849 if (!p->mm || !smt_curr->mm || rt_task(p))
2850 goto check_smt_task;
2853 * If a user task with lower static priority than the
2854 * running task on the SMT sibling is trying to schedule,
2855 * delay it till there is proportionately less timeslice
2856 * left of the sibling task to prevent a lower priority
2857 * task from using an unfair proportion of the
2858 * physical cpu's resources. -ck
2860 if (rt_task(smt_curr)) {
2862 * With real time tasks we run non-rt tasks only
2863 * per_cpu_gain% of the time.
2865 if ((jiffies % DEF_TIMESLICE) >
2866 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2869 if (smt_curr->static_prio < p->static_prio &&
2870 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2871 smt_slice(smt_curr, sd) > task_timeslice(p))
2875 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2879 wakeup_busy_runqueue(smt_rq);
2884 * Reschedule a lower priority task on the SMT sibling for
2885 * it to be put to sleep, or wake it up if it has been put to
2886 * sleep for priority reasons to see if it should run now.
2889 if ((jiffies % DEF_TIMESLICE) >
2890 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2891 resched_task(smt_curr);
2893 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2894 smt_slice(p, sd) > task_timeslice(smt_curr))
2895 resched_task(smt_curr);
2897 wakeup_busy_runqueue(smt_rq);
2901 for_each_cpu_mask(i, sibling_map)
2902 spin_unlock(&cpu_rq(i)->lock);
2906 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2910 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2916 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2918 void fastcall add_preempt_count(int val)
2923 BUG_ON((preempt_count() < 0));
2924 preempt_count() += val;
2926 * Spinlock count overflowing soon?
2928 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2930 EXPORT_SYMBOL(add_preempt_count);
2932 void fastcall sub_preempt_count(int val)
2937 BUG_ON(val > preempt_count());
2939 * Is the spinlock portion underflowing?
2941 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2942 preempt_count() -= val;
2944 EXPORT_SYMBOL(sub_preempt_count);
2949 * schedule() is the main scheduler function.
2951 asmlinkage void __sched schedule(void)
2954 task_t *prev, *next;
2956 prio_array_t *array;
2957 struct list_head *queue;
2958 unsigned long long now;
2959 unsigned long run_time;
2960 int cpu, idx, new_prio;
2963 * Test if we are atomic. Since do_exit() needs to call into
2964 * schedule() atomically, we ignore that path for now.
2965 * Otherwise, whine if we are scheduling when we should not be.
2967 if (likely(!current->exit_state)) {
2968 if (unlikely(in_atomic())) {
2969 printk(KERN_ERR "scheduling while atomic: "
2971 current->comm, preempt_count(), current->pid);
2975 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2980 release_kernel_lock(prev);
2981 need_resched_nonpreemptible:
2985 * The idle thread is not allowed to schedule!
2986 * Remove this check after it has been exercised a bit.
2988 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2989 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2993 schedstat_inc(rq, sched_cnt);
2994 now = sched_clock();
2995 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2996 run_time = now - prev->timestamp;
2997 if (unlikely((long long)(now - prev->timestamp) < 0))
3000 run_time = NS_MAX_SLEEP_AVG;
3003 * Tasks charged proportionately less run_time at high sleep_avg to
3004 * delay them losing their interactive status
3006 run_time /= (CURRENT_BONUS(prev) ? : 1);
3008 spin_lock_irq(&rq->lock);
3010 if (unlikely(prev->flags & PF_DEAD))
3011 prev->state = EXIT_DEAD;
3013 switch_count = &prev->nivcsw;
3014 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3015 switch_count = &prev->nvcsw;
3016 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3017 unlikely(signal_pending(prev))))
3018 prev->state = TASK_RUNNING;
3020 if (prev->state == TASK_UNINTERRUPTIBLE)
3021 rq->nr_uninterruptible++;
3022 deactivate_task(prev, rq);
3026 cpu = smp_processor_id();
3027 if (unlikely(!rq->nr_running)) {
3029 idle_balance(cpu, rq);
3030 if (!rq->nr_running) {
3032 rq->expired_timestamp = 0;
3033 wake_sleeping_dependent(cpu, rq);
3035 * wake_sleeping_dependent() might have released
3036 * the runqueue, so break out if we got new
3039 if (!rq->nr_running)
3043 if (dependent_sleeper(cpu, rq)) {
3048 * dependent_sleeper() releases and reacquires the runqueue
3049 * lock, hence go into the idle loop if the rq went
3052 if (unlikely(!rq->nr_running))
3057 if (unlikely(!array->nr_active)) {
3059 * Switch the active and expired arrays.
3061 schedstat_inc(rq, sched_switch);
3062 rq->active = rq->expired;
3063 rq->expired = array;
3065 rq->expired_timestamp = 0;
3066 rq->best_expired_prio = MAX_PRIO;
3069 idx = sched_find_first_bit(array->bitmap);
3070 queue = array->queue + idx;
3071 next = list_entry(queue->next, task_t, run_list);
3073 if (!rt_task(next) && next->activated > 0) {
3074 unsigned long long delta = now - next->timestamp;
3075 if (unlikely((long long)(now - next->timestamp) < 0))
3078 if (next->activated == 1)
3079 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3081 array = next->array;
3082 new_prio = recalc_task_prio(next, next->timestamp + delta);
3084 if (unlikely(next->prio != new_prio)) {
3085 dequeue_task(next, array);
3086 next->prio = new_prio;
3087 enqueue_task(next, array);
3089 requeue_task(next, array);
3091 next->activated = 0;
3093 if (next == rq->idle)
3094 schedstat_inc(rq, sched_goidle);
3096 prefetch_stack(next);
3097 clear_tsk_need_resched(prev);
3098 rcu_qsctr_inc(task_cpu(prev));
3100 update_cpu_clock(prev, rq, now);
3102 prev->sleep_avg -= run_time;
3103 if ((long)prev->sleep_avg <= 0)
3104 prev->sleep_avg = 0;
3105 prev->timestamp = prev->last_ran = now;
3107 sched_info_switch(prev, next);
3108 if (likely(prev != next)) {
3109 next->timestamp = now;
3114 prepare_task_switch(rq, next);
3115 prev = context_switch(rq, prev, next);
3118 * this_rq must be evaluated again because prev may have moved
3119 * CPUs since it called schedule(), thus the 'rq' on its stack
3120 * frame will be invalid.
3122 finish_task_switch(this_rq(), prev);
3124 spin_unlock_irq(&rq->lock);
3127 if (unlikely(reacquire_kernel_lock(prev) < 0))
3128 goto need_resched_nonpreemptible;
3129 preempt_enable_no_resched();
3130 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3134 EXPORT_SYMBOL(schedule);
3136 #ifdef CONFIG_PREEMPT
3138 * this is is the entry point to schedule() from in-kernel preemption
3139 * off of preempt_enable. Kernel preemptions off return from interrupt
3140 * occur there and call schedule directly.
3142 asmlinkage void __sched preempt_schedule(void)
3144 struct thread_info *ti = current_thread_info();
3145 #ifdef CONFIG_PREEMPT_BKL
3146 struct task_struct *task = current;
3147 int saved_lock_depth;
3150 * If there is a non-zero preempt_count or interrupts are disabled,
3151 * we do not want to preempt the current task. Just return..
3153 if (unlikely(ti->preempt_count || irqs_disabled()))
3157 add_preempt_count(PREEMPT_ACTIVE);
3159 * We keep the big kernel semaphore locked, but we
3160 * clear ->lock_depth so that schedule() doesnt
3161 * auto-release the semaphore:
3163 #ifdef CONFIG_PREEMPT_BKL
3164 saved_lock_depth = task->lock_depth;
3165 task->lock_depth = -1;
3168 #ifdef CONFIG_PREEMPT_BKL
3169 task->lock_depth = saved_lock_depth;
3171 sub_preempt_count(PREEMPT_ACTIVE);
3173 /* we could miss a preemption opportunity between schedule and now */
3175 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3179 EXPORT_SYMBOL(preempt_schedule);
3182 * this is is the entry point to schedule() from kernel preemption
3183 * off of irq context.
3184 * Note, that this is called and return with irqs disabled. This will
3185 * protect us against recursive calling from irq.
3187 asmlinkage void __sched preempt_schedule_irq(void)
3189 struct thread_info *ti = current_thread_info();
3190 #ifdef CONFIG_PREEMPT_BKL
3191 struct task_struct *task = current;
3192 int saved_lock_depth;
3194 /* Catch callers which need to be fixed*/
3195 BUG_ON(ti->preempt_count || !irqs_disabled());
3198 add_preempt_count(PREEMPT_ACTIVE);
3200 * We keep the big kernel semaphore locked, but we
3201 * clear ->lock_depth so that schedule() doesnt
3202 * auto-release the semaphore:
3204 #ifdef CONFIG_PREEMPT_BKL
3205 saved_lock_depth = task->lock_depth;
3206 task->lock_depth = -1;
3210 local_irq_disable();
3211 #ifdef CONFIG_PREEMPT_BKL
3212 task->lock_depth = saved_lock_depth;
3214 sub_preempt_count(PREEMPT_ACTIVE);
3216 /* we could miss a preemption opportunity between schedule and now */
3218 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3222 #endif /* CONFIG_PREEMPT */
3224 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3227 task_t *p = curr->private;
3228 return try_to_wake_up(p, mode, sync);
3231 EXPORT_SYMBOL(default_wake_function);
3234 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3235 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3236 * number) then we wake all the non-exclusive tasks and one exclusive task.
3238 * There are circumstances in which we can try to wake a task which has already
3239 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3240 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3242 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3243 int nr_exclusive, int sync, void *key)
3245 struct list_head *tmp, *next;
3247 list_for_each_safe(tmp, next, &q->task_list) {
3250 curr = list_entry(tmp, wait_queue_t, task_list);
3251 flags = curr->flags;
3252 if (curr->func(curr, mode, sync, key) &&
3253 (flags & WQ_FLAG_EXCLUSIVE) &&
3260 * __wake_up - wake up threads blocked on a waitqueue.
3262 * @mode: which threads
3263 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3264 * @key: is directly passed to the wakeup function
3266 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3267 int nr_exclusive, void *key)
3269 unsigned long flags;
3271 spin_lock_irqsave(&q->lock, flags);
3272 __wake_up_common(q, mode, nr_exclusive, 0, key);
3273 spin_unlock_irqrestore(&q->lock, flags);
3276 EXPORT_SYMBOL(__wake_up);
3279 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3281 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3283 __wake_up_common(q, mode, 1, 0, NULL);
3287 * __wake_up_sync - wake up threads blocked on a waitqueue.
3289 * @mode: which threads
3290 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3292 * The sync wakeup differs that the waker knows that it will schedule
3293 * away soon, so while the target thread will be woken up, it will not
3294 * be migrated to another CPU - ie. the two threads are 'synchronized'
3295 * with each other. This can prevent needless bouncing between CPUs.
3297 * On UP it can prevent extra preemption.
3300 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3302 unsigned long flags;
3308 if (unlikely(!nr_exclusive))
3311 spin_lock_irqsave(&q->lock, flags);
3312 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3313 spin_unlock_irqrestore(&q->lock, flags);
3315 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3317 void fastcall complete(struct completion *x)
3319 unsigned long flags;
3321 spin_lock_irqsave(&x->wait.lock, flags);
3323 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3325 spin_unlock_irqrestore(&x->wait.lock, flags);
3327 EXPORT_SYMBOL(complete);
3329 void fastcall complete_all(struct completion *x)
3331 unsigned long flags;
3333 spin_lock_irqsave(&x->wait.lock, flags);
3334 x->done += UINT_MAX/2;
3335 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3337 spin_unlock_irqrestore(&x->wait.lock, flags);
3339 EXPORT_SYMBOL(complete_all);
3341 void fastcall __sched wait_for_completion(struct completion *x)
3344 spin_lock_irq(&x->wait.lock);
3346 DECLARE_WAITQUEUE(wait, current);
3348 wait.flags |= WQ_FLAG_EXCLUSIVE;
3349 __add_wait_queue_tail(&x->wait, &wait);
3351 __set_current_state(TASK_UNINTERRUPTIBLE);
3352 spin_unlock_irq(&x->wait.lock);
3354 spin_lock_irq(&x->wait.lock);
3356 __remove_wait_queue(&x->wait, &wait);
3359 spin_unlock_irq(&x->wait.lock);
3361 EXPORT_SYMBOL(wait_for_completion);
3363 unsigned long fastcall __sched
3364 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3368 spin_lock_irq(&x->wait.lock);
3370 DECLARE_WAITQUEUE(wait, current);
3372 wait.flags |= WQ_FLAG_EXCLUSIVE;
3373 __add_wait_queue_tail(&x->wait, &wait);
3375 __set_current_state(TASK_UNINTERRUPTIBLE);
3376 spin_unlock_irq(&x->wait.lock);
3377 timeout = schedule_timeout(timeout);
3378 spin_lock_irq(&x->wait.lock);
3380 __remove_wait_queue(&x->wait, &wait);
3384 __remove_wait_queue(&x->wait, &wait);
3388 spin_unlock_irq(&x->wait.lock);
3391 EXPORT_SYMBOL(wait_for_completion_timeout);
3393 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3399 spin_lock_irq(&x->wait.lock);
3401 DECLARE_WAITQUEUE(wait, current);
3403 wait.flags |= WQ_FLAG_EXCLUSIVE;
3404 __add_wait_queue_tail(&x->wait, &wait);
3406 if (signal_pending(current)) {
3408 __remove_wait_queue(&x->wait, &wait);
3411 __set_current_state(TASK_INTERRUPTIBLE);
3412 spin_unlock_irq(&x->wait.lock);
3414 spin_lock_irq(&x->wait.lock);
3416 __remove_wait_queue(&x->wait, &wait);
3420 spin_unlock_irq(&x->wait.lock);
3424 EXPORT_SYMBOL(wait_for_completion_interruptible);
3426 unsigned long fastcall __sched
3427 wait_for_completion_interruptible_timeout(struct completion *x,
3428 unsigned long timeout)
3432 spin_lock_irq(&x->wait.lock);
3434 DECLARE_WAITQUEUE(wait, current);
3436 wait.flags |= WQ_FLAG_EXCLUSIVE;
3437 __add_wait_queue_tail(&x->wait, &wait);
3439 if (signal_pending(current)) {
3440 timeout = -ERESTARTSYS;
3441 __remove_wait_queue(&x->wait, &wait);
3444 __set_current_state(TASK_INTERRUPTIBLE);
3445 spin_unlock_irq(&x->wait.lock);
3446 timeout = schedule_timeout(timeout);
3447 spin_lock_irq(&x->wait.lock);
3449 __remove_wait_queue(&x->wait, &wait);
3453 __remove_wait_queue(&x->wait, &wait);
3457 spin_unlock_irq(&x->wait.lock);
3460 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3463 #define SLEEP_ON_VAR \
3464 unsigned long flags; \
3465 wait_queue_t wait; \
3466 init_waitqueue_entry(&wait, current);
3468 #define SLEEP_ON_HEAD \
3469 spin_lock_irqsave(&q->lock,flags); \
3470 __add_wait_queue(q, &wait); \
3471 spin_unlock(&q->lock);
3473 #define SLEEP_ON_TAIL \
3474 spin_lock_irq(&q->lock); \
3475 __remove_wait_queue(q, &wait); \
3476 spin_unlock_irqrestore(&q->lock, flags);
3478 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3482 current->state = TASK_INTERRUPTIBLE;
3489 EXPORT_SYMBOL(interruptible_sleep_on);
3491 long fastcall __sched
3492 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3496 current->state = TASK_INTERRUPTIBLE;
3499 timeout = schedule_timeout(timeout);
3505 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3507 void fastcall __sched sleep_on(wait_queue_head_t *q)
3511 current->state = TASK_UNINTERRUPTIBLE;
3518 EXPORT_SYMBOL(sleep_on);
3520 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3524 current->state = TASK_UNINTERRUPTIBLE;
3527 timeout = schedule_timeout(timeout);
3533 EXPORT_SYMBOL(sleep_on_timeout);
3535 void set_user_nice(task_t *p, long nice)
3537 unsigned long flags;
3538 prio_array_t *array;
3540 int old_prio, new_prio, delta;
3542 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3545 * We have to be careful, if called from sys_setpriority(),
3546 * the task might be in the middle of scheduling on another CPU.
3548 rq = task_rq_lock(p, &flags);
3550 * The RT priorities are set via sched_setscheduler(), but we still
3551 * allow the 'normal' nice value to be set - but as expected
3552 * it wont have any effect on scheduling until the task is
3556 p->static_prio = NICE_TO_PRIO(nice);
3561 dequeue_task(p, array);
3562 dec_prio_bias(rq, p->static_prio);
3566 new_prio = NICE_TO_PRIO(nice);
3567 delta = new_prio - old_prio;
3568 p->static_prio = NICE_TO_PRIO(nice);
3572 enqueue_task(p, array);
3573 inc_prio_bias(rq, p->static_prio);
3575 * If the task increased its priority or is running and
3576 * lowered its priority, then reschedule its CPU:
3578 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3579 resched_task(rq->curr);
3582 task_rq_unlock(rq, &flags);
3585 EXPORT_SYMBOL(set_user_nice);
3588 * can_nice - check if a task can reduce its nice value
3592 int can_nice(const task_t *p, const int nice)
3594 /* convert nice value [19,-20] to rlimit style value [1,40] */
3595 int nice_rlim = 20 - nice;
3596 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3597 capable(CAP_SYS_NICE));
3600 #ifdef __ARCH_WANT_SYS_NICE
3603 * sys_nice - change the priority of the current process.
3604 * @increment: priority increment
3606 * sys_setpriority is a more generic, but much slower function that
3607 * does similar things.
3609 asmlinkage long sys_nice(int increment)
3615 * Setpriority might change our priority at the same moment.
3616 * We don't have to worry. Conceptually one call occurs first
3617 * and we have a single winner.
3619 if (increment < -40)
3624 nice = PRIO_TO_NICE(current->static_prio) + increment;
3630 if (increment < 0 && !can_nice(current, nice))
3633 retval = security_task_setnice(current, nice);
3637 set_user_nice(current, nice);
3644 * task_prio - return the priority value of a given task.
3645 * @p: the task in question.
3647 * This is the priority value as seen by users in /proc.
3648 * RT tasks are offset by -200. Normal tasks are centered
3649 * around 0, value goes from -16 to +15.
3651 int task_prio(const task_t *p)
3653 return p->prio - MAX_RT_PRIO;
3657 * task_nice - return the nice value of a given task.
3658 * @p: the task in question.
3660 int task_nice(const task_t *p)
3662 return TASK_NICE(p);
3664 EXPORT_SYMBOL_GPL(task_nice);
3667 * idle_cpu - is a given cpu idle currently?
3668 * @cpu: the processor in question.
3670 int idle_cpu(int cpu)
3672 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3676 * idle_task - return the idle task for a given cpu.
3677 * @cpu: the processor in question.
3679 task_t *idle_task(int cpu)
3681 return cpu_rq(cpu)->idle;
3685 * find_process_by_pid - find a process with a matching PID value.
3686 * @pid: the pid in question.
3688 static inline task_t *find_process_by_pid(pid_t pid)
3690 return pid ? find_task_by_pid(pid) : current;
3693 /* Actually do priority change: must hold rq lock. */
3694 static void __setscheduler(struct task_struct *p, int policy, int prio)
3698 p->rt_priority = prio;
3699 if (policy != SCHED_NORMAL)
3700 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3702 p->prio = p->static_prio;
3706 * sched_setscheduler - change the scheduling policy and/or RT priority of
3708 * @p: the task in question.
3709 * @policy: new policy.
3710 * @param: structure containing the new RT priority.
3712 int sched_setscheduler(struct task_struct *p, int policy,
3713 struct sched_param *param)
3716 int oldprio, oldpolicy = -1;
3717 prio_array_t *array;
3718 unsigned long flags;
3722 /* double check policy once rq lock held */
3724 policy = oldpolicy = p->policy;
3725 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3726 policy != SCHED_NORMAL)
3729 * Valid priorities for SCHED_FIFO and SCHED_RR are
3730 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3732 if (param->sched_priority < 0 ||
3733 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3734 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3736 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3740 * Allow unprivileged RT tasks to decrease priority:
3742 if (!capable(CAP_SYS_NICE)) {
3743 /* can't change policy */
3744 if (policy != p->policy &&
3745 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3747 /* can't increase priority */
3748 if (policy != SCHED_NORMAL &&
3749 param->sched_priority > p->rt_priority &&
3750 param->sched_priority >
3751 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3753 /* can't change other user's priorities */
3754 if ((current->euid != p->euid) &&
3755 (current->euid != p->uid))
3759 retval = security_task_setscheduler(p, policy, param);
3763 * To be able to change p->policy safely, the apropriate
3764 * runqueue lock must be held.
3766 rq = task_rq_lock(p, &flags);
3767 /* recheck policy now with rq lock held */
3768 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3769 policy = oldpolicy = -1;
3770 task_rq_unlock(rq, &flags);
3775 deactivate_task(p, rq);
3777 __setscheduler(p, policy, param->sched_priority);
3779 __activate_task(p, rq);
3781 * Reschedule if we are currently running on this runqueue and
3782 * our priority decreased, or if we are not currently running on
3783 * this runqueue and our priority is higher than the current's
3785 if (task_running(rq, p)) {
3786 if (p->prio > oldprio)
3787 resched_task(rq->curr);
3788 } else if (TASK_PREEMPTS_CURR(p, rq))
3789 resched_task(rq->curr);
3791 task_rq_unlock(rq, &flags);
3794 EXPORT_SYMBOL_GPL(sched_setscheduler);
3797 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3800 struct sched_param lparam;
3801 struct task_struct *p;
3803 if (!param || pid < 0)
3805 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3807 read_lock_irq(&tasklist_lock);
3808 p = find_process_by_pid(pid);
3810 read_unlock_irq(&tasklist_lock);
3813 retval = sched_setscheduler(p, policy, &lparam);
3814 read_unlock_irq(&tasklist_lock);
3819 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3820 * @pid: the pid in question.
3821 * @policy: new policy.
3822 * @param: structure containing the new RT priority.
3824 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3825 struct sched_param __user *param)
3827 return do_sched_setscheduler(pid, policy, param);
3831 * sys_sched_setparam - set/change the RT priority of a thread
3832 * @pid: the pid in question.
3833 * @param: structure containing the new RT priority.
3835 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3837 return do_sched_setscheduler(pid, -1, param);
3841 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3842 * @pid: the pid in question.
3844 asmlinkage long sys_sched_getscheduler(pid_t pid)
3846 int retval = -EINVAL;
3853 read_lock(&tasklist_lock);
3854 p = find_process_by_pid(pid);
3856 retval = security_task_getscheduler(p);
3860 read_unlock(&tasklist_lock);
3867 * sys_sched_getscheduler - get the RT priority of a thread
3868 * @pid: the pid in question.
3869 * @param: structure containing the RT priority.
3871 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3873 struct sched_param lp;
3874 int retval = -EINVAL;
3877 if (!param || pid < 0)
3880 read_lock(&tasklist_lock);
3881 p = find_process_by_pid(pid);
3886 retval = security_task_getscheduler(p);
3890 lp.sched_priority = p->rt_priority;
3891 read_unlock(&tasklist_lock);
3894 * This one might sleep, we cannot do it with a spinlock held ...
3896 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3902 read_unlock(&tasklist_lock);
3906 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3910 cpumask_t cpus_allowed;
3913 read_lock(&tasklist_lock);
3915 p = find_process_by_pid(pid);
3917 read_unlock(&tasklist_lock);
3918 unlock_cpu_hotplug();
3923 * It is not safe to call set_cpus_allowed with the
3924 * tasklist_lock held. We will bump the task_struct's
3925 * usage count and then drop tasklist_lock.
3928 read_unlock(&tasklist_lock);
3931 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3932 !capable(CAP_SYS_NICE))
3935 cpus_allowed = cpuset_cpus_allowed(p);
3936 cpus_and(new_mask, new_mask, cpus_allowed);
3937 retval = set_cpus_allowed(p, new_mask);
3941 unlock_cpu_hotplug();
3945 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3946 cpumask_t *new_mask)
3948 if (len < sizeof(cpumask_t)) {
3949 memset(new_mask, 0, sizeof(cpumask_t));
3950 } else if (len > sizeof(cpumask_t)) {
3951 len = sizeof(cpumask_t);
3953 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3957 * sys_sched_setaffinity - set the cpu affinity of a process
3958 * @pid: pid of the process
3959 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3960 * @user_mask_ptr: user-space pointer to the new cpu mask
3962 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3963 unsigned long __user *user_mask_ptr)
3968 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3972 return sched_setaffinity(pid, new_mask);
3976 * Represents all cpu's present in the system
3977 * In systems capable of hotplug, this map could dynamically grow
3978 * as new cpu's are detected in the system via any platform specific
3979 * method, such as ACPI for e.g.
3982 cpumask_t cpu_present_map;
3983 EXPORT_SYMBOL(cpu_present_map);
3986 cpumask_t cpu_online_map = CPU_MASK_ALL;
3987 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3990 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3996 read_lock(&tasklist_lock);
3999 p = find_process_by_pid(pid);
4004 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
4007 read_unlock(&tasklist_lock);
4008 unlock_cpu_hotplug();
4016 * sys_sched_getaffinity - get the cpu affinity of a process
4017 * @pid: pid of the process
4018 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4019 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4021 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4022 unsigned long __user *user_mask_ptr)
4027 if (len < sizeof(cpumask_t))
4030 ret = sched_getaffinity(pid, &mask);
4034 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4037 return sizeof(cpumask_t);
4041 * sys_sched_yield - yield the current processor to other threads.
4043 * this function yields the current CPU by moving the calling thread
4044 * to the expired array. If there are no other threads running on this
4045 * CPU then this function will return.
4047 asmlinkage long sys_sched_yield(void)
4049 runqueue_t *rq = this_rq_lock();
4050 prio_array_t *array = current->array;
4051 prio_array_t *target = rq->expired;
4053 schedstat_inc(rq, yld_cnt);
4055 * We implement yielding by moving the task into the expired
4058 * (special rule: RT tasks will just roundrobin in the active
4061 if (rt_task(current))
4062 target = rq->active;
4064 if (array->nr_active == 1) {
4065 schedstat_inc(rq, yld_act_empty);
4066 if (!rq->expired->nr_active)
4067 schedstat_inc(rq, yld_both_empty);
4068 } else if (!rq->expired->nr_active)
4069 schedstat_inc(rq, yld_exp_empty);
4071 if (array != target) {
4072 dequeue_task(current, array);
4073 enqueue_task(current, target);
4076 * requeue_task is cheaper so perform that if possible.
4078 requeue_task(current, array);
4081 * Since we are going to call schedule() anyway, there's
4082 * no need to preempt or enable interrupts:
4084 __release(rq->lock);
4085 _raw_spin_unlock(&rq->lock);
4086 preempt_enable_no_resched();
4093 static inline void __cond_resched(void)
4096 * The BKS might be reacquired before we have dropped
4097 * PREEMPT_ACTIVE, which could trigger a second
4098 * cond_resched() call.
4100 if (unlikely(preempt_count()))
4103 add_preempt_count(PREEMPT_ACTIVE);
4105 sub_preempt_count(PREEMPT_ACTIVE);
4106 } while (need_resched());
4109 int __sched cond_resched(void)
4111 if (need_resched()) {
4118 EXPORT_SYMBOL(cond_resched);
4121 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4122 * call schedule, and on return reacquire the lock.
4124 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4125 * operations here to prevent schedule() from being called twice (once via
4126 * spin_unlock(), once by hand).
4128 int cond_resched_lock(spinlock_t *lock)
4132 if (need_lockbreak(lock)) {
4138 if (need_resched()) {
4139 _raw_spin_unlock(lock);
4140 preempt_enable_no_resched();
4148 EXPORT_SYMBOL(cond_resched_lock);
4150 int __sched cond_resched_softirq(void)
4152 BUG_ON(!in_softirq());
4154 if (need_resched()) {
4155 __local_bh_enable();
4163 EXPORT_SYMBOL(cond_resched_softirq);
4167 * yield - yield the current processor to other threads.
4169 * this is a shortcut for kernel-space yielding - it marks the
4170 * thread runnable and calls sys_sched_yield().
4172 void __sched yield(void)
4174 set_current_state(TASK_RUNNING);
4178 EXPORT_SYMBOL(yield);
4181 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4182 * that process accounting knows that this is a task in IO wait state.
4184 * But don't do that if it is a deliberate, throttling IO wait (this task
4185 * has set its backing_dev_info: the queue against which it should throttle)
4187 void __sched io_schedule(void)
4189 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4191 atomic_inc(&rq->nr_iowait);
4193 atomic_dec(&rq->nr_iowait);
4196 EXPORT_SYMBOL(io_schedule);
4198 long __sched io_schedule_timeout(long timeout)
4200 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4203 atomic_inc(&rq->nr_iowait);
4204 ret = schedule_timeout(timeout);
4205 atomic_dec(&rq->nr_iowait);
4210 * sys_sched_get_priority_max - return maximum RT priority.
4211 * @policy: scheduling class.
4213 * this syscall returns the maximum rt_priority that can be used
4214 * by a given scheduling class.
4216 asmlinkage long sys_sched_get_priority_max(int policy)
4223 ret = MAX_USER_RT_PRIO-1;
4233 * sys_sched_get_priority_min - return minimum RT priority.
4234 * @policy: scheduling class.
4236 * this syscall returns the minimum rt_priority that can be used
4237 * by a given scheduling class.
4239 asmlinkage long sys_sched_get_priority_min(int policy)
4255 * sys_sched_rr_get_interval - return the default timeslice of a process.
4256 * @pid: pid of the process.
4257 * @interval: userspace pointer to the timeslice value.
4259 * this syscall writes the default timeslice value of a given process
4260 * into the user-space timespec buffer. A value of '0' means infinity.
4263 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4265 int retval = -EINVAL;
4273 read_lock(&tasklist_lock);
4274 p = find_process_by_pid(pid);
4278 retval = security_task_getscheduler(p);
4282 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4283 0 : task_timeslice(p), &t);
4284 read_unlock(&tasklist_lock);
4285 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4289 read_unlock(&tasklist_lock);
4293 static inline struct task_struct *eldest_child(struct task_struct *p)
4295 if (list_empty(&p->children)) return NULL;
4296 return list_entry(p->children.next,struct task_struct,sibling);
4299 static inline struct task_struct *older_sibling(struct task_struct *p)
4301 if (p->sibling.prev==&p->parent->children) return NULL;
4302 return list_entry(p->sibling.prev,struct task_struct,sibling);
4305 static inline struct task_struct *younger_sibling(struct task_struct *p)
4307 if (p->sibling.next==&p->parent->children) return NULL;
4308 return list_entry(p->sibling.next,struct task_struct,sibling);
4311 static void show_task(task_t *p)
4315 unsigned long free = 0;
4316 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4318 printk("%-13.13s ", p->comm);
4319 state = p->state ? __ffs(p->state) + 1 : 0;
4320 if (state < ARRAY_SIZE(stat_nam))
4321 printk(stat_nam[state]);
4324 #if (BITS_PER_LONG == 32)
4325 if (state == TASK_RUNNING)
4326 printk(" running ");
4328 printk(" %08lX ", thread_saved_pc(p));
4330 if (state == TASK_RUNNING)
4331 printk(" running task ");
4333 printk(" %016lx ", thread_saved_pc(p));
4335 #ifdef CONFIG_DEBUG_STACK_USAGE
4337 unsigned long *n = end_of_stack(p);
4340 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4343 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4344 if ((relative = eldest_child(p)))
4345 printk("%5d ", relative->pid);
4348 if ((relative = younger_sibling(p)))
4349 printk("%7d", relative->pid);
4352 if ((relative = older_sibling(p)))
4353 printk(" %5d", relative->pid);
4357 printk(" (L-TLB)\n");
4359 printk(" (NOTLB)\n");
4361 if (state != TASK_RUNNING)
4362 show_stack(p, NULL);
4365 void show_state(void)
4369 #if (BITS_PER_LONG == 32)
4372 printk(" task PC pid father child younger older\n");
4376 printk(" task PC pid father child younger older\n");
4378 read_lock(&tasklist_lock);
4379 do_each_thread(g, p) {
4381 * reset the NMI-timeout, listing all files on a slow
4382 * console might take alot of time:
4384 touch_nmi_watchdog();
4386 } while_each_thread(g, p);
4388 read_unlock(&tasklist_lock);
4389 mutex_debug_show_all_locks();
4393 * init_idle - set up an idle thread for a given CPU
4394 * @idle: task in question
4395 * @cpu: cpu the idle task belongs to
4397 * NOTE: this function does not set the idle thread's NEED_RESCHED
4398 * flag, to make booting more robust.
4400 void __devinit init_idle(task_t *idle, int cpu)
4402 runqueue_t *rq = cpu_rq(cpu);
4403 unsigned long flags;
4405 idle->sleep_avg = 0;
4407 idle->prio = MAX_PRIO;
4408 idle->state = TASK_RUNNING;
4409 idle->cpus_allowed = cpumask_of_cpu(cpu);
4410 set_task_cpu(idle, cpu);
4412 spin_lock_irqsave(&rq->lock, flags);
4413 rq->curr = rq->idle = idle;
4414 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4417 spin_unlock_irqrestore(&rq->lock, flags);
4419 /* Set the preempt count _outside_ the spinlocks! */
4420 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4421 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4423 task_thread_info(idle)->preempt_count = 0;
4428 * In a system that switches off the HZ timer nohz_cpu_mask
4429 * indicates which cpus entered this state. This is used
4430 * in the rcu update to wait only for active cpus. For system
4431 * which do not switch off the HZ timer nohz_cpu_mask should
4432 * always be CPU_MASK_NONE.
4434 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4438 * This is how migration works:
4440 * 1) we queue a migration_req_t structure in the source CPU's
4441 * runqueue and wake up that CPU's migration thread.
4442 * 2) we down() the locked semaphore => thread blocks.
4443 * 3) migration thread wakes up (implicitly it forces the migrated
4444 * thread off the CPU)
4445 * 4) it gets the migration request and checks whether the migrated
4446 * task is still in the wrong runqueue.
4447 * 5) if it's in the wrong runqueue then the migration thread removes
4448 * it and puts it into the right queue.
4449 * 6) migration thread up()s the semaphore.
4450 * 7) we wake up and the migration is done.
4454 * Change a given task's CPU affinity. Migrate the thread to a
4455 * proper CPU and schedule it away if the CPU it's executing on
4456 * is removed from the allowed bitmask.
4458 * NOTE: the caller must have a valid reference to the task, the
4459 * task must not exit() & deallocate itself prematurely. The
4460 * call is not atomic; no spinlocks may be held.
4462 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4464 unsigned long flags;
4466 migration_req_t req;
4469 rq = task_rq_lock(p, &flags);
4470 if (!cpus_intersects(new_mask, cpu_online_map)) {
4475 p->cpus_allowed = new_mask;
4476 /* Can the task run on the task's current CPU? If so, we're done */
4477 if (cpu_isset(task_cpu(p), new_mask))
4480 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4481 /* Need help from migration thread: drop lock and wait. */
4482 task_rq_unlock(rq, &flags);
4483 wake_up_process(rq->migration_thread);
4484 wait_for_completion(&req.done);
4485 tlb_migrate_finish(p->mm);
4489 task_rq_unlock(rq, &flags);
4493 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4496 * Move (not current) task off this cpu, onto dest cpu. We're doing
4497 * this because either it can't run here any more (set_cpus_allowed()
4498 * away from this CPU, or CPU going down), or because we're
4499 * attempting to rebalance this task on exec (sched_exec).
4501 * So we race with normal scheduler movements, but that's OK, as long
4502 * as the task is no longer on this CPU.
4504 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4506 runqueue_t *rq_dest, *rq_src;
4508 if (unlikely(cpu_is_offline(dest_cpu)))
4511 rq_src = cpu_rq(src_cpu);
4512 rq_dest = cpu_rq(dest_cpu);
4514 double_rq_lock(rq_src, rq_dest);
4515 /* Already moved. */
4516 if (task_cpu(p) != src_cpu)
4518 /* Affinity changed (again). */
4519 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4522 set_task_cpu(p, dest_cpu);
4525 * Sync timestamp with rq_dest's before activating.
4526 * The same thing could be achieved by doing this step
4527 * afterwards, and pretending it was a local activate.
4528 * This way is cleaner and logically correct.
4530 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4531 + rq_dest->timestamp_last_tick;
4532 deactivate_task(p, rq_src);
4533 activate_task(p, rq_dest, 0);
4534 if (TASK_PREEMPTS_CURR(p, rq_dest))
4535 resched_task(rq_dest->curr);
4539 double_rq_unlock(rq_src, rq_dest);
4543 * migration_thread - this is a highprio system thread that performs
4544 * thread migration by bumping thread off CPU then 'pushing' onto
4547 static int migration_thread(void *data)
4550 int cpu = (long)data;
4553 BUG_ON(rq->migration_thread != current);
4555 set_current_state(TASK_INTERRUPTIBLE);
4556 while (!kthread_should_stop()) {
4557 struct list_head *head;
4558 migration_req_t *req;
4562 spin_lock_irq(&rq->lock);
4564 if (cpu_is_offline(cpu)) {
4565 spin_unlock_irq(&rq->lock);
4569 if (rq->active_balance) {
4570 active_load_balance(rq, cpu);
4571 rq->active_balance = 0;
4574 head = &rq->migration_queue;
4576 if (list_empty(head)) {
4577 spin_unlock_irq(&rq->lock);
4579 set_current_state(TASK_INTERRUPTIBLE);
4582 req = list_entry(head->next, migration_req_t, list);
4583 list_del_init(head->next);
4585 spin_unlock(&rq->lock);
4586 __migrate_task(req->task, cpu, req->dest_cpu);
4589 complete(&req->done);
4591 __set_current_state(TASK_RUNNING);
4595 /* Wait for kthread_stop */
4596 set_current_state(TASK_INTERRUPTIBLE);
4597 while (!kthread_should_stop()) {
4599 set_current_state(TASK_INTERRUPTIBLE);
4601 __set_current_state(TASK_RUNNING);
4605 #ifdef CONFIG_HOTPLUG_CPU
4606 /* Figure out where task on dead CPU should go, use force if neccessary. */
4607 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4613 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4614 cpus_and(mask, mask, tsk->cpus_allowed);
4615 dest_cpu = any_online_cpu(mask);
4617 /* On any allowed CPU? */
4618 if (dest_cpu == NR_CPUS)
4619 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4621 /* No more Mr. Nice Guy. */
4622 if (dest_cpu == NR_CPUS) {
4623 cpus_setall(tsk->cpus_allowed);
4624 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4627 * Don't tell them about moving exiting tasks or
4628 * kernel threads (both mm NULL), since they never
4631 if (tsk->mm && printk_ratelimit())
4632 printk(KERN_INFO "process %d (%s) no "
4633 "longer affine to cpu%d\n",
4634 tsk->pid, tsk->comm, dead_cpu);
4636 __migrate_task(tsk, dead_cpu, dest_cpu);
4640 * While a dead CPU has no uninterruptible tasks queued at this point,
4641 * it might still have a nonzero ->nr_uninterruptible counter, because
4642 * for performance reasons the counter is not stricly tracking tasks to
4643 * their home CPUs. So we just add the counter to another CPU's counter,
4644 * to keep the global sum constant after CPU-down:
4646 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4648 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4649 unsigned long flags;
4651 local_irq_save(flags);
4652 double_rq_lock(rq_src, rq_dest);
4653 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4654 rq_src->nr_uninterruptible = 0;
4655 double_rq_unlock(rq_src, rq_dest);
4656 local_irq_restore(flags);
4659 /* Run through task list and migrate tasks from the dead cpu. */
4660 static void migrate_live_tasks(int src_cpu)
4662 struct task_struct *tsk, *t;
4664 write_lock_irq(&tasklist_lock);
4666 do_each_thread(t, tsk) {
4670 if (task_cpu(tsk) == src_cpu)
4671 move_task_off_dead_cpu(src_cpu, tsk);
4672 } while_each_thread(t, tsk);
4674 write_unlock_irq(&tasklist_lock);
4677 /* Schedules idle task to be the next runnable task on current CPU.
4678 * It does so by boosting its priority to highest possible and adding it to
4679 * the _front_ of runqueue. Used by CPU offline code.
4681 void sched_idle_next(void)
4683 int cpu = smp_processor_id();
4684 runqueue_t *rq = this_rq();
4685 struct task_struct *p = rq->idle;
4686 unsigned long flags;
4688 /* cpu has to be offline */
4689 BUG_ON(cpu_online(cpu));
4691 /* Strictly not necessary since rest of the CPUs are stopped by now
4692 * and interrupts disabled on current cpu.
4694 spin_lock_irqsave(&rq->lock, flags);
4696 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4697 /* Add idle task to _front_ of it's priority queue */
4698 __activate_idle_task(p, rq);
4700 spin_unlock_irqrestore(&rq->lock, flags);
4703 /* Ensures that the idle task is using init_mm right before its cpu goes
4706 void idle_task_exit(void)
4708 struct mm_struct *mm = current->active_mm;
4710 BUG_ON(cpu_online(smp_processor_id()));
4713 switch_mm(mm, &init_mm, current);
4717 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4719 struct runqueue *rq = cpu_rq(dead_cpu);
4721 /* Must be exiting, otherwise would be on tasklist. */
4722 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4724 /* Cannot have done final schedule yet: would have vanished. */
4725 BUG_ON(tsk->flags & PF_DEAD);
4727 get_task_struct(tsk);
4730 * Drop lock around migration; if someone else moves it,
4731 * that's OK. No task can be added to this CPU, so iteration is
4734 spin_unlock_irq(&rq->lock);
4735 move_task_off_dead_cpu(dead_cpu, tsk);
4736 spin_lock_irq(&rq->lock);
4738 put_task_struct(tsk);
4741 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4742 static void migrate_dead_tasks(unsigned int dead_cpu)
4745 struct runqueue *rq = cpu_rq(dead_cpu);
4747 for (arr = 0; arr < 2; arr++) {
4748 for (i = 0; i < MAX_PRIO; i++) {
4749 struct list_head *list = &rq->arrays[arr].queue[i];
4750 while (!list_empty(list))
4751 migrate_dead(dead_cpu,
4752 list_entry(list->next, task_t,
4757 #endif /* CONFIG_HOTPLUG_CPU */
4760 * migration_call - callback that gets triggered when a CPU is added.
4761 * Here we can start up the necessary migration thread for the new CPU.
4763 static int migration_call(struct notifier_block *nfb, unsigned long action,
4766 int cpu = (long)hcpu;
4767 struct task_struct *p;
4768 struct runqueue *rq;
4769 unsigned long flags;
4772 case CPU_UP_PREPARE:
4773 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4776 p->flags |= PF_NOFREEZE;
4777 kthread_bind(p, cpu);
4778 /* Must be high prio: stop_machine expects to yield to it. */
4779 rq = task_rq_lock(p, &flags);
4780 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4781 task_rq_unlock(rq, &flags);
4782 cpu_rq(cpu)->migration_thread = p;
4785 /* Strictly unneccessary, as first user will wake it. */
4786 wake_up_process(cpu_rq(cpu)->migration_thread);
4788 #ifdef CONFIG_HOTPLUG_CPU
4789 case CPU_UP_CANCELED:
4790 /* Unbind it from offline cpu so it can run. Fall thru. */
4791 kthread_bind(cpu_rq(cpu)->migration_thread,
4792 any_online_cpu(cpu_online_map));
4793 kthread_stop(cpu_rq(cpu)->migration_thread);
4794 cpu_rq(cpu)->migration_thread = NULL;
4797 migrate_live_tasks(cpu);
4799 kthread_stop(rq->migration_thread);
4800 rq->migration_thread = NULL;
4801 /* Idle task back to normal (off runqueue, low prio) */
4802 rq = task_rq_lock(rq->idle, &flags);
4803 deactivate_task(rq->idle, rq);
4804 rq->idle->static_prio = MAX_PRIO;
4805 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4806 migrate_dead_tasks(cpu);
4807 task_rq_unlock(rq, &flags);
4808 migrate_nr_uninterruptible(rq);
4809 BUG_ON(rq->nr_running != 0);
4811 /* No need to migrate the tasks: it was best-effort if
4812 * they didn't do lock_cpu_hotplug(). Just wake up
4813 * the requestors. */
4814 spin_lock_irq(&rq->lock);
4815 while (!list_empty(&rq->migration_queue)) {
4816 migration_req_t *req;
4817 req = list_entry(rq->migration_queue.next,
4818 migration_req_t, list);
4819 list_del_init(&req->list);
4820 complete(&req->done);
4822 spin_unlock_irq(&rq->lock);
4829 /* Register at highest priority so that task migration (migrate_all_tasks)
4830 * happens before everything else.
4832 static struct notifier_block __devinitdata migration_notifier = {
4833 .notifier_call = migration_call,
4837 int __init migration_init(void)
4839 void *cpu = (void *)(long)smp_processor_id();
4840 /* Start one for boot CPU. */
4841 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4842 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4843 register_cpu_notifier(&migration_notifier);
4849 #undef SCHED_DOMAIN_DEBUG
4850 #ifdef SCHED_DOMAIN_DEBUG
4851 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4856 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4860 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4865 struct sched_group *group = sd->groups;
4866 cpumask_t groupmask;
4868 cpumask_scnprintf(str, NR_CPUS, sd->span);
4869 cpus_clear(groupmask);
4872 for (i = 0; i < level + 1; i++)
4874 printk("domain %d: ", level);
4876 if (!(sd->flags & SD_LOAD_BALANCE)) {
4877 printk("does not load-balance\n");
4879 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4883 printk("span %s\n", str);
4885 if (!cpu_isset(cpu, sd->span))
4886 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4887 if (!cpu_isset(cpu, group->cpumask))
4888 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4891 for (i = 0; i < level + 2; i++)
4897 printk(KERN_ERR "ERROR: group is NULL\n");
4901 if (!group->cpu_power) {
4903 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4906 if (!cpus_weight(group->cpumask)) {
4908 printk(KERN_ERR "ERROR: empty group\n");
4911 if (cpus_intersects(groupmask, group->cpumask)) {
4913 printk(KERN_ERR "ERROR: repeated CPUs\n");
4916 cpus_or(groupmask, groupmask, group->cpumask);
4918 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4921 group = group->next;
4922 } while (group != sd->groups);
4925 if (!cpus_equal(sd->span, groupmask))
4926 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4932 if (!cpus_subset(groupmask, sd->span))
4933 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4939 #define sched_domain_debug(sd, cpu) {}
4942 static int sd_degenerate(struct sched_domain *sd)
4944 if (cpus_weight(sd->span) == 1)
4947 /* Following flags need at least 2 groups */
4948 if (sd->flags & (SD_LOAD_BALANCE |
4949 SD_BALANCE_NEWIDLE |
4952 if (sd->groups != sd->groups->next)
4956 /* Following flags don't use groups */
4957 if (sd->flags & (SD_WAKE_IDLE |
4965 static int sd_parent_degenerate(struct sched_domain *sd,
4966 struct sched_domain *parent)
4968 unsigned long cflags = sd->flags, pflags = parent->flags;
4970 if (sd_degenerate(parent))
4973 if (!cpus_equal(sd->span, parent->span))
4976 /* Does parent contain flags not in child? */
4977 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4978 if (cflags & SD_WAKE_AFFINE)
4979 pflags &= ~SD_WAKE_BALANCE;
4980 /* Flags needing groups don't count if only 1 group in parent */
4981 if (parent->groups == parent->groups->next) {
4982 pflags &= ~(SD_LOAD_BALANCE |
4983 SD_BALANCE_NEWIDLE |
4987 if (~cflags & pflags)
4994 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4995 * hold the hotplug lock.
4997 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4999 runqueue_t *rq = cpu_rq(cpu);
5000 struct sched_domain *tmp;
5002 /* Remove the sched domains which do not contribute to scheduling. */
5003 for (tmp = sd; tmp; tmp = tmp->parent) {
5004 struct sched_domain *parent = tmp->parent;
5007 if (sd_parent_degenerate(tmp, parent))
5008 tmp->parent = parent->parent;
5011 if (sd && sd_degenerate(sd))
5014 sched_domain_debug(sd, cpu);
5016 rcu_assign_pointer(rq->sd, sd);
5019 /* cpus with isolated domains */
5020 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
5022 /* Setup the mask of cpus configured for isolated domains */
5023 static int __init isolated_cpu_setup(char *str)
5025 int ints[NR_CPUS], i;
5027 str = get_options(str, ARRAY_SIZE(ints), ints);
5028 cpus_clear(cpu_isolated_map);
5029 for (i = 1; i <= ints[0]; i++)
5030 if (ints[i] < NR_CPUS)
5031 cpu_set(ints[i], cpu_isolated_map);
5035 __setup ("isolcpus=", isolated_cpu_setup);
5038 * init_sched_build_groups takes an array of groups, the cpumask we wish
5039 * to span, and a pointer to a function which identifies what group a CPU
5040 * belongs to. The return value of group_fn must be a valid index into the
5041 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5042 * keep track of groups covered with a cpumask_t).
5044 * init_sched_build_groups will build a circular linked list of the groups
5045 * covered by the given span, and will set each group's ->cpumask correctly,
5046 * and ->cpu_power to 0.
5048 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5049 int (*group_fn)(int cpu))
5051 struct sched_group *first = NULL, *last = NULL;
5052 cpumask_t covered = CPU_MASK_NONE;
5055 for_each_cpu_mask(i, span) {
5056 int group = group_fn(i);
5057 struct sched_group *sg = &groups[group];
5060 if (cpu_isset(i, covered))
5063 sg->cpumask = CPU_MASK_NONE;
5066 for_each_cpu_mask(j, span) {
5067 if (group_fn(j) != group)
5070 cpu_set(j, covered);
5071 cpu_set(j, sg->cpumask);
5082 #define SD_NODES_PER_DOMAIN 16
5086 * find_next_best_node - find the next node to include in a sched_domain
5087 * @node: node whose sched_domain we're building
5088 * @used_nodes: nodes already in the sched_domain
5090 * Find the next node to include in a given scheduling domain. Simply
5091 * finds the closest node not already in the @used_nodes map.
5093 * Should use nodemask_t.
5095 static int find_next_best_node(int node, unsigned long *used_nodes)
5097 int i, n, val, min_val, best_node = 0;
5101 for (i = 0; i < MAX_NUMNODES; i++) {
5102 /* Start at @node */
5103 n = (node + i) % MAX_NUMNODES;
5105 if (!nr_cpus_node(n))
5108 /* Skip already used nodes */
5109 if (test_bit(n, used_nodes))
5112 /* Simple min distance search */
5113 val = node_distance(node, n);
5115 if (val < min_val) {
5121 set_bit(best_node, used_nodes);
5126 * sched_domain_node_span - get a cpumask for a node's sched_domain
5127 * @node: node whose cpumask we're constructing
5128 * @size: number of nodes to include in this span
5130 * Given a node, construct a good cpumask for its sched_domain to span. It
5131 * should be one that prevents unnecessary balancing, but also spreads tasks
5134 static cpumask_t sched_domain_node_span(int node)
5137 cpumask_t span, nodemask;
5138 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5141 bitmap_zero(used_nodes, MAX_NUMNODES);
5143 nodemask = node_to_cpumask(node);
5144 cpus_or(span, span, nodemask);
5145 set_bit(node, used_nodes);
5147 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5148 int next_node = find_next_best_node(node, used_nodes);
5149 nodemask = node_to_cpumask(next_node);
5150 cpus_or(span, span, nodemask);
5158 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5159 * can switch it on easily if needed.
5161 #ifdef CONFIG_SCHED_SMT
5162 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5163 static struct sched_group sched_group_cpus[NR_CPUS];
5164 static int cpu_to_cpu_group(int cpu)
5170 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5171 static struct sched_group sched_group_phys[NR_CPUS];
5172 static int cpu_to_phys_group(int cpu)
5174 #ifdef CONFIG_SCHED_SMT
5175 return first_cpu(cpu_sibling_map[cpu]);
5183 * The init_sched_build_groups can't handle what we want to do with node
5184 * groups, so roll our own. Now each node has its own list of groups which
5185 * gets dynamically allocated.
5187 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5188 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5190 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5191 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5193 static int cpu_to_allnodes_group(int cpu)
5195 return cpu_to_node(cpu);
5200 * Build sched domains for a given set of cpus and attach the sched domains
5201 * to the individual cpus
5203 void build_sched_domains(const cpumask_t *cpu_map)
5207 struct sched_group **sched_group_nodes = NULL;
5208 struct sched_group *sched_group_allnodes = NULL;
5211 * Allocate the per-node list of sched groups
5213 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5215 if (!sched_group_nodes) {
5216 printk(KERN_WARNING "Can not alloc sched group node list\n");
5219 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5223 * Set up domains for cpus specified by the cpu_map.
5225 for_each_cpu_mask(i, *cpu_map) {
5227 struct sched_domain *sd = NULL, *p;
5228 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5230 cpus_and(nodemask, nodemask, *cpu_map);
5233 if (cpus_weight(*cpu_map)
5234 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5235 if (!sched_group_allnodes) {
5236 sched_group_allnodes
5237 = kmalloc(sizeof(struct sched_group)
5240 if (!sched_group_allnodes) {
5242 "Can not alloc allnodes sched group\n");
5245 sched_group_allnodes_bycpu[i]
5246 = sched_group_allnodes;
5248 sd = &per_cpu(allnodes_domains, i);
5249 *sd = SD_ALLNODES_INIT;
5250 sd->span = *cpu_map;
5251 group = cpu_to_allnodes_group(i);
5252 sd->groups = &sched_group_allnodes[group];
5257 sd = &per_cpu(node_domains, i);
5259 sd->span = sched_domain_node_span(cpu_to_node(i));
5261 cpus_and(sd->span, sd->span, *cpu_map);
5265 sd = &per_cpu(phys_domains, i);
5266 group = cpu_to_phys_group(i);
5268 sd->span = nodemask;
5270 sd->groups = &sched_group_phys[group];
5272 #ifdef CONFIG_SCHED_SMT
5274 sd = &per_cpu(cpu_domains, i);
5275 group = cpu_to_cpu_group(i);
5276 *sd = SD_SIBLING_INIT;
5277 sd->span = cpu_sibling_map[i];
5278 cpus_and(sd->span, sd->span, *cpu_map);
5280 sd->groups = &sched_group_cpus[group];
5284 #ifdef CONFIG_SCHED_SMT
5285 /* Set up CPU (sibling) groups */
5286 for_each_cpu_mask(i, *cpu_map) {
5287 cpumask_t this_sibling_map = cpu_sibling_map[i];
5288 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5289 if (i != first_cpu(this_sibling_map))
5292 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5297 /* Set up physical groups */
5298 for (i = 0; i < MAX_NUMNODES; i++) {
5299 cpumask_t nodemask = node_to_cpumask(i);
5301 cpus_and(nodemask, nodemask, *cpu_map);
5302 if (cpus_empty(nodemask))
5305 init_sched_build_groups(sched_group_phys, nodemask,
5306 &cpu_to_phys_group);
5310 /* Set up node groups */
5311 if (sched_group_allnodes)
5312 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5313 &cpu_to_allnodes_group);
5315 for (i = 0; i < MAX_NUMNODES; i++) {
5316 /* Set up node groups */
5317 struct sched_group *sg, *prev;
5318 cpumask_t nodemask = node_to_cpumask(i);
5319 cpumask_t domainspan;
5320 cpumask_t covered = CPU_MASK_NONE;
5323 cpus_and(nodemask, nodemask, *cpu_map);
5324 if (cpus_empty(nodemask)) {
5325 sched_group_nodes[i] = NULL;
5329 domainspan = sched_domain_node_span(i);
5330 cpus_and(domainspan, domainspan, *cpu_map);
5332 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5333 sched_group_nodes[i] = sg;
5334 for_each_cpu_mask(j, nodemask) {
5335 struct sched_domain *sd;
5336 sd = &per_cpu(node_domains, j);
5338 if (sd->groups == NULL) {
5339 /* Turn off balancing if we have no groups */
5345 "Can not alloc domain group for node %d\n", i);
5349 sg->cpumask = nodemask;
5350 cpus_or(covered, covered, nodemask);
5353 for (j = 0; j < MAX_NUMNODES; j++) {
5354 cpumask_t tmp, notcovered;
5355 int n = (i + j) % MAX_NUMNODES;
5357 cpus_complement(notcovered, covered);
5358 cpus_and(tmp, notcovered, *cpu_map);
5359 cpus_and(tmp, tmp, domainspan);
5360 if (cpus_empty(tmp))
5363 nodemask = node_to_cpumask(n);
5364 cpus_and(tmp, tmp, nodemask);
5365 if (cpus_empty(tmp))
5368 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5371 "Can not alloc domain group for node %d\n", j);
5376 cpus_or(covered, covered, tmp);
5380 prev->next = sched_group_nodes[i];
5384 /* Calculate CPU power for physical packages and nodes */
5385 for_each_cpu_mask(i, *cpu_map) {
5387 struct sched_domain *sd;
5388 #ifdef CONFIG_SCHED_SMT
5389 sd = &per_cpu(cpu_domains, i);
5390 power = SCHED_LOAD_SCALE;
5391 sd->groups->cpu_power = power;
5394 sd = &per_cpu(phys_domains, i);
5395 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5396 (cpus_weight(sd->groups->cpumask)-1) / 10;
5397 sd->groups->cpu_power = power;
5400 sd = &per_cpu(allnodes_domains, i);
5402 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5403 (cpus_weight(sd->groups->cpumask)-1) / 10;
5404 sd->groups->cpu_power = power;
5410 for (i = 0; i < MAX_NUMNODES; i++) {
5411 struct sched_group *sg = sched_group_nodes[i];
5417 for_each_cpu_mask(j, sg->cpumask) {
5418 struct sched_domain *sd;
5421 sd = &per_cpu(phys_domains, j);
5422 if (j != first_cpu(sd->groups->cpumask)) {
5424 * Only add "power" once for each
5429 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5430 (cpus_weight(sd->groups->cpumask)-1) / 10;
5432 sg->cpu_power += power;
5435 if (sg != sched_group_nodes[i])
5440 /* Attach the domains */
5441 for_each_cpu_mask(i, *cpu_map) {
5442 struct sched_domain *sd;
5443 #ifdef CONFIG_SCHED_SMT
5444 sd = &per_cpu(cpu_domains, i);
5446 sd = &per_cpu(phys_domains, i);
5448 cpu_attach_domain(sd, i);
5452 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5454 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5456 cpumask_t cpu_default_map;
5459 * Setup mask for cpus without special case scheduling requirements.
5460 * For now this just excludes isolated cpus, but could be used to
5461 * exclude other special cases in the future.
5463 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5465 build_sched_domains(&cpu_default_map);
5468 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5474 for_each_cpu_mask(cpu, *cpu_map) {
5475 struct sched_group *sched_group_allnodes
5476 = sched_group_allnodes_bycpu[cpu];
5477 struct sched_group **sched_group_nodes
5478 = sched_group_nodes_bycpu[cpu];
5480 if (sched_group_allnodes) {
5481 kfree(sched_group_allnodes);
5482 sched_group_allnodes_bycpu[cpu] = NULL;
5485 if (!sched_group_nodes)
5488 for (i = 0; i < MAX_NUMNODES; i++) {
5489 cpumask_t nodemask = node_to_cpumask(i);
5490 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5492 cpus_and(nodemask, nodemask, *cpu_map);
5493 if (cpus_empty(nodemask))
5503 if (oldsg != sched_group_nodes[i])
5506 kfree(sched_group_nodes);
5507 sched_group_nodes_bycpu[cpu] = NULL;
5513 * Detach sched domains from a group of cpus specified in cpu_map
5514 * These cpus will now be attached to the NULL domain
5516 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5520 for_each_cpu_mask(i, *cpu_map)
5521 cpu_attach_domain(NULL, i);
5522 synchronize_sched();
5523 arch_destroy_sched_domains(cpu_map);
5527 * Partition sched domains as specified by the cpumasks below.
5528 * This attaches all cpus from the cpumasks to the NULL domain,
5529 * waits for a RCU quiescent period, recalculates sched
5530 * domain information and then attaches them back to the
5531 * correct sched domains
5532 * Call with hotplug lock held
5534 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5536 cpumask_t change_map;
5538 cpus_and(*partition1, *partition1, cpu_online_map);
5539 cpus_and(*partition2, *partition2, cpu_online_map);
5540 cpus_or(change_map, *partition1, *partition2);
5542 /* Detach sched domains from all of the affected cpus */
5543 detach_destroy_domains(&change_map);
5544 if (!cpus_empty(*partition1))
5545 build_sched_domains(partition1);
5546 if (!cpus_empty(*partition2))
5547 build_sched_domains(partition2);
5550 #ifdef CONFIG_HOTPLUG_CPU
5552 * Force a reinitialization of the sched domains hierarchy. The domains
5553 * and groups cannot be updated in place without racing with the balancing
5554 * code, so we temporarily attach all running cpus to the NULL domain
5555 * which will prevent rebalancing while the sched domains are recalculated.
5557 static int update_sched_domains(struct notifier_block *nfb,
5558 unsigned long action, void *hcpu)
5561 case CPU_UP_PREPARE:
5562 case CPU_DOWN_PREPARE:
5563 detach_destroy_domains(&cpu_online_map);
5566 case CPU_UP_CANCELED:
5567 case CPU_DOWN_FAILED:
5571 * Fall through and re-initialise the domains.
5578 /* The hotplug lock is already held by cpu_up/cpu_down */
5579 arch_init_sched_domains(&cpu_online_map);
5585 void __init sched_init_smp(void)
5588 arch_init_sched_domains(&cpu_online_map);
5589 unlock_cpu_hotplug();
5590 /* XXX: Theoretical race here - CPU may be hotplugged now */
5591 hotcpu_notifier(update_sched_domains, 0);
5594 void __init sched_init_smp(void)
5597 #endif /* CONFIG_SMP */
5599 int in_sched_functions(unsigned long addr)
5601 /* Linker adds these: start and end of __sched functions */
5602 extern char __sched_text_start[], __sched_text_end[];
5603 return in_lock_functions(addr) ||
5604 (addr >= (unsigned long)__sched_text_start
5605 && addr < (unsigned long)__sched_text_end);
5608 void __init sched_init(void)
5613 for (i = 0; i < NR_CPUS; i++) {
5614 prio_array_t *array;
5617 spin_lock_init(&rq->lock);
5619 rq->active = rq->arrays;
5620 rq->expired = rq->arrays + 1;
5621 rq->best_expired_prio = MAX_PRIO;
5625 for (j = 1; j < 3; j++)
5626 rq->cpu_load[j] = 0;
5627 rq->active_balance = 0;
5629 rq->migration_thread = NULL;
5630 INIT_LIST_HEAD(&rq->migration_queue);
5632 atomic_set(&rq->nr_iowait, 0);
5634 for (j = 0; j < 2; j++) {
5635 array = rq->arrays + j;
5636 for (k = 0; k < MAX_PRIO; k++) {
5637 INIT_LIST_HEAD(array->queue + k);
5638 __clear_bit(k, array->bitmap);
5640 // delimiter for bitsearch
5641 __set_bit(MAX_PRIO, array->bitmap);
5646 * The boot idle thread does lazy MMU switching as well:
5648 atomic_inc(&init_mm.mm_count);
5649 enter_lazy_tlb(&init_mm, current);
5652 * Make us the idle thread. Technically, schedule() should not be
5653 * called from this thread, however somewhere below it might be,
5654 * but because we are the idle thread, we just pick up running again
5655 * when this runqueue becomes "idle".
5657 init_idle(current, smp_processor_id());
5660 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5661 void __might_sleep(char *file, int line)
5663 #if defined(in_atomic)
5664 static unsigned long prev_jiffy; /* ratelimiting */
5666 if ((in_atomic() || irqs_disabled()) &&
5667 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5668 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5670 prev_jiffy = jiffies;
5671 printk(KERN_ERR "Debug: sleeping function called from invalid"
5672 " context at %s:%d\n", file, line);
5673 printk("in_atomic():%d, irqs_disabled():%d\n",
5674 in_atomic(), irqs_disabled());
5679 EXPORT_SYMBOL(__might_sleep);
5682 #ifdef CONFIG_MAGIC_SYSRQ
5683 void normalize_rt_tasks(void)
5685 struct task_struct *p;
5686 prio_array_t *array;
5687 unsigned long flags;
5690 read_lock_irq(&tasklist_lock);
5691 for_each_process (p) {
5695 rq = task_rq_lock(p, &flags);
5699 deactivate_task(p, task_rq(p));
5700 __setscheduler(p, SCHED_NORMAL, 0);
5702 __activate_task(p, task_rq(p));
5703 resched_task(rq->curr);
5706 task_rq_unlock(rq, &flags);
5708 read_unlock_irq(&tasklist_lock);
5711 #endif /* CONFIG_MAGIC_SYSRQ */
5715 * These functions are only useful for the IA64 MCA handling.
5717 * They can only be called when the whole system has been
5718 * stopped - every CPU needs to be quiescent, and no scheduling
5719 * activity can take place. Using them for anything else would
5720 * be a serious bug, and as a result, they aren't even visible
5721 * under any other configuration.
5725 * curr_task - return the current task for a given cpu.
5726 * @cpu: the processor in question.
5728 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5730 task_t *curr_task(int cpu)
5732 return cpu_curr(cpu);
5736 * set_curr_task - set the current task for a given cpu.
5737 * @cpu: the processor in question.
5738 * @p: the task pointer to set.
5740 * Description: This function must only be used when non-maskable interrupts
5741 * are serviced on a separate stack. It allows the architecture to switch the
5742 * notion of the current task on a cpu in a non-blocking manner. This function
5743 * must be called with all CPU's synchronized, and interrupts disabled, the
5744 * and caller must save the original value of the current task (see
5745 * curr_task() above) and restore that value before reenabling interrupts and
5746 * re-starting the system.
5748 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5750 void set_curr_task(int cpu, task_t *p)