2 * Copyright (C) 2000 Jeff Dike (jdike@karaya.com)
3 * Licensed under the GPL
4 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
5 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
8 #include "linux/kernel.h"
9 #include "linux/module.h"
10 #include "linux/smp.h"
11 #include "linux/kernel_stat.h"
12 #include "linux/interrupt.h"
13 #include "linux/random.h"
14 #include "linux/slab.h"
15 #include "linux/file.h"
16 #include "linux/proc_fs.h"
17 #include "linux/init.h"
18 #include "linux/seq_file.h"
19 #include "linux/profile.h"
20 #include "linux/hardirq.h"
22 #include "asm/hw_irq.h"
23 #include "asm/atomic.h"
24 #include "asm/signal.h"
25 #include "asm/system.h"
26 #include "asm/errno.h"
27 #include "asm/uaccess.h"
28 #include "kern_util.h"
33 #include "misc_constants.h"
34 #include "as-layout.h"
37 * Generic, controller-independent functions:
40 int show_interrupts(struct seq_file *p, void *v)
42 int i = *(loff_t *) v, j;
43 struct irqaction * action;
48 for_each_online_cpu(j)
49 seq_printf(p, "CPU%d ",j);
54 spin_lock_irqsave(&irq_desc[i].lock, flags);
55 action = irq_desc[i].action;
58 seq_printf(p, "%3d: ",i);
60 seq_printf(p, "%10u ", kstat_irqs(i));
62 for_each_online_cpu(j)
63 seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
65 seq_printf(p, " %14s", irq_desc[i].chip->typename);
66 seq_printf(p, " %s", action->name);
68 for (action=action->next; action; action = action->next)
69 seq_printf(p, ", %s", action->name);
73 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
74 } else if (i == NR_IRQS) {
82 * This list is accessed under irq_lock, except in sigio_handler,
83 * where it is safe from being modified. IRQ handlers won't change it -
84 * if an IRQ source has vanished, it will be freed by free_irqs just
85 * before returning from sigio_handler. That will process a separate
86 * list of irqs to free, with its own locking, coming back here to
87 * remove list elements, taking the irq_lock to do so.
89 static struct irq_fd *active_fds = NULL;
90 static struct irq_fd **last_irq_ptr = &active_fds;
92 extern void free_irqs(void);
94 void sigio_handler(int sig, union uml_pt_regs *regs)
96 struct irq_fd *irq_fd;
99 if (smp_sigio_handler())
103 n = os_waiting_for_events(active_fds);
105 if(n == -EINTR) continue;
109 for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) {
110 if (irq_fd->current_events != 0) {
111 irq_fd->current_events = 0;
112 do_IRQ(irq_fd->irq, regs);
120 static DEFINE_SPINLOCK(irq_lock);
122 int activate_fd(int irq, int fd, int type, void *dev_id)
124 struct pollfd *tmp_pfd;
125 struct irq_fd *new_fd, *irq_fd;
127 int pid, events, err, n;
130 err = os_set_fd_async(fd, pid);
135 new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL);
139 if (type == IRQ_READ)
140 events = UM_POLLIN | UM_POLLPRI;
143 *new_fd = ((struct irq_fd) { .next = NULL,
150 .current_events = 0 } );
153 spin_lock_irqsave(&irq_lock, flags);
154 for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) {
155 if ((irq_fd->fd == fd) && (irq_fd->type == type)) {
156 printk("Registering fd %d twice\n", fd);
157 printk("Irqs : %d, %d\n", irq_fd->irq, irq);
158 printk("Ids : 0x%p, 0x%p\n", irq_fd->id, dev_id);
163 if (type == IRQ_WRITE)
170 n = os_create_pollfd(fd, events, tmp_pfd, n);
175 * It means we couldn't put new pollfd to current pollfds
176 * and tmp_fds is NULL or too small for new pollfds array.
177 * Needed size is equal to n as minimum.
179 * Here we have to drop the lock in order to call
180 * kmalloc, which might sleep.
181 * If something else came in and changed the pollfds array
182 * so we will not be able to put new pollfd struct to pollfds
183 * then we free the buffer tmp_fds and try again.
185 spin_unlock_irqrestore(&irq_lock, flags);
188 tmp_pfd = kmalloc(n, GFP_KERNEL);
192 spin_lock_irqsave(&irq_lock, flags);
195 *last_irq_ptr = new_fd;
196 last_irq_ptr = &new_fd->next;
198 spin_unlock_irqrestore(&irq_lock, flags);
200 /* This calls activate_fd, so it has to be outside the critical
203 maybe_sigio_broken(fd, (type == IRQ_READ));
208 spin_unlock_irqrestore(&irq_lock, flags);
215 static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg)
219 spin_lock_irqsave(&irq_lock, flags);
220 os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr);
221 spin_unlock_irqrestore(&irq_lock, flags);
229 static int same_irq_and_dev(struct irq_fd *irq, void *d)
231 struct irq_and_dev *data = d;
233 return ((irq->irq == data->irq) && (irq->id == data->dev));
236 void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
238 struct irq_and_dev data = ((struct irq_and_dev) { .irq = irq,
241 free_irq_by_cb(same_irq_and_dev, &data);
244 static int same_fd(struct irq_fd *irq, void *fd)
246 return (irq->fd == *((int *)fd));
249 void free_irq_by_fd(int fd)
251 free_irq_by_cb(same_fd, &fd);
254 /* Must be called with irq_lock held */
255 static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out)
261 for (irq = active_fds; irq != NULL; irq = irq->next) {
262 if ((irq->fd == fd) && (irq->irq == irqnum))
267 printk("find_irq_by_fd doesn't have descriptor %d\n", fd);
270 fdi = os_get_pollfd(i);
271 if ((fdi != -1) && (fdi != fd)) {
272 printk("find_irq_by_fd - mismatch between active_fds and "
273 "pollfds, fd %d vs %d, need %d\n", irq->fd,
283 void reactivate_fd(int fd, int irqnum)
289 spin_lock_irqsave(&irq_lock, flags);
290 irq = find_irq_by_fd(fd, irqnum, &i);
292 spin_unlock_irqrestore(&irq_lock, flags);
295 os_set_pollfd(i, irq->fd);
296 spin_unlock_irqrestore(&irq_lock, flags);
301 void deactivate_fd(int fd, int irqnum)
307 spin_lock_irqsave(&irq_lock, flags);
308 irq = find_irq_by_fd(fd, irqnum, &i);
310 spin_unlock_irqrestore(&irq_lock, flags);
314 os_set_pollfd(i, -1);
315 spin_unlock_irqrestore(&irq_lock, flags);
321 * Called just before shutdown in order to provide a clean exec
322 * environment in case the system is rebooting. No locking because
323 * that would cause a pointless shutdown hang if something hadn't
326 int deactivate_all_fds(void)
331 for (irq = active_fds; irq != NULL; irq = irq->next) {
332 err = os_clear_fd_async(irq->fd);
336 /* If there is a signal already queued, after unblocking ignore it */
342 #ifdef CONFIG_MODE_TT
343 void forward_interrupts(int pid)
349 spin_lock_irqsave(&irq_lock, flags);
350 for (irq = active_fds; irq != NULL; irq = irq->next) {
351 err = os_set_owner(irq->fd, pid);
353 /* XXX Just remove the irq rather than
354 * print out an infinite stream of these
356 printk("Failed to forward %d to pid %d, err = %d\n",
362 spin_unlock_irqrestore(&irq_lock, flags);
367 * do_IRQ handles all normal device IRQ's (the special
368 * SMP cross-CPU interrupts have their own specific
371 unsigned int do_IRQ(int irq, union uml_pt_regs *regs)
373 struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
377 set_irq_regs(old_regs);
381 int um_request_irq(unsigned int irq, int fd, int type,
382 irq_handler_t handler,
383 unsigned long irqflags, const char * devname,
388 err = request_irq(irq, handler, irqflags, devname, dev_id);
393 err = activate_fd(irq, fd, type, dev_id);
396 EXPORT_SYMBOL(um_request_irq);
397 EXPORT_SYMBOL(reactivate_fd);
399 /* hw_interrupt_type must define (startup || enable) &&
400 * (shutdown || disable) && end */
401 static void dummy(unsigned int irq)
405 /* This is used for everything else than the timer. */
406 static struct hw_interrupt_type normal_irq_type = {
408 .release = free_irq_by_irq_and_dev,
415 static struct hw_interrupt_type SIGVTALRM_irq_type = {
416 .typename = "SIGVTALRM",
417 .release = free_irq_by_irq_and_dev,
418 .shutdown = dummy, /* never called */
425 void __init init_IRQ(void)
429 irq_desc[TIMER_IRQ].status = IRQ_DISABLED;
430 irq_desc[TIMER_IRQ].action = NULL;
431 irq_desc[TIMER_IRQ].depth = 1;
432 irq_desc[TIMER_IRQ].chip = &SIGVTALRM_irq_type;
433 enable_irq(TIMER_IRQ);
434 for (i = 1; i < NR_IRQS; i++) {
435 irq_desc[i].status = IRQ_DISABLED;
436 irq_desc[i].action = NULL;
437 irq_desc[i].depth = 1;
438 irq_desc[i].chip = &normal_irq_type;
443 int init_aio_irq(int irq, char *name, irq_handler_t handler)
447 err = os_pipe(fds, 1, 1);
449 printk("init_aio_irq - os_pipe failed, err = %d\n", -err);
453 err = um_request_irq(irq, fds[0], IRQ_READ, handler,
454 IRQF_DISABLED | IRQF_SAMPLE_RANDOM, name,
455 (void *) (long) fds[0]);
457 printk("init_aio_irq - : um_request_irq failed, err = %d\n",
466 os_close_file(fds[0]);
467 os_close_file(fds[1]);
473 * IRQ stack entry and exit:
475 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
476 * and switch over to the IRQ stack after some preparation. We use
477 * sigaltstack to receive signals on a separate stack from the start.
478 * These two functions make sure the rest of the kernel won't be too
479 * upset by being on a different stack. The IRQ stack has a
480 * thread_info structure at the bottom so that current et al continue
483 * to_irq_stack copies the current task's thread_info to the IRQ stack
484 * thread_info and sets the tasks's stack to point to the IRQ stack.
486 * from_irq_stack copies the thread_info struct back (flags may have
487 * been modified) and resets the task's stack pointer.
491 * What happens when two signals race each other? UML doesn't block
492 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
493 * could arrive while a previous one is still setting up the
496 * There are three cases -
497 * The first interrupt on the stack - sets up the thread_info and
498 * handles the interrupt
499 * A nested interrupt interrupting the copying of the thread_info -
500 * can't handle the interrupt, as the stack is in an unknown state
501 * A nested interrupt not interrupting the copying of the
502 * thread_info - doesn't do any setup, just handles the interrupt
504 * The first job is to figure out whether we interrupted stack setup.
505 * This is done by xchging the signal mask with thread_info->pending.
506 * If the value that comes back is zero, then there is no setup in
507 * progress, and the interrupt can be handled. If the value is
508 * non-zero, then there is stack setup in progress. In order to have
509 * the interrupt handled, we leave our signal in the mask, and it will
510 * be handled by the upper handler after it has set up the stack.
512 * Next is to figure out whether we are the outer handler or a nested
513 * one. As part of setting up the stack, thread_info->real_thread is
514 * set to non-NULL (and is reset to NULL on exit). This is the
515 * nesting indicator. If it is non-NULL, then the stack is already
516 * set up and the handler can run.
519 static unsigned long pending_mask;
521 unsigned long to_irq_stack(unsigned long *mask_out)
523 struct thread_info *ti;
524 unsigned long mask, old;
527 mask = xchg(&pending_mask, *mask_out);
529 /* If any interrupts come in at this point, we want to
530 * make sure that their bits aren't lost by our
531 * putting our bit in. So, this loop accumulates bits
532 * until xchg returns the same value that we put in.
533 * When that happens, there were no new interrupts,
534 * and pending_mask contains a bit for each interrupt
540 mask = xchg(&pending_mask, old);
541 } while(mask != old);
545 ti = current_thread_info();
546 nested = (ti->real_thread != NULL);
548 struct task_struct *task;
549 struct thread_info *tti;
551 task = cpu_tasks[ti->cpu].task;
552 tti = task_thread_info(task);
555 ti->real_thread = tti;
559 mask = xchg(&pending_mask, 0);
560 *mask_out |= mask | nested;
564 unsigned long from_irq_stack(int nested)
566 struct thread_info *ti, *to;
569 ti = current_thread_info();
573 to = ti->real_thread;
575 ti->real_thread = NULL;
578 mask = xchg(&pending_mask, 0);