[IA64] Clean-up McKinley Errata message
[linux-2.6] / arch / ia64 / kernel / mca.c
1 /*
2  * File:        mca.c
3  * Purpose:     Generic MCA handling layer
4  *
5  * Updated for latest kernel
6  * Copyright (C) 2003 Hewlett-Packard Co
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *
9  * Copyright (C) 2002 Dell Inc.
10  * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11  *
12  * Copyright (C) 2002 Intel
13  * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14  *
15  * Copyright (C) 2001 Intel
16  * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17  *
18  * Copyright (C) 2000 Intel
19  * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20  *
21  * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22  * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23  *
24  * 03/04/15 D. Mosberger Added INIT backtrace support.
25  * 02/03/25 M. Domsch   GUID cleanups
26  *
27  * 02/01/04 J. Hall     Aligned MCA stack to 16 bytes, added platform vs. CPU
28  *                      error flag, set SAL default return values, changed
29  *                      error record structure to linked list, added init call
30  *                      to sal_get_state_info_size().
31  *
32  * 01/01/03 F. Lewis    Added setup of CMCI and CPEI IRQs, logging of corrected
33  *                      platform errors, completed code for logging of
34  *                      corrected & uncorrected machine check errors, and
35  *                      updated for conformance with Nov. 2000 revision of the
36  *                      SAL 3.0 spec.
37  * 00/03/29 C. Fleckenstein  Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38  *                           added min save state dump, added INIT handler.
39  *
40  * 2003-12-08 Keith Owens <kaos@sgi.com>
41  *            smp_call_function() must not be called from interrupt context (can
42  *            deadlock on tasklist_lock).  Use keventd to call smp_call_function().
43  *
44  * 2004-02-01 Keith Owens <kaos@sgi.com>
45  *            Avoid deadlock when using printk() for MCA and INIT records.
46  *            Delete all record printing code, moved to salinfo_decode in user space.
47  *            Mark variables and functions static where possible.
48  *            Delete dead variables and functions.
49  *            Reorder to remove the need for forward declarations and to consolidate
50  *            related code.
51  *
52  * 2005-08-12 Keith Owens <kaos@sgi.com>
53  *            Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
54  *
55  * 2005-10-07 Keith Owens <kaos@sgi.com>
56  *            Add notify_die() hooks.
57  *
58  * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
59  *            Add printing support for MCA/INIT.
60  *
61  * 2007-04-27 Russ Anderson <rja@sgi.com>
62  *            Support multiple cpus going through OS_MCA in the same event.
63  */
64 #include <linux/types.h>
65 #include <linux/init.h>
66 #include <linux/sched.h>
67 #include <linux/interrupt.h>
68 #include <linux/irq.h>
69 #include <linux/bootmem.h>
70 #include <linux/acpi.h>
71 #include <linux/timer.h>
72 #include <linux/module.h>
73 #include <linux/kernel.h>
74 #include <linux/smp.h>
75 #include <linux/workqueue.h>
76 #include <linux/cpumask.h>
77 #include <linux/kdebug.h>
78
79 #include <asm/delay.h>
80 #include <asm/machvec.h>
81 #include <asm/meminit.h>
82 #include <asm/page.h>
83 #include <asm/ptrace.h>
84 #include <asm/system.h>
85 #include <asm/sal.h>
86 #include <asm/mca.h>
87 #include <asm/kexec.h>
88
89 #include <asm/irq.h>
90 #include <asm/hw_irq.h>
91
92 #include "mca_drv.h"
93 #include "entry.h"
94
95 #if defined(IA64_MCA_DEBUG_INFO)
96 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
97 #else
98 # define IA64_MCA_DEBUG(fmt...)
99 #endif
100
101 /* Used by mca_asm.S */
102 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
103 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
104 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);      /* PTE to map PAL code */
105 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
106
107 unsigned long __per_cpu_mca[NR_CPUS];
108
109 /* In mca_asm.S */
110 extern void                     ia64_os_init_dispatch_monarch (void);
111 extern void                     ia64_os_init_dispatch_slave (void);
112
113 static int monarch_cpu = -1;
114
115 static ia64_mc_info_t           ia64_mc_info;
116
117 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
118 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
119 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
120 #define CPE_HISTORY_LENGTH    5
121 #define CMC_HISTORY_LENGTH    5
122
123 #ifdef CONFIG_ACPI
124 static struct timer_list cpe_poll_timer;
125 #endif
126 static struct timer_list cmc_poll_timer;
127 /*
128  * This variable tells whether we are currently in polling mode.
129  * Start with this in the wrong state so we won't play w/ timers
130  * before the system is ready.
131  */
132 static int cmc_polling_enabled = 1;
133
134 /*
135  * Clearing this variable prevents CPE polling from getting activated
136  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
137  * but encounters problems retrieving CPE logs.  This should only be
138  * necessary for debugging.
139  */
140 static int cpe_poll_enabled = 1;
141
142 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
143
144 static int mca_init __initdata;
145
146 /*
147  * limited & delayed printing support for MCA/INIT handler
148  */
149
150 #define mprintk(fmt...) ia64_mca_printk(fmt)
151
152 #define MLOGBUF_SIZE (512+256*NR_CPUS)
153 #define MLOGBUF_MSGMAX 256
154 static char mlogbuf[MLOGBUF_SIZE];
155 static DEFINE_SPINLOCK(mlogbuf_wlock);  /* mca context only */
156 static DEFINE_SPINLOCK(mlogbuf_rlock);  /* normal context only */
157 static unsigned long mlogbuf_start;
158 static unsigned long mlogbuf_end;
159 static unsigned int mlogbuf_finished = 0;
160 static unsigned long mlogbuf_timestamp = 0;
161
162 static int loglevel_save = -1;
163 #define BREAK_LOGLEVEL(__console_loglevel)              \
164         oops_in_progress = 1;                           \
165         if (loglevel_save < 0)                          \
166                 loglevel_save = __console_loglevel;     \
167         __console_loglevel = 15;
168
169 #define RESTORE_LOGLEVEL(__console_loglevel)            \
170         if (loglevel_save >= 0) {                       \
171                 __console_loglevel = loglevel_save;     \
172                 loglevel_save = -1;                     \
173         }                                               \
174         mlogbuf_finished = 0;                           \
175         oops_in_progress = 0;
176
177 /*
178  * Push messages into buffer, print them later if not urgent.
179  */
180 void ia64_mca_printk(const char *fmt, ...)
181 {
182         va_list args;
183         int printed_len;
184         char temp_buf[MLOGBUF_MSGMAX];
185         char *p;
186
187         va_start(args, fmt);
188         printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
189         va_end(args);
190
191         /* Copy the output into mlogbuf */
192         if (oops_in_progress) {
193                 /* mlogbuf was abandoned, use printk directly instead. */
194                 printk(temp_buf);
195         } else {
196                 spin_lock(&mlogbuf_wlock);
197                 for (p = temp_buf; *p; p++) {
198                         unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
199                         if (next != mlogbuf_start) {
200                                 mlogbuf[mlogbuf_end] = *p;
201                                 mlogbuf_end = next;
202                         } else {
203                                 /* buffer full */
204                                 break;
205                         }
206                 }
207                 mlogbuf[mlogbuf_end] = '\0';
208                 spin_unlock(&mlogbuf_wlock);
209         }
210 }
211 EXPORT_SYMBOL(ia64_mca_printk);
212
213 /*
214  * Print buffered messages.
215  *  NOTE: call this after returning normal context. (ex. from salinfod)
216  */
217 void ia64_mlogbuf_dump(void)
218 {
219         char temp_buf[MLOGBUF_MSGMAX];
220         char *p;
221         unsigned long index;
222         unsigned long flags;
223         unsigned int printed_len;
224
225         /* Get output from mlogbuf */
226         while (mlogbuf_start != mlogbuf_end) {
227                 temp_buf[0] = '\0';
228                 p = temp_buf;
229                 printed_len = 0;
230
231                 spin_lock_irqsave(&mlogbuf_rlock, flags);
232
233                 index = mlogbuf_start;
234                 while (index != mlogbuf_end) {
235                         *p = mlogbuf[index];
236                         index = (index + 1) % MLOGBUF_SIZE;
237                         if (!*p)
238                                 break;
239                         p++;
240                         if (++printed_len >= MLOGBUF_MSGMAX - 1)
241                                 break;
242                 }
243                 *p = '\0';
244                 if (temp_buf[0])
245                         printk(temp_buf);
246                 mlogbuf_start = index;
247
248                 mlogbuf_timestamp = 0;
249                 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
250         }
251 }
252 EXPORT_SYMBOL(ia64_mlogbuf_dump);
253
254 /*
255  * Call this if system is going to down or if immediate flushing messages to
256  * console is required. (ex. recovery was failed, crash dump is going to be
257  * invoked, long-wait rendezvous etc.)
258  *  NOTE: this should be called from monarch.
259  */
260 static void ia64_mlogbuf_finish(int wait)
261 {
262         BREAK_LOGLEVEL(console_loglevel);
263
264         spin_lock_init(&mlogbuf_rlock);
265         ia64_mlogbuf_dump();
266         printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
267                 "MCA/INIT might be dodgy or fail.\n");
268
269         if (!wait)
270                 return;
271
272         /* wait for console */
273         printk("Delaying for 5 seconds...\n");
274         udelay(5*1000000);
275
276         mlogbuf_finished = 1;
277 }
278
279 /*
280  * Print buffered messages from INIT context.
281  */
282 static void ia64_mlogbuf_dump_from_init(void)
283 {
284         if (mlogbuf_finished)
285                 return;
286
287         if (mlogbuf_timestamp && (mlogbuf_timestamp + 30*HZ > jiffies)) {
288                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
289                         " and the system seems to be messed up.\n");
290                 ia64_mlogbuf_finish(0);
291                 return;
292         }
293
294         if (!spin_trylock(&mlogbuf_rlock)) {
295                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
296                         "Generated messages other than stack dump will be "
297                         "buffered to mlogbuf and will be printed later.\n");
298                 printk(KERN_ERR "INIT: If messages would not printed after "
299                         "this INIT, wait 30sec and assert INIT again.\n");
300                 if (!mlogbuf_timestamp)
301                         mlogbuf_timestamp = jiffies;
302                 return;
303         }
304         spin_unlock(&mlogbuf_rlock);
305         ia64_mlogbuf_dump();
306 }
307
308 static void inline
309 ia64_mca_spin(const char *func)
310 {
311         if (monarch_cpu == smp_processor_id())
312                 ia64_mlogbuf_finish(0);
313         mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
314         while (1)
315                 cpu_relax();
316 }
317 /*
318  * IA64_MCA log support
319  */
320 #define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
321 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
322
323 typedef struct ia64_state_log_s
324 {
325         spinlock_t      isl_lock;
326         int             isl_index;
327         unsigned long   isl_count;
328         ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
329 } ia64_state_log_t;
330
331 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
332
333 #define IA64_LOG_ALLOCATE(it, size) \
334         {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
335                 (ia64_err_rec_t *)alloc_bootmem(size); \
336         ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
337                 (ia64_err_rec_t *)alloc_bootmem(size);}
338 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
339 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
340 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
341 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
342 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
343 #define IA64_LOG_INDEX_INC(it) \
344     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
345     ia64_state_log[it].isl_count++;}
346 #define IA64_LOG_INDEX_DEC(it) \
347     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
348 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
349 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
350 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
351
352 /*
353  * ia64_log_init
354  *      Reset the OS ia64 log buffer
355  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
356  * Outputs      :       None
357  */
358 static void __init
359 ia64_log_init(int sal_info_type)
360 {
361         u64     max_size = 0;
362
363         IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
364         IA64_LOG_LOCK_INIT(sal_info_type);
365
366         // SAL will tell us the maximum size of any error record of this type
367         max_size = ia64_sal_get_state_info_size(sal_info_type);
368         if (!max_size)
369                 /* alloc_bootmem() doesn't like zero-sized allocations! */
370                 return;
371
372         // set up OS data structures to hold error info
373         IA64_LOG_ALLOCATE(sal_info_type, max_size);
374         memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
375         memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
376 }
377
378 /*
379  * ia64_log_get
380  *
381  *      Get the current MCA log from SAL and copy it into the OS log buffer.
382  *
383  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
384  *              irq_safe    whether you can use printk at this point
385  *  Outputs :   size        (total record length)
386  *              *buffer     (ptr to error record)
387  *
388  */
389 static u64
390 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
391 {
392         sal_log_record_header_t     *log_buffer;
393         u64                         total_len = 0;
394         unsigned long               s;
395
396         IA64_LOG_LOCK(sal_info_type);
397
398         /* Get the process state information */
399         log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
400
401         total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
402
403         if (total_len) {
404                 IA64_LOG_INDEX_INC(sal_info_type);
405                 IA64_LOG_UNLOCK(sal_info_type);
406                 if (irq_safe) {
407                         IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
408                                        "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
409                 }
410                 *buffer = (u8 *) log_buffer;
411                 return total_len;
412         } else {
413                 IA64_LOG_UNLOCK(sal_info_type);
414                 return 0;
415         }
416 }
417
418 /*
419  *  ia64_mca_log_sal_error_record
420  *
421  *  This function retrieves a specified error record type from SAL
422  *  and wakes up any processes waiting for error records.
423  *
424  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
425  *              FIXME: remove MCA and irq_safe.
426  */
427 static void
428 ia64_mca_log_sal_error_record(int sal_info_type)
429 {
430         u8 *buffer;
431         sal_log_record_header_t *rh;
432         u64 size;
433         int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
434 #ifdef IA64_MCA_DEBUG_INFO
435         static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
436 #endif
437
438         size = ia64_log_get(sal_info_type, &buffer, irq_safe);
439         if (!size)
440                 return;
441
442         salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
443
444         if (irq_safe)
445                 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
446                         smp_processor_id(),
447                         sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
448
449         /* Clear logs from corrected errors in case there's no user-level logger */
450         rh = (sal_log_record_header_t *)buffer;
451         if (rh->severity == sal_log_severity_corrected)
452                 ia64_sal_clear_state_info(sal_info_type);
453 }
454
455 /*
456  * search_mca_table
457  *  See if the MCA surfaced in an instruction range
458  *  that has been tagged as recoverable.
459  *
460  *  Inputs
461  *      first   First address range to check
462  *      last    Last address range to check
463  *      ip      Instruction pointer, address we are looking for
464  *
465  * Return value:
466  *      1 on Success (in the table)/ 0 on Failure (not in the  table)
467  */
468 int
469 search_mca_table (const struct mca_table_entry *first,
470                 const struct mca_table_entry *last,
471                 unsigned long ip)
472 {
473         const struct mca_table_entry *curr;
474         u64 curr_start, curr_end;
475
476         curr = first;
477         while (curr <= last) {
478                 curr_start = (u64) &curr->start_addr + curr->start_addr;
479                 curr_end = (u64) &curr->end_addr + curr->end_addr;
480
481                 if ((ip >= curr_start) && (ip <= curr_end)) {
482                         return 1;
483                 }
484                 curr++;
485         }
486         return 0;
487 }
488
489 /* Given an address, look for it in the mca tables. */
490 int mca_recover_range(unsigned long addr)
491 {
492         extern struct mca_table_entry __start___mca_table[];
493         extern struct mca_table_entry __stop___mca_table[];
494
495         return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
496 }
497 EXPORT_SYMBOL_GPL(mca_recover_range);
498
499 #ifdef CONFIG_ACPI
500
501 int cpe_vector = -1;
502 int ia64_cpe_irq = -1;
503
504 static irqreturn_t
505 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
506 {
507         static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
508         static int              index;
509         static DEFINE_SPINLOCK(cpe_history_lock);
510
511         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
512                        __FUNCTION__, cpe_irq, smp_processor_id());
513
514         /* SAL spec states this should run w/ interrupts enabled */
515         local_irq_enable();
516
517         spin_lock(&cpe_history_lock);
518         if (!cpe_poll_enabled && cpe_vector >= 0) {
519
520                 int i, count = 1; /* we know 1 happened now */
521                 unsigned long now = jiffies;
522
523                 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
524                         if (now - cpe_history[i] <= HZ)
525                                 count++;
526                 }
527
528                 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
529                 if (count >= CPE_HISTORY_LENGTH) {
530
531                         cpe_poll_enabled = 1;
532                         spin_unlock(&cpe_history_lock);
533                         disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
534
535                         /*
536                          * Corrected errors will still be corrected, but
537                          * make sure there's a log somewhere that indicates
538                          * something is generating more than we can handle.
539                          */
540                         printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
541
542                         mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
543
544                         /* lock already released, get out now */
545                         goto out;
546                 } else {
547                         cpe_history[index++] = now;
548                         if (index == CPE_HISTORY_LENGTH)
549                                 index = 0;
550                 }
551         }
552         spin_unlock(&cpe_history_lock);
553 out:
554         /* Get the CPE error record and log it */
555         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
556
557         return IRQ_HANDLED;
558 }
559
560 #endif /* CONFIG_ACPI */
561
562 #ifdef CONFIG_ACPI
563 /*
564  * ia64_mca_register_cpev
565  *
566  *  Register the corrected platform error vector with SAL.
567  *
568  *  Inputs
569  *      cpev        Corrected Platform Error Vector number
570  *
571  *  Outputs
572  *      None
573  */
574 static void __init
575 ia64_mca_register_cpev (int cpev)
576 {
577         /* Register the CPE interrupt vector with SAL */
578         struct ia64_sal_retval isrv;
579
580         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
581         if (isrv.status) {
582                 printk(KERN_ERR "Failed to register Corrected Platform "
583                        "Error interrupt vector with SAL (status %ld)\n", isrv.status);
584                 return;
585         }
586
587         IA64_MCA_DEBUG("%s: corrected platform error "
588                        "vector %#x registered\n", __FUNCTION__, cpev);
589 }
590 #endif /* CONFIG_ACPI */
591
592 /*
593  * ia64_mca_cmc_vector_setup
594  *
595  *  Setup the corrected machine check vector register in the processor.
596  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
597  *  This function is invoked on a per-processor basis.
598  *
599  * Inputs
600  *      None
601  *
602  * Outputs
603  *      None
604  */
605 void __cpuinit
606 ia64_mca_cmc_vector_setup (void)
607 {
608         cmcv_reg_t      cmcv;
609
610         cmcv.cmcv_regval        = 0;
611         cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
612         cmcv.cmcv_vector        = IA64_CMC_VECTOR;
613         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
614
615         IA64_MCA_DEBUG("%s: CPU %d corrected "
616                        "machine check vector %#x registered.\n",
617                        __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
618
619         IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
620                        __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
621 }
622
623 /*
624  * ia64_mca_cmc_vector_disable
625  *
626  *  Mask the corrected machine check vector register in the processor.
627  *  This function is invoked on a per-processor basis.
628  *
629  * Inputs
630  *      dummy(unused)
631  *
632  * Outputs
633  *      None
634  */
635 static void
636 ia64_mca_cmc_vector_disable (void *dummy)
637 {
638         cmcv_reg_t      cmcv;
639
640         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
641
642         cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
643         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
644
645         IA64_MCA_DEBUG("%s: CPU %d corrected "
646                        "machine check vector %#x disabled.\n",
647                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
648 }
649
650 /*
651  * ia64_mca_cmc_vector_enable
652  *
653  *  Unmask the corrected machine check vector register in the processor.
654  *  This function is invoked on a per-processor basis.
655  *
656  * Inputs
657  *      dummy(unused)
658  *
659  * Outputs
660  *      None
661  */
662 static void
663 ia64_mca_cmc_vector_enable (void *dummy)
664 {
665         cmcv_reg_t      cmcv;
666
667         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
668
669         cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
670         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
671
672         IA64_MCA_DEBUG("%s: CPU %d corrected "
673                        "machine check vector %#x enabled.\n",
674                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
675 }
676
677 /*
678  * ia64_mca_cmc_vector_disable_keventd
679  *
680  * Called via keventd (smp_call_function() is not safe in interrupt context) to
681  * disable the cmc interrupt vector.
682  */
683 static void
684 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
685 {
686         on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
687 }
688
689 /*
690  * ia64_mca_cmc_vector_enable_keventd
691  *
692  * Called via keventd (smp_call_function() is not safe in interrupt context) to
693  * enable the cmc interrupt vector.
694  */
695 static void
696 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
697 {
698         on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
699 }
700
701 /*
702  * ia64_mca_wakeup
703  *
704  *      Send an inter-cpu interrupt to wake-up a particular cpu.
705  *
706  *  Inputs  :   cpuid
707  *  Outputs :   None
708  */
709 static void
710 ia64_mca_wakeup(int cpu)
711 {
712         platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
713 }
714
715 /*
716  * ia64_mca_wakeup_all
717  *
718  *      Wakeup all the slave cpus which have rendez'ed previously.
719  *
720  *  Inputs  :   None
721  *  Outputs :   None
722  */
723 static void
724 ia64_mca_wakeup_all(void)
725 {
726         int cpu;
727
728         /* Clear the Rendez checkin flag for all cpus */
729         for_each_online_cpu(cpu) {
730                 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
731                         ia64_mca_wakeup(cpu);
732         }
733
734 }
735
736 /*
737  * ia64_mca_rendez_interrupt_handler
738  *
739  *      This is handler used to put slave processors into spinloop
740  *      while the monarch processor does the mca handling and later
741  *      wake each slave up once the monarch is done.  The state
742  *      IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
743  *      in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
744  *      the cpu has come out of OS rendezvous.
745  *
746  *  Inputs  :   None
747  *  Outputs :   None
748  */
749 static irqreturn_t
750 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
751 {
752         unsigned long flags;
753         int cpu = smp_processor_id();
754         struct ia64_mca_notify_die nd =
755                 { .sos = NULL, .monarch_cpu = &monarch_cpu };
756
757         /* Mask all interrupts */
758         local_irq_save(flags);
759         if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", get_irq_regs(),
760                        (long)&nd, 0, 0) == NOTIFY_STOP)
761                 ia64_mca_spin(__FUNCTION__);
762
763         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
764         /* Register with the SAL monarch that the slave has
765          * reached SAL
766          */
767         ia64_sal_mc_rendez();
768
769         if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", get_irq_regs(),
770                        (long)&nd, 0, 0) == NOTIFY_STOP)
771                 ia64_mca_spin(__FUNCTION__);
772
773         /* Wait for the monarch cpu to exit. */
774         while (monarch_cpu != -1)
775                cpu_relax();     /* spin until monarch leaves */
776
777         if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", get_irq_regs(),
778                        (long)&nd, 0, 0) == NOTIFY_STOP)
779                 ia64_mca_spin(__FUNCTION__);
780
781         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
782         /* Enable all interrupts */
783         local_irq_restore(flags);
784         return IRQ_HANDLED;
785 }
786
787 /*
788  * ia64_mca_wakeup_int_handler
789  *
790  *      The interrupt handler for processing the inter-cpu interrupt to the
791  *      slave cpu which was spinning in the rendez loop.
792  *      Since this spinning is done by turning off the interrupts and
793  *      polling on the wakeup-interrupt bit in the IRR, there is
794  *      nothing useful to be done in the handler.
795  *
796  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
797  *      arg             (Interrupt handler specific argument)
798  *  Outputs :   None
799  *
800  */
801 static irqreturn_t
802 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
803 {
804         return IRQ_HANDLED;
805 }
806
807 /* Function pointer for extra MCA recovery */
808 int (*ia64_mca_ucmc_extension)
809         (void*,struct ia64_sal_os_state*)
810         = NULL;
811
812 int
813 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
814 {
815         if (ia64_mca_ucmc_extension)
816                 return 1;
817
818         ia64_mca_ucmc_extension = fn;
819         return 0;
820 }
821
822 void
823 ia64_unreg_MCA_extension(void)
824 {
825         if (ia64_mca_ucmc_extension)
826                 ia64_mca_ucmc_extension = NULL;
827 }
828
829 EXPORT_SYMBOL(ia64_reg_MCA_extension);
830 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
831
832
833 static inline void
834 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
835 {
836         u64 fslot, tslot, nat;
837         *tr = *fr;
838         fslot = ((unsigned long)fr >> 3) & 63;
839         tslot = ((unsigned long)tr >> 3) & 63;
840         *tnat &= ~(1UL << tslot);
841         nat = (fnat >> fslot) & 1;
842         *tnat |= (nat << tslot);
843 }
844
845 /* Change the comm field on the MCA/INT task to include the pid that
846  * was interrupted, it makes for easier debugging.  If that pid was 0
847  * (swapper or nested MCA/INIT) then use the start of the previous comm
848  * field suffixed with its cpu.
849  */
850
851 static void
852 ia64_mca_modify_comm(const struct task_struct *previous_current)
853 {
854         char *p, comm[sizeof(current->comm)];
855         if (previous_current->pid)
856                 snprintf(comm, sizeof(comm), "%s %d",
857                         current->comm, previous_current->pid);
858         else {
859                 int l;
860                 if ((p = strchr(previous_current->comm, ' ')))
861                         l = p - previous_current->comm;
862                 else
863                         l = strlen(previous_current->comm);
864                 snprintf(comm, sizeof(comm), "%s %*s %d",
865                         current->comm, l, previous_current->comm,
866                         task_thread_info(previous_current)->cpu);
867         }
868         memcpy(current->comm, comm, sizeof(current->comm));
869 }
870
871 /* On entry to this routine, we are running on the per cpu stack, see
872  * mca_asm.h.  The original stack has not been touched by this event.  Some of
873  * the original stack's registers will be in the RBS on this stack.  This stack
874  * also contains a partial pt_regs and switch_stack, the rest of the data is in
875  * PAL minstate.
876  *
877  * The first thing to do is modify the original stack to look like a blocked
878  * task so we can run backtrace on the original task.  Also mark the per cpu
879  * stack as current to ensure that we use the correct task state, it also means
880  * that we can do backtrace on the MCA/INIT handler code itself.
881  */
882
883 static struct task_struct *
884 ia64_mca_modify_original_stack(struct pt_regs *regs,
885                 const struct switch_stack *sw,
886                 struct ia64_sal_os_state *sos,
887                 const char *type)
888 {
889         char *p;
890         ia64_va va;
891         extern char ia64_leave_kernel[];        /* Need asm address, not function descriptor */
892         const pal_min_state_area_t *ms = sos->pal_min_state;
893         struct task_struct *previous_current;
894         struct pt_regs *old_regs;
895         struct switch_stack *old_sw;
896         unsigned size = sizeof(struct pt_regs) +
897                         sizeof(struct switch_stack) + 16;
898         u64 *old_bspstore, *old_bsp;
899         u64 *new_bspstore, *new_bsp;
900         u64 old_unat, old_rnat, new_rnat, nat;
901         u64 slots, loadrs = regs->loadrs;
902         u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
903         u64 ar_bspstore = regs->ar_bspstore;
904         u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
905         const u64 *bank;
906         const char *msg;
907         int cpu = smp_processor_id();
908
909         previous_current = curr_task(cpu);
910         set_curr_task(cpu, current);
911         if ((p = strchr(current->comm, ' ')))
912                 *p = '\0';
913
914         /* Best effort attempt to cope with MCA/INIT delivered while in
915          * physical mode.
916          */
917         regs->cr_ipsr = ms->pmsa_ipsr;
918         if (ia64_psr(regs)->dt == 0) {
919                 va.l = r12;
920                 if (va.f.reg == 0) {
921                         va.f.reg = 7;
922                         r12 = va.l;
923                 }
924                 va.l = r13;
925                 if (va.f.reg == 0) {
926                         va.f.reg = 7;
927                         r13 = va.l;
928                 }
929         }
930         if (ia64_psr(regs)->rt == 0) {
931                 va.l = ar_bspstore;
932                 if (va.f.reg == 0) {
933                         va.f.reg = 7;
934                         ar_bspstore = va.l;
935                 }
936                 va.l = ar_bsp;
937                 if (va.f.reg == 0) {
938                         va.f.reg = 7;
939                         ar_bsp = va.l;
940                 }
941         }
942
943         /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
944          * have been copied to the old stack, the old stack may fail the
945          * validation tests below.  So ia64_old_stack() must restore the dirty
946          * registers from the new stack.  The old and new bspstore probably
947          * have different alignments, so loadrs calculated on the old bsp
948          * cannot be used to restore from the new bsp.  Calculate a suitable
949          * loadrs for the new stack and save it in the new pt_regs, where
950          * ia64_old_stack() can get it.
951          */
952         old_bspstore = (u64 *)ar_bspstore;
953         old_bsp = (u64 *)ar_bsp;
954         slots = ia64_rse_num_regs(old_bspstore, old_bsp);
955         new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
956         new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
957         regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
958
959         /* Verify the previous stack state before we change it */
960         if (user_mode(regs)) {
961                 msg = "occurred in user space";
962                 /* previous_current is guaranteed to be valid when the task was
963                  * in user space, so ...
964                  */
965                 ia64_mca_modify_comm(previous_current);
966                 goto no_mod;
967         }
968
969         if (r13 != sos->prev_IA64_KR_CURRENT) {
970                 msg = "inconsistent previous current and r13";
971                 goto no_mod;
972         }
973
974         if (!mca_recover_range(ms->pmsa_iip)) {
975                 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
976                         msg = "inconsistent r12 and r13";
977                         goto no_mod;
978                 }
979                 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
980                         msg = "inconsistent ar.bspstore and r13";
981                         goto no_mod;
982                 }
983                 va.p = old_bspstore;
984                 if (va.f.reg < 5) {
985                         msg = "old_bspstore is in the wrong region";
986                         goto no_mod;
987                 }
988                 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
989                         msg = "inconsistent ar.bsp and r13";
990                         goto no_mod;
991                 }
992                 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
993                 if (ar_bspstore + size > r12) {
994                         msg = "no room for blocked state";
995                         goto no_mod;
996                 }
997         }
998
999         ia64_mca_modify_comm(previous_current);
1000
1001         /* Make the original task look blocked.  First stack a struct pt_regs,
1002          * describing the state at the time of interrupt.  mca_asm.S built a
1003          * partial pt_regs, copy it and fill in the blanks using minstate.
1004          */
1005         p = (char *)r12 - sizeof(*regs);
1006         old_regs = (struct pt_regs *)p;
1007         memcpy(old_regs, regs, sizeof(*regs));
1008         /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1009          * pmsa_{xip,xpsr,xfs}
1010          */
1011         if (ia64_psr(regs)->ic) {
1012                 old_regs->cr_iip = ms->pmsa_iip;
1013                 old_regs->cr_ipsr = ms->pmsa_ipsr;
1014                 old_regs->cr_ifs = ms->pmsa_ifs;
1015         } else {
1016                 old_regs->cr_iip = ms->pmsa_xip;
1017                 old_regs->cr_ipsr = ms->pmsa_xpsr;
1018                 old_regs->cr_ifs = ms->pmsa_xfs;
1019         }
1020         old_regs->pr = ms->pmsa_pr;
1021         old_regs->b0 = ms->pmsa_br0;
1022         old_regs->loadrs = loadrs;
1023         old_regs->ar_rsc = ms->pmsa_rsc;
1024         old_unat = old_regs->ar_unat;
1025         copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1026         copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1027         copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1028         copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1029         copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1030         copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1031         copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1032         copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1033         copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1034         copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1035         copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1036         if (ia64_psr(old_regs)->bn)
1037                 bank = ms->pmsa_bank1_gr;
1038         else
1039                 bank = ms->pmsa_bank0_gr;
1040         copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1041         copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1042         copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1043         copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1044         copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1045         copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1046         copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1047         copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1048         copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1049         copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1050         copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1051         copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1052         copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1053         copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1054         copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1055         copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1056
1057         /* Next stack a struct switch_stack.  mca_asm.S built a partial
1058          * switch_stack, copy it and fill in the blanks using pt_regs and
1059          * minstate.
1060          *
1061          * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1062          * ar.pfs is set to 0.
1063          *
1064          * unwind.c::unw_unwind() does special processing for interrupt frames.
1065          * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1066          * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
1067          * that this is documented, of course.  Set PRED_NON_SYSCALL in the
1068          * switch_stack on the original stack so it will unwind correctly when
1069          * unwind.c reads pt_regs.
1070          *
1071          * thread.ksp is updated to point to the synthesized switch_stack.
1072          */
1073         p -= sizeof(struct switch_stack);
1074         old_sw = (struct switch_stack *)p;
1075         memcpy(old_sw, sw, sizeof(*sw));
1076         old_sw->caller_unat = old_unat;
1077         old_sw->ar_fpsr = old_regs->ar_fpsr;
1078         copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1079         copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1080         copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1081         copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1082         old_sw->b0 = (u64)ia64_leave_kernel;
1083         old_sw->b1 = ms->pmsa_br1;
1084         old_sw->ar_pfs = 0;
1085         old_sw->ar_unat = old_unat;
1086         old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1087         previous_current->thread.ksp = (u64)p - 16;
1088
1089         /* Finally copy the original stack's registers back to its RBS.
1090          * Registers from ar.bspstore through ar.bsp at the time of the event
1091          * are in the current RBS, copy them back to the original stack.  The
1092          * copy must be done register by register because the original bspstore
1093          * and the current one have different alignments, so the saved RNAT
1094          * data occurs at different places.
1095          *
1096          * mca_asm does cover, so the old_bsp already includes all registers at
1097          * the time of MCA/INIT.  It also does flushrs, so all registers before
1098          * this function have been written to backing store on the MCA/INIT
1099          * stack.
1100          */
1101         new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1102         old_rnat = regs->ar_rnat;
1103         while (slots--) {
1104                 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1105                         new_rnat = ia64_get_rnat(new_bspstore++);
1106                 }
1107                 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1108                         *old_bspstore++ = old_rnat;
1109                         old_rnat = 0;
1110                 }
1111                 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1112                 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1113                 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1114                 *old_bspstore++ = *new_bspstore++;
1115         }
1116         old_sw->ar_bspstore = (unsigned long)old_bspstore;
1117         old_sw->ar_rnat = old_rnat;
1118
1119         sos->prev_task = previous_current;
1120         return previous_current;
1121
1122 no_mod:
1123         printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1124                         smp_processor_id(), type, msg);
1125         return previous_current;
1126 }
1127
1128 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1129  * slaves have entered rendezvous before the monarch leaves.  If any cpu has
1130  * not entered rendezvous yet then wait a bit.  The assumption is that any
1131  * slave that has not rendezvoused after a reasonable time is never going to do
1132  * so.  In this context, slave includes cpus that respond to the MCA rendezvous
1133  * interrupt, as well as cpus that receive the INIT slave event.
1134  */
1135
1136 static void
1137 ia64_wait_for_slaves(int monarch, const char *type)
1138 {
1139         int c, i , wait;
1140
1141         /*
1142          * wait 5 seconds total for slaves (arbitrary)
1143          */
1144         for (i = 0; i < 5000; i++) {
1145                 wait = 0;
1146                 for_each_online_cpu(c) {
1147                         if (c == monarch)
1148                                 continue;
1149                         if (ia64_mc_info.imi_rendez_checkin[c]
1150                                         == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1151                                 udelay(1000);           /* short wait */
1152                                 wait = 1;
1153                                 break;
1154                         }
1155                 }
1156                 if (!wait)
1157                         goto all_in;
1158         }
1159
1160         /*
1161          * Maybe slave(s) dead. Print buffered messages immediately.
1162          */
1163         ia64_mlogbuf_finish(0);
1164         mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1165         for_each_online_cpu(c) {
1166                 if (c == monarch)
1167                         continue;
1168                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1169                         mprintk(" %d", c);
1170         }
1171         mprintk("\n");
1172         return;
1173
1174 all_in:
1175         mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1176         return;
1177 }
1178
1179 /*
1180  * ia64_mca_handler
1181  *
1182  *      This is uncorrectable machine check handler called from OS_MCA
1183  *      dispatch code which is in turn called from SAL_CHECK().
1184  *      This is the place where the core of OS MCA handling is done.
1185  *      Right now the logs are extracted and displayed in a well-defined
1186  *      format. This handler code is supposed to be run only on the
1187  *      monarch processor. Once the monarch is done with MCA handling
1188  *      further MCA logging is enabled by clearing logs.
1189  *      Monarch also has the duty of sending wakeup-IPIs to pull the
1190  *      slave processors out of rendezvous spinloop.
1191  *
1192  *      If multiple processors call into OS_MCA, the first will become
1193  *      the monarch.  Subsequent cpus will be recorded in the mca_cpu
1194  *      bitmask.  After the first monarch has processed its MCA, it
1195  *      will wake up the next cpu in the mca_cpu bitmask and then go
1196  *      into the rendezvous loop.  When all processors have serviced
1197  *      their MCA, the last monarch frees up the rest of the processors.
1198  */
1199 void
1200 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1201                  struct ia64_sal_os_state *sos)
1202 {
1203         int recover, cpu = smp_processor_id();
1204         struct task_struct *previous_current;
1205         struct ia64_mca_notify_die nd =
1206                 { .sos = sos, .monarch_cpu = &monarch_cpu };
1207         static atomic_t mca_count;
1208         static cpumask_t mca_cpu;
1209
1210         if (atomic_add_return(1, &mca_count) == 1) {
1211                 monarch_cpu = cpu;
1212                 sos->monarch = 1;
1213         } else {
1214                 cpu_set(cpu, mca_cpu);
1215                 sos->monarch = 0;
1216         }
1217         mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1218                 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1219
1220         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1221
1222         if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
1223                         == NOTIFY_STOP)
1224                 ia64_mca_spin(__FUNCTION__);
1225
1226         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1227         if (sos->monarch) {
1228                 ia64_wait_for_slaves(cpu, "MCA");
1229
1230                 /* Wakeup all the processors which are spinning in the
1231                  * rendezvous loop.  They will leave SAL, then spin in the OS
1232                  * with interrupts disabled until this monarch cpu leaves the
1233                  * MCA handler.  That gets control back to the OS so we can
1234                  * backtrace the other cpus, backtrace when spinning in SAL
1235                  * does not work.
1236                  */
1237                 ia64_mca_wakeup_all();
1238                 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
1239                                 == NOTIFY_STOP)
1240                         ia64_mca_spin(__FUNCTION__);
1241         } else {
1242                 while (cpu_isset(cpu, mca_cpu))
1243                         cpu_relax();    /* spin until monarch wakes us */
1244         }
1245
1246         /* Get the MCA error record and log it */
1247         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1248
1249         /* MCA error recovery */
1250         recover = (ia64_mca_ucmc_extension
1251                 && ia64_mca_ucmc_extension(
1252                         IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1253                         sos));
1254
1255         if (recover) {
1256                 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1257                 rh->severity = sal_log_severity_corrected;
1258                 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1259                 sos->os_status = IA64_MCA_CORRECTED;
1260         } else {
1261                 /* Dump buffered message to console */
1262                 ia64_mlogbuf_finish(1);
1263 #ifdef CONFIG_KEXEC
1264                 atomic_set(&kdump_in_progress, 1);
1265                 monarch_cpu = -1;
1266 #endif
1267         }
1268         if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
1269                         == NOTIFY_STOP)
1270                 ia64_mca_spin(__FUNCTION__);
1271
1272
1273         if (atomic_dec_return(&mca_count) > 0) {
1274                 int i;
1275
1276                 /* wake up the next monarch cpu,
1277                  * and put this cpu in the rendez loop.
1278                  */
1279                 for_each_online_cpu(i) {
1280                         if (cpu_isset(i, mca_cpu)) {
1281                                 monarch_cpu = i;
1282                                 cpu_clear(i, mca_cpu);  /* wake next cpu */
1283                                 while (monarch_cpu != -1)
1284                                         cpu_relax();    /* spin until last cpu leaves */
1285                                 set_curr_task(cpu, previous_current);
1286                                 ia64_mc_info.imi_rendez_checkin[cpu]
1287                                                 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1288                                 return;
1289                         }
1290                 }
1291         }
1292         set_curr_task(cpu, previous_current);
1293         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1294         monarch_cpu = -1;       /* This frees the slaves and previous monarchs */
1295 }
1296
1297 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1298 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1299
1300 /*
1301  * ia64_mca_cmc_int_handler
1302  *
1303  *  This is corrected machine check interrupt handler.
1304  *      Right now the logs are extracted and displayed in a well-defined
1305  *      format.
1306  *
1307  * Inputs
1308  *      interrupt number
1309  *      client data arg ptr
1310  *
1311  * Outputs
1312  *      None
1313  */
1314 static irqreturn_t
1315 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1316 {
1317         static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
1318         static int              index;
1319         static DEFINE_SPINLOCK(cmc_history_lock);
1320
1321         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1322                        __FUNCTION__, cmc_irq, smp_processor_id());
1323
1324         /* SAL spec states this should run w/ interrupts enabled */
1325         local_irq_enable();
1326
1327         spin_lock(&cmc_history_lock);
1328         if (!cmc_polling_enabled) {
1329                 int i, count = 1; /* we know 1 happened now */
1330                 unsigned long now = jiffies;
1331
1332                 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1333                         if (now - cmc_history[i] <= HZ)
1334                                 count++;
1335                 }
1336
1337                 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1338                 if (count >= CMC_HISTORY_LENGTH) {
1339
1340                         cmc_polling_enabled = 1;
1341                         spin_unlock(&cmc_history_lock);
1342                         /* If we're being hit with CMC interrupts, we won't
1343                          * ever execute the schedule_work() below.  Need to
1344                          * disable CMC interrupts on this processor now.
1345                          */
1346                         ia64_mca_cmc_vector_disable(NULL);
1347                         schedule_work(&cmc_disable_work);
1348
1349                         /*
1350                          * Corrected errors will still be corrected, but
1351                          * make sure there's a log somewhere that indicates
1352                          * something is generating more than we can handle.
1353                          */
1354                         printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1355
1356                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1357
1358                         /* lock already released, get out now */
1359                         goto out;
1360                 } else {
1361                         cmc_history[index++] = now;
1362                         if (index == CMC_HISTORY_LENGTH)
1363                                 index = 0;
1364                 }
1365         }
1366         spin_unlock(&cmc_history_lock);
1367 out:
1368         /* Get the CMC error record and log it */
1369         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1370
1371         return IRQ_HANDLED;
1372 }
1373
1374 /*
1375  *  ia64_mca_cmc_int_caller
1376  *
1377  *      Triggered by sw interrupt from CMC polling routine.  Calls
1378  *      real interrupt handler and either triggers a sw interrupt
1379  *      on the next cpu or does cleanup at the end.
1380  *
1381  * Inputs
1382  *      interrupt number
1383  *      client data arg ptr
1384  * Outputs
1385  *      handled
1386  */
1387 static irqreturn_t
1388 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1389 {
1390         static int start_count = -1;
1391         unsigned int cpuid;
1392
1393         cpuid = smp_processor_id();
1394
1395         /* If first cpu, update count */
1396         if (start_count == -1)
1397                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1398
1399         ia64_mca_cmc_int_handler(cmc_irq, arg);
1400
1401         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1402
1403         if (cpuid < NR_CPUS) {
1404                 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1405         } else {
1406                 /* If no log record, switch out of polling mode */
1407                 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1408
1409                         printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1410                         schedule_work(&cmc_enable_work);
1411                         cmc_polling_enabled = 0;
1412
1413                 } else {
1414
1415                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1416                 }
1417
1418                 start_count = -1;
1419         }
1420
1421         return IRQ_HANDLED;
1422 }
1423
1424 /*
1425  *  ia64_mca_cmc_poll
1426  *
1427  *      Poll for Corrected Machine Checks (CMCs)
1428  *
1429  * Inputs   :   dummy(unused)
1430  * Outputs  :   None
1431  *
1432  */
1433 static void
1434 ia64_mca_cmc_poll (unsigned long dummy)
1435 {
1436         /* Trigger a CMC interrupt cascade  */
1437         platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1438 }
1439
1440 /*
1441  *  ia64_mca_cpe_int_caller
1442  *
1443  *      Triggered by sw interrupt from CPE polling routine.  Calls
1444  *      real interrupt handler and either triggers a sw interrupt
1445  *      on the next cpu or does cleanup at the end.
1446  *
1447  * Inputs
1448  *      interrupt number
1449  *      client data arg ptr
1450  * Outputs
1451  *      handled
1452  */
1453 #ifdef CONFIG_ACPI
1454
1455 static irqreturn_t
1456 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1457 {
1458         static int start_count = -1;
1459         static int poll_time = MIN_CPE_POLL_INTERVAL;
1460         unsigned int cpuid;
1461
1462         cpuid = smp_processor_id();
1463
1464         /* If first cpu, update count */
1465         if (start_count == -1)
1466                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1467
1468         ia64_mca_cpe_int_handler(cpe_irq, arg);
1469
1470         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1471
1472         if (cpuid < NR_CPUS) {
1473                 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1474         } else {
1475                 /*
1476                  * If a log was recorded, increase our polling frequency,
1477                  * otherwise, backoff or return to interrupt mode.
1478                  */
1479                 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1480                         poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1481                 } else if (cpe_vector < 0) {
1482                         poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1483                 } else {
1484                         poll_time = MIN_CPE_POLL_INTERVAL;
1485
1486                         printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1487                         enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1488                         cpe_poll_enabled = 0;
1489                 }
1490
1491                 if (cpe_poll_enabled)
1492                         mod_timer(&cpe_poll_timer, jiffies + poll_time);
1493                 start_count = -1;
1494         }
1495
1496         return IRQ_HANDLED;
1497 }
1498
1499 /*
1500  *  ia64_mca_cpe_poll
1501  *
1502  *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1503  *      on first cpu, from there it will trickle through all the cpus.
1504  *
1505  * Inputs   :   dummy(unused)
1506  * Outputs  :   None
1507  *
1508  */
1509 static void
1510 ia64_mca_cpe_poll (unsigned long dummy)
1511 {
1512         /* Trigger a CPE interrupt cascade  */
1513         platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1514 }
1515
1516 #endif /* CONFIG_ACPI */
1517
1518 static int
1519 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1520 {
1521         int c;
1522         struct task_struct *g, *t;
1523         if (val != DIE_INIT_MONARCH_PROCESS)
1524                 return NOTIFY_DONE;
1525 #ifdef CONFIG_KEXEC
1526         if (atomic_read(&kdump_in_progress))
1527                 return NOTIFY_DONE;
1528 #endif
1529
1530         /*
1531          * FIXME: mlogbuf will brim over with INIT stack dumps.
1532          * To enable show_stack from INIT, we use oops_in_progress which should
1533          * be used in real oops. This would cause something wrong after INIT.
1534          */
1535         BREAK_LOGLEVEL(console_loglevel);
1536         ia64_mlogbuf_dump_from_init();
1537
1538         printk(KERN_ERR "Processes interrupted by INIT -");
1539         for_each_online_cpu(c) {
1540                 struct ia64_sal_os_state *s;
1541                 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1542                 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1543                 g = s->prev_task;
1544                 if (g) {
1545                         if (g->pid)
1546                                 printk(" %d", g->pid);
1547                         else
1548                                 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1549                 }
1550         }
1551         printk("\n\n");
1552         if (read_trylock(&tasklist_lock)) {
1553                 do_each_thread (g, t) {
1554                         printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1555                         show_stack(t, NULL);
1556                 } while_each_thread (g, t);
1557                 read_unlock(&tasklist_lock);
1558         }
1559         /* FIXME: This will not restore zapped printk locks. */
1560         RESTORE_LOGLEVEL(console_loglevel);
1561         return NOTIFY_DONE;
1562 }
1563
1564 /*
1565  * C portion of the OS INIT handler
1566  *
1567  * Called from ia64_os_init_dispatch
1568  *
1569  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1570  * this event.  This code is used for both monarch and slave INIT events, see
1571  * sos->monarch.
1572  *
1573  * All INIT events switch to the INIT stack and change the previous process to
1574  * blocked status.  If one of the INIT events is the monarch then we are
1575  * probably processing the nmi button/command.  Use the monarch cpu to dump all
1576  * the processes.  The slave INIT events all spin until the monarch cpu
1577  * returns.  We can also get INIT slave events for MCA, in which case the MCA
1578  * process is the monarch.
1579  */
1580
1581 void
1582 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1583                   struct ia64_sal_os_state *sos)
1584 {
1585         static atomic_t slaves;
1586         static atomic_t monarchs;
1587         struct task_struct *previous_current;
1588         int cpu = smp_processor_id();
1589         struct ia64_mca_notify_die nd =
1590                 { .sos = sos, .monarch_cpu = &monarch_cpu };
1591
1592         (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1593
1594         mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1595                 sos->proc_state_param, cpu, sos->monarch);
1596         salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1597
1598         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1599         sos->os_status = IA64_INIT_RESUME;
1600
1601         /* FIXME: Workaround for broken proms that drive all INIT events as
1602          * slaves.  The last slave that enters is promoted to be a monarch.
1603          * Remove this code in September 2006, that gives platforms a year to
1604          * fix their proms and get their customers updated.
1605          */
1606         if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1607                 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1608                        __FUNCTION__, cpu);
1609                 atomic_dec(&slaves);
1610                 sos->monarch = 1;
1611         }
1612
1613         /* FIXME: Workaround for broken proms that drive all INIT events as
1614          * monarchs.  Second and subsequent monarchs are demoted to slaves.
1615          * Remove this code in September 2006, that gives platforms a year to
1616          * fix their proms and get their customers updated.
1617          */
1618         if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1619                 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1620                                __FUNCTION__, cpu);
1621                 atomic_dec(&monarchs);
1622                 sos->monarch = 0;
1623         }
1624
1625         if (!sos->monarch) {
1626                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1627                 while (monarch_cpu == -1)
1628                        cpu_relax();     /* spin until monarch enters */
1629                 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
1630                                 == NOTIFY_STOP)
1631                         ia64_mca_spin(__FUNCTION__);
1632                 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1633                                 == NOTIFY_STOP)
1634                         ia64_mca_spin(__FUNCTION__);
1635                 while (monarch_cpu != -1)
1636                        cpu_relax();     /* spin until monarch leaves */
1637                 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1638                                 == NOTIFY_STOP)
1639                         ia64_mca_spin(__FUNCTION__);
1640                 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1641                 set_curr_task(cpu, previous_current);
1642                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1643                 atomic_dec(&slaves);
1644                 return;
1645         }
1646
1647         monarch_cpu = cpu;
1648         if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
1649                         == NOTIFY_STOP)
1650                 ia64_mca_spin(__FUNCTION__);
1651
1652         /*
1653          * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1654          * generated via the BMC's command-line interface, but since the console is on the
1655          * same serial line, the user will need some time to switch out of the BMC before
1656          * the dump begins.
1657          */
1658         mprintk("Delaying for 5 seconds...\n");
1659         udelay(5*1000000);
1660         ia64_wait_for_slaves(cpu, "INIT");
1661         /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1662          * to default_monarch_init_process() above and just print all the
1663          * tasks.
1664          */
1665         if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1666                         == NOTIFY_STOP)
1667                 ia64_mca_spin(__FUNCTION__);
1668         if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1669                         == NOTIFY_STOP)
1670                 ia64_mca_spin(__FUNCTION__);
1671         mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1672         atomic_dec(&monarchs);
1673         set_curr_task(cpu, previous_current);
1674         monarch_cpu = -1;
1675         return;
1676 }
1677
1678 static int __init
1679 ia64_mca_disable_cpe_polling(char *str)
1680 {
1681         cpe_poll_enabled = 0;
1682         return 1;
1683 }
1684
1685 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1686
1687 static struct irqaction cmci_irqaction = {
1688         .handler =      ia64_mca_cmc_int_handler,
1689         .flags =        IRQF_DISABLED,
1690         .name =         "cmc_hndlr"
1691 };
1692
1693 static struct irqaction cmcp_irqaction = {
1694         .handler =      ia64_mca_cmc_int_caller,
1695         .flags =        IRQF_DISABLED,
1696         .name =         "cmc_poll"
1697 };
1698
1699 static struct irqaction mca_rdzv_irqaction = {
1700         .handler =      ia64_mca_rendez_int_handler,
1701         .flags =        IRQF_DISABLED,
1702         .name =         "mca_rdzv"
1703 };
1704
1705 static struct irqaction mca_wkup_irqaction = {
1706         .handler =      ia64_mca_wakeup_int_handler,
1707         .flags =        IRQF_DISABLED,
1708         .name =         "mca_wkup"
1709 };
1710
1711 #ifdef CONFIG_ACPI
1712 static struct irqaction mca_cpe_irqaction = {
1713         .handler =      ia64_mca_cpe_int_handler,
1714         .flags =        IRQF_DISABLED,
1715         .name =         "cpe_hndlr"
1716 };
1717
1718 static struct irqaction mca_cpep_irqaction = {
1719         .handler =      ia64_mca_cpe_int_caller,
1720         .flags =        IRQF_DISABLED,
1721         .name =         "cpe_poll"
1722 };
1723 #endif /* CONFIG_ACPI */
1724
1725 /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1726  * these stacks can never sleep, they cannot return from the kernel to user
1727  * space, they do not appear in a normal ps listing.  So there is no need to
1728  * format most of the fields.
1729  */
1730
1731 static void __cpuinit
1732 format_mca_init_stack(void *mca_data, unsigned long offset,
1733                 const char *type, int cpu)
1734 {
1735         struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1736         struct thread_info *ti;
1737         memset(p, 0, KERNEL_STACK_SIZE);
1738         ti = task_thread_info(p);
1739         ti->flags = _TIF_MCA_INIT;
1740         ti->preempt_count = 1;
1741         ti->task = p;
1742         ti->cpu = cpu;
1743         p->stack = ti;
1744         p->state = TASK_UNINTERRUPTIBLE;
1745         cpu_set(cpu, p->cpus_allowed);
1746         INIT_LIST_HEAD(&p->tasks);
1747         p->parent = p->real_parent = p->group_leader = p;
1748         INIT_LIST_HEAD(&p->children);
1749         INIT_LIST_HEAD(&p->sibling);
1750         strncpy(p->comm, type, sizeof(p->comm)-1);
1751 }
1752
1753 /* Caller prevents this from being called after init */
1754 static void * __init_refok mca_bootmem(void)
1755 {
1756         void *p;
1757
1758         p = alloc_bootmem(sizeof(struct ia64_mca_cpu) * NR_CPUS +
1759                           KERNEL_STACK_SIZE);
1760         return (void *)ALIGN((unsigned long)p, KERNEL_STACK_SIZE);
1761 }
1762
1763 /* Do per-CPU MCA-related initialization.  */
1764 void __cpuinit
1765 ia64_mca_cpu_init(void *cpu_data)
1766 {
1767         void *pal_vaddr;
1768         static int first_time = 1;
1769
1770         if (first_time) {
1771                 void *mca_data;
1772                 int cpu;
1773
1774                 first_time = 0;
1775                 mca_data = mca_bootmem();
1776                 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1777                         format_mca_init_stack(mca_data,
1778                                         offsetof(struct ia64_mca_cpu, mca_stack),
1779                                         "MCA", cpu);
1780                         format_mca_init_stack(mca_data,
1781                                         offsetof(struct ia64_mca_cpu, init_stack),
1782                                         "INIT", cpu);
1783                         __per_cpu_mca[cpu] = __pa(mca_data);
1784                         mca_data += sizeof(struct ia64_mca_cpu);
1785                 }
1786         }
1787
1788         /*
1789          * The MCA info structure was allocated earlier and its
1790          * physical address saved in __per_cpu_mca[cpu].  Copy that
1791          * address * to ia64_mca_data so we can access it as a per-CPU
1792          * variable.
1793          */
1794         __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1795
1796         /*
1797          * Stash away a copy of the PTE needed to map the per-CPU page.
1798          * We may need it during MCA recovery.
1799          */
1800         __get_cpu_var(ia64_mca_per_cpu_pte) =
1801                 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1802
1803         /*
1804          * Also, stash away a copy of the PAL address and the PTE
1805          * needed to map it.
1806          */
1807         pal_vaddr = efi_get_pal_addr();
1808         if (!pal_vaddr)
1809                 return;
1810         __get_cpu_var(ia64_mca_pal_base) =
1811                 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1812         __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1813                                                               PAGE_KERNEL));
1814 }
1815
1816 /*
1817  * ia64_mca_init
1818  *
1819  *  Do all the system level mca specific initialization.
1820  *
1821  *      1. Register spinloop and wakeup request interrupt vectors
1822  *
1823  *      2. Register OS_MCA handler entry point
1824  *
1825  *      3. Register OS_INIT handler entry point
1826  *
1827  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1828  *
1829  *  Note that this initialization is done very early before some kernel
1830  *  services are available.
1831  *
1832  *  Inputs  :   None
1833  *
1834  *  Outputs :   None
1835  */
1836 void __init
1837 ia64_mca_init(void)
1838 {
1839         ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1840         ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1841         ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1842         int i;
1843         s64 rc;
1844         struct ia64_sal_retval isrv;
1845         u64 timeout = IA64_MCA_RENDEZ_TIMEOUT;  /* platform specific */
1846         static struct notifier_block default_init_monarch_nb = {
1847                 .notifier_call = default_monarch_init_process,
1848                 .priority = 0/* we need to notified last */
1849         };
1850
1851         IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1852
1853         /* Clear the Rendez checkin flag for all cpus */
1854         for(i = 0 ; i < NR_CPUS; i++)
1855                 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1856
1857         /*
1858          * Register the rendezvous spinloop and wakeup mechanism with SAL
1859          */
1860
1861         /* Register the rendezvous interrupt vector with SAL */
1862         while (1) {
1863                 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1864                                               SAL_MC_PARAM_MECHANISM_INT,
1865                                               IA64_MCA_RENDEZ_VECTOR,
1866                                               timeout,
1867                                               SAL_MC_PARAM_RZ_ALWAYS);
1868                 rc = isrv.status;
1869                 if (rc == 0)
1870                         break;
1871                 if (rc == -2) {
1872                         printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1873                                 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1874                         timeout = isrv.v0;
1875                         (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1876                         continue;
1877                 }
1878                 printk(KERN_ERR "Failed to register rendezvous interrupt "
1879                        "with SAL (status %ld)\n", rc);
1880                 return;
1881         }
1882
1883         /* Register the wakeup interrupt vector with SAL */
1884         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1885                                       SAL_MC_PARAM_MECHANISM_INT,
1886                                       IA64_MCA_WAKEUP_VECTOR,
1887                                       0, 0);
1888         rc = isrv.status;
1889         if (rc) {
1890                 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1891                        "(status %ld)\n", rc);
1892                 return;
1893         }
1894
1895         IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1896
1897         ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1898         /*
1899          * XXX - disable SAL checksum by setting size to 0; should be
1900          *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1901          */
1902         ia64_mc_info.imi_mca_handler_size       = 0;
1903
1904         /* Register the os mca handler with SAL */
1905         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1906                                        ia64_mc_info.imi_mca_handler,
1907                                        ia64_tpa(mca_hldlr_ptr->gp),
1908                                        ia64_mc_info.imi_mca_handler_size,
1909                                        0, 0, 0)))
1910         {
1911                 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1912                        "(status %ld)\n", rc);
1913                 return;
1914         }
1915
1916         IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1917                        ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1918
1919         /*
1920          * XXX - disable SAL checksum by setting size to 0, should be
1921          * size of the actual init handler in mca_asm.S.
1922          */
1923         ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(init_hldlr_ptr_monarch->fp);
1924         ia64_mc_info.imi_monarch_init_handler_size      = 0;
1925         ia64_mc_info.imi_slave_init_handler             = ia64_tpa(init_hldlr_ptr_slave->fp);
1926         ia64_mc_info.imi_slave_init_handler_size        = 0;
1927
1928         IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1929                        ia64_mc_info.imi_monarch_init_handler);
1930
1931         /* Register the os init handler with SAL */
1932         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1933                                        ia64_mc_info.imi_monarch_init_handler,
1934                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1935                                        ia64_mc_info.imi_monarch_init_handler_size,
1936                                        ia64_mc_info.imi_slave_init_handler,
1937                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1938                                        ia64_mc_info.imi_slave_init_handler_size)))
1939         {
1940                 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1941                        "(status %ld)\n", rc);
1942                 return;
1943         }
1944         if (register_die_notifier(&default_init_monarch_nb)) {
1945                 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1946                 return;
1947         }
1948
1949         IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1950
1951         /*
1952          *  Configure the CMCI/P vector and handler. Interrupts for CMC are
1953          *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1954          */
1955         register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1956         register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1957         ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
1958
1959         /* Setup the MCA rendezvous interrupt vector */
1960         register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1961
1962         /* Setup the MCA wakeup interrupt vector */
1963         register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1964
1965 #ifdef CONFIG_ACPI
1966         /* Setup the CPEI/P handler */
1967         register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1968 #endif
1969
1970         /* Initialize the areas set aside by the OS to buffer the
1971          * platform/processor error states for MCA/INIT/CMC
1972          * handling.
1973          */
1974         ia64_log_init(SAL_INFO_TYPE_MCA);
1975         ia64_log_init(SAL_INFO_TYPE_INIT);
1976         ia64_log_init(SAL_INFO_TYPE_CMC);
1977         ia64_log_init(SAL_INFO_TYPE_CPE);
1978
1979         mca_init = 1;
1980         printk(KERN_INFO "MCA related initialization done\n");
1981 }
1982
1983 /*
1984  * ia64_mca_late_init
1985  *
1986  *      Opportunity to setup things that require initialization later
1987  *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
1988  *      platform doesn't support an interrupt driven mechanism.
1989  *
1990  *  Inputs  :   None
1991  *  Outputs :   Status
1992  */
1993 static int __init
1994 ia64_mca_late_init(void)
1995 {
1996         if (!mca_init)
1997                 return 0;
1998
1999         /* Setup the CMCI/P vector and handler */
2000         init_timer(&cmc_poll_timer);
2001         cmc_poll_timer.function = ia64_mca_cmc_poll;
2002
2003         /* Unmask/enable the vector */
2004         cmc_polling_enabled = 0;
2005         schedule_work(&cmc_enable_work);
2006
2007         IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
2008
2009 #ifdef CONFIG_ACPI
2010         /* Setup the CPEI/P vector and handler */
2011         cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2012         init_timer(&cpe_poll_timer);
2013         cpe_poll_timer.function = ia64_mca_cpe_poll;
2014
2015         {
2016                 irq_desc_t *desc;
2017                 unsigned int irq;
2018
2019                 if (cpe_vector >= 0) {
2020                         /* If platform supports CPEI, enable the irq. */
2021                         irq = local_vector_to_irq(cpe_vector);
2022                         if (irq > 0) {
2023                                 cpe_poll_enabled = 0;
2024                                 desc = irq_desc + irq;
2025                                 desc->status |= IRQ_PER_CPU;
2026                                 setup_irq(irq, &mca_cpe_irqaction);
2027                                 ia64_cpe_irq = irq;
2028                                 ia64_mca_register_cpev(cpe_vector);
2029                                 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2030                                         __FUNCTION__);
2031                                 return 0;
2032                         }
2033                         printk(KERN_ERR "%s: Failed to find irq for CPE "
2034                                         "interrupt handler, vector %d\n",
2035                                         __FUNCTION__, cpe_vector);
2036                 }
2037                 /* If platform doesn't support CPEI, get the timer going. */
2038                 if (cpe_poll_enabled) {
2039                         ia64_mca_cpe_poll(0UL);
2040                         IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
2041                 }
2042         }
2043 #endif
2044
2045         return 0;
2046 }
2047
2048 device_initcall(ia64_mca_late_init);