2 * Intel SMP support routines.
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
7 * This code is released under the GNU General Public License version 2 or
11 #include <linux/init.h>
14 #include <linux/irq.h>
15 #include <linux/delay.h>
16 #include <linux/spinlock.h>
17 #include <linux/smp_lock.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/mc146818rtc.h>
20 #include <linux/cache.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
25 #include <asm/tlbflush.h>
26 #include <mach_apic.h>
29 * Some notes on x86 processor bugs affecting SMP operation:
31 * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
32 * The Linux implications for SMP are handled as follows:
34 * Pentium III / [Xeon]
35 * None of the E1AP-E3AP errata are visible to the user.
42 * None of the A1AP-A3AP errata are visible to the user.
49 * None of 1AP-9AP errata are visible to the normal user,
50 * except occasional delivery of 'spurious interrupt' as trap #15.
51 * This is very rare and a non-problem.
53 * 1AP. Linux maps APIC as non-cacheable
54 * 2AP. worked around in hardware
55 * 3AP. fixed in C0 and above steppings microcode update.
56 * Linux does not use excessive STARTUP_IPIs.
57 * 4AP. worked around in hardware
58 * 5AP. symmetric IO mode (normal Linux operation) not affected.
59 * 'noapic' mode has vector 0xf filled out properly.
60 * 6AP. 'noapic' mode might be affected - fixed in later steppings
61 * 7AP. We do not assume writes to the LVT deassering IRQs
62 * 8AP. We do not enable low power mode (deep sleep) during MP bootup
63 * 9AP. We do not use mixed mode
66 * There is a marginal case where REP MOVS on 100MHz SMP
67 * machines with B stepping processors can fail. XXX should provide
68 * an L1cache=Writethrough or L1cache=off option.
70 * B stepping CPUs may hang. There are hardware work arounds
71 * for this. We warn about it in case your board doesn't have the work
72 * arounds. Basically thats so I can tell anyone with a B stepping
73 * CPU and SMP problems "tough".
75 * Specific items [From Pentium Processor Specification Update]
77 * 1AP. Linux doesn't use remote read
78 * 2AP. Linux doesn't trust APIC errors
79 * 3AP. We work around this
80 * 4AP. Linux never generated 3 interrupts of the same priority
81 * to cause a lost local interrupt.
82 * 5AP. Remote read is never used
83 * 6AP. not affected - worked around in hardware
84 * 7AP. not affected - worked around in hardware
85 * 8AP. worked around in hardware - we get explicit CS errors if not
86 * 9AP. only 'noapic' mode affected. Might generate spurious
87 * interrupts, we log only the first one and count the
89 * 10AP. not affected - worked around in hardware
90 * 11AP. Linux reads the APIC between writes to avoid this, as per
91 * the documentation. Make sure you preserve this as it affects
92 * the C stepping chips too.
93 * 12AP. not affected - worked around in hardware
94 * 13AP. not affected - worked around in hardware
95 * 14AP. we always deassert INIT during bootup
96 * 15AP. not affected - worked around in hardware
97 * 16AP. not affected - worked around in hardware
98 * 17AP. not affected - worked around in hardware
99 * 18AP. not affected - worked around in hardware
100 * 19AP. not affected - worked around in BIOS
102 * If this sounds worrying believe me these bugs are either ___RARE___,
103 * or are signal timing bugs worked around in hardware and there's
104 * about nothing of note with C stepping upwards.
107 DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, };
110 * the following functions deal with sending IPIs between CPUs.
112 * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
115 static inline int __prepare_ICR (unsigned int shortcut, int vector)
117 return APIC_DM_FIXED | shortcut | vector | APIC_DEST_LOGICAL;
120 static inline int __prepare_ICR2 (unsigned int mask)
122 return SET_APIC_DEST_FIELD(mask);
125 void __send_IPI_shortcut(unsigned int shortcut, int vector)
128 * Subtle. In the case of the 'never do double writes' workaround
129 * we have to lock out interrupts to be safe. As we don't care
130 * of the value read we use an atomic rmw access to avoid costly
131 * cli/sti. Otherwise we use an even cheaper single atomic write
139 apic_wait_icr_idle();
142 * No need to touch the target chip field
144 cfg = __prepare_ICR(shortcut, vector);
147 * Send the IPI. The write to APIC_ICR fires this off.
149 apic_write_around(APIC_ICR, cfg);
152 void fastcall send_IPI_self(int vector)
154 __send_IPI_shortcut(APIC_DEST_SELF, vector);
158 * This is only used on smaller machines.
160 void send_IPI_mask_bitmask(cpumask_t cpumask, int vector)
162 unsigned long mask = cpus_addr(cpumask)[0];
166 local_irq_save(flags);
171 apic_wait_icr_idle();
174 * prepare target chip field
176 cfg = __prepare_ICR2(mask);
177 apic_write_around(APIC_ICR2, cfg);
182 cfg = __prepare_ICR(0, vector);
185 * Send the IPI. The write to APIC_ICR fires this off.
187 apic_write_around(APIC_ICR, cfg);
189 local_irq_restore(flags);
192 void send_IPI_mask_sequence(cpumask_t mask, int vector)
194 unsigned long cfg, flags;
195 unsigned int query_cpu;
198 * Hack. The clustered APIC addressing mode doesn't allow us to send
199 * to an arbitrary mask, so I do a unicasts to each CPU instead. This
200 * should be modified to do 1 message per cluster ID - mbligh
203 local_irq_save(flags);
205 for (query_cpu = 0; query_cpu < NR_CPUS; ++query_cpu) {
206 if (cpu_isset(query_cpu, mask)) {
211 apic_wait_icr_idle();
214 * prepare target chip field
216 cfg = __prepare_ICR2(cpu_to_logical_apicid(query_cpu));
217 apic_write_around(APIC_ICR2, cfg);
222 cfg = __prepare_ICR(0, vector);
225 * Send the IPI. The write to APIC_ICR fires this off.
227 apic_write_around(APIC_ICR, cfg);
230 local_irq_restore(flags);
233 #include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */
236 * Smarter SMP flushing macros.
237 * c/o Linus Torvalds.
239 * These mean you can really definitely utterly forget about
240 * writing to user space from interrupts. (Its not allowed anyway).
242 * Optimizations Manfred Spraul <manfred@colorfullife.com>
245 static cpumask_t flush_cpumask;
246 static struct mm_struct * flush_mm;
247 static unsigned long flush_va;
248 static DEFINE_SPINLOCK(tlbstate_lock);
249 #define FLUSH_ALL 0xffffffff
252 * We cannot call mmdrop() because we are in interrupt context,
253 * instead update mm->cpu_vm_mask.
255 * We need to reload %cr3 since the page tables may be going
256 * away from under us..
258 static inline void leave_mm (unsigned long cpu)
260 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
262 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
263 load_cr3(swapper_pg_dir);
268 * The flush IPI assumes that a thread switch happens in this order:
269 * [cpu0: the cpu that switches]
270 * 1) switch_mm() either 1a) or 1b)
271 * 1a) thread switch to a different mm
272 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
273 * Stop ipi delivery for the old mm. This is not synchronized with
274 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
275 * for the wrong mm, and in the worst case we perform a superflous
277 * 1a2) set cpu_tlbstate to TLBSTATE_OK
278 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
279 * was in lazy tlb mode.
280 * 1a3) update cpu_tlbstate[].active_mm
281 * Now cpu0 accepts tlb flushes for the new mm.
282 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
283 * Now the other cpus will send tlb flush ipis.
285 * 1b) thread switch without mm change
286 * cpu_tlbstate[].active_mm is correct, cpu0 already handles
288 * 1b1) set cpu_tlbstate to TLBSTATE_OK
289 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
290 * Atomically set the bit [other cpus will start sending flush ipis],
292 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
293 * 2) switch %%esp, ie current
295 * The interrupt must handle 2 special cases:
296 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
297 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
298 * runs in kernel space, the cpu could load tlb entries for user space
301 * The good news is that cpu_tlbstate is local to each cpu, no
302 * write/read ordering problems.
308 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
309 * 2) Leave the mm if we are in the lazy tlb mode.
312 fastcall void smp_invalidate_interrupt(struct pt_regs *regs)
318 if (!cpu_isset(cpu, flush_cpumask))
321 * This was a BUG() but until someone can quote me the
322 * line from the intel manual that guarantees an IPI to
323 * multiple CPUs is retried _only_ on the erroring CPUs
324 * its staying as a return
329 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
330 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
331 if (flush_va == FLUSH_ALL)
334 __flush_tlb_one(flush_va);
339 smp_mb__before_clear_bit();
340 cpu_clear(cpu, flush_cpumask);
341 smp_mb__after_clear_bit();
343 put_cpu_no_resched();
346 static void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
351 * A couple of (to be removed) sanity checks:
353 * - we do not send IPIs to not-yet booted CPUs.
354 * - current CPU must not be in mask
355 * - mask must exist :)
357 BUG_ON(cpus_empty(cpumask));
359 cpus_and(tmp, cpumask, cpu_online_map);
360 BUG_ON(!cpus_equal(cpumask, tmp));
361 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
365 * i'm not happy about this global shared spinlock in the
366 * MM hot path, but we'll see how contended it is.
367 * Temporarily this turns IRQs off, so that lockups are
368 * detected by the NMI watchdog.
370 spin_lock(&tlbstate_lock);
374 #if NR_CPUS <= BITS_PER_LONG
375 atomic_set_mask(cpumask, &flush_cpumask);
379 unsigned long *flush_mask = (unsigned long *)&flush_cpumask;
380 unsigned long *cpu_mask = (unsigned long *)&cpumask;
381 for (k = 0; k < BITS_TO_LONGS(NR_CPUS); ++k)
382 atomic_set_mask(cpu_mask[k], &flush_mask[k]);
386 * We have to send the IPI only to
389 send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
391 while (!cpus_empty(flush_cpumask))
392 /* nothing. lockup detection does not belong here */
397 spin_unlock(&tlbstate_lock);
400 void flush_tlb_current_task(void)
402 struct mm_struct *mm = current->mm;
406 cpu_mask = mm->cpu_vm_mask;
407 cpu_clear(smp_processor_id(), cpu_mask);
410 if (!cpus_empty(cpu_mask))
411 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
415 void flush_tlb_mm (struct mm_struct * mm)
420 cpu_mask = mm->cpu_vm_mask;
421 cpu_clear(smp_processor_id(), cpu_mask);
423 if (current->active_mm == mm) {
427 leave_mm(smp_processor_id());
429 if (!cpus_empty(cpu_mask))
430 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
435 void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
437 struct mm_struct *mm = vma->vm_mm;
441 cpu_mask = mm->cpu_vm_mask;
442 cpu_clear(smp_processor_id(), cpu_mask);
444 if (current->active_mm == mm) {
448 leave_mm(smp_processor_id());
451 if (!cpus_empty(cpu_mask))
452 flush_tlb_others(cpu_mask, mm, va);
456 EXPORT_SYMBOL(flush_tlb_page);
458 static void do_flush_tlb_all(void* info)
460 unsigned long cpu = smp_processor_id();
463 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
467 void flush_tlb_all(void)
469 on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
473 * this function sends a 'reschedule' IPI to another CPU.
474 * it goes straight through and wastes no time serializing
475 * anything. Worst case is that we lose a reschedule ...
477 void smp_send_reschedule(int cpu)
479 send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
483 * Structure and data for smp_call_function(). This is designed to minimise
484 * static memory requirements. It also looks cleaner.
486 static DEFINE_SPINLOCK(call_lock);
488 struct call_data_struct {
489 void (*func) (void *info);
496 static struct call_data_struct * call_data;
499 * this function sends a 'generic call function' IPI to all other CPUs
503 int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
506 * [SUMMARY] Run a function on all other CPUs.
507 * <func> The function to run. This must be fast and non-blocking.
508 * <info> An arbitrary pointer to pass to the function.
509 * <nonatomic> currently unused.
510 * <wait> If true, wait (atomically) until function has completed on other CPUs.
511 * [RETURNS] 0 on success, else a negative status code. Does not return until
512 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
514 * You must not call this function with disabled interrupts or from a
515 * hardware interrupt handler or from a bottom half handler.
518 struct call_data_struct data;
519 int cpus = num_online_cpus()-1;
524 /* Can deadlock when called with interrupts disabled */
525 WARN_ON(irqs_disabled());
529 atomic_set(&data.started, 0);
532 atomic_set(&data.finished, 0);
534 spin_lock(&call_lock);
538 /* Send a message to all other CPUs and wait for them to respond */
539 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
541 /* Wait for response */
542 while (atomic_read(&data.started) != cpus)
546 while (atomic_read(&data.finished) != cpus)
548 spin_unlock(&call_lock);
552 EXPORT_SYMBOL(smp_call_function);
554 static void stop_this_cpu (void * dummy)
559 cpu_clear(smp_processor_id(), cpu_online_map);
561 disable_local_APIC();
562 if (cpu_data[smp_processor_id()].hlt_works_ok)
563 for(;;) __asm__("hlt");
568 * this function calls the 'stop' function on all other CPUs in the system.
571 void smp_send_stop(void)
573 smp_call_function(stop_this_cpu, NULL, 1, 0);
576 disable_local_APIC();
581 * Reschedule call back. Nothing to do,
582 * all the work is done automatically when
583 * we return from the interrupt.
585 fastcall void smp_reschedule_interrupt(struct pt_regs *regs)
590 fastcall void smp_call_function_interrupt(struct pt_regs *regs)
592 void (*func) (void *info) = call_data->func;
593 void *info = call_data->info;
594 int wait = call_data->wait;
598 * Notify initiating CPU that I've grabbed the data and am
599 * about to execute the function
602 atomic_inc(&call_data->started);
604 * At this point the info structure may be out of scope unless wait==1
612 atomic_inc(&call_data->finished);