2 * 6pack.c This module implements the 6pack protocol for kernel-based
3 * devices like TTY. It interfaces between a raw TTY and the
4 * kernel's AX.25 protocol layers.
6 * Authors: Andreas Könsgen <ajk@iehk.rwth-aachen.de>
7 * Ralf Baechle DL5RB <ralf@linux-mips.org>
9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
11 * Laurence Culhane, <loz@holmes.demon.co.uk>
12 * Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
15 #include <linux/module.h>
16 #include <asm/system.h>
17 #include <asm/uaccess.h>
18 #include <linux/bitops.h>
19 #include <linux/string.h>
21 #include <linux/interrupt.h>
23 #include <linux/tty.h>
24 #include <linux/errno.h>
25 #include <linux/netdevice.h>
26 #include <linux/timer.h>
28 #include <linux/etherdevice.h>
29 #include <linux/skbuff.h>
30 #include <linux/rtnetlink.h>
31 #include <linux/spinlock.h>
32 #include <linux/if_arp.h>
33 #include <linux/init.h>
35 #include <linux/tcp.h>
36 #include <linux/semaphore.h>
37 #include <asm/atomic.h>
39 #define SIXPACK_VERSION "Revision: 0.3.0"
41 /* sixpack priority commands */
42 #define SIXP_SEOF 0x40 /* start and end of a 6pack frame */
43 #define SIXP_TX_URUN 0x48 /* transmit overrun */
44 #define SIXP_RX_ORUN 0x50 /* receive overrun */
45 #define SIXP_RX_BUF_OVL 0x58 /* receive buffer overflow */
47 #define SIXP_CHKSUM 0xFF /* valid checksum of a 6pack frame */
49 /* masks to get certain bits out of the status bytes sent by the TNC */
51 #define SIXP_CMD_MASK 0xC0
52 #define SIXP_CHN_MASK 0x07
53 #define SIXP_PRIO_CMD_MASK 0x80
54 #define SIXP_STD_CMD_MASK 0x40
55 #define SIXP_PRIO_DATA_MASK 0x38
56 #define SIXP_TX_MASK 0x20
57 #define SIXP_RX_MASK 0x10
58 #define SIXP_RX_DCD_MASK 0x18
59 #define SIXP_LEDS_ON 0x78
60 #define SIXP_LEDS_OFF 0x60
64 #define SIXP_FOUND_TNC 0xe9
65 #define SIXP_CON_ON 0x68
66 #define SIXP_DCD_MASK 0x08
67 #define SIXP_DAMA_OFF 0
69 /* default level 2 parameters */
70 #define SIXP_TXDELAY (HZ/4) /* in 1 s */
71 #define SIXP_PERSIST 50 /* in 256ths */
72 #define SIXP_SLOTTIME (HZ/10) /* in 1 s */
73 #define SIXP_INIT_RESYNC_TIMEOUT (3*HZ/2) /* in 1 s */
74 #define SIXP_RESYNC_TIMEOUT 5*HZ /* in 1 s */
76 /* 6pack configuration. */
77 #define SIXP_NRUNIT 31 /* MAX number of 6pack channels */
78 #define SIXP_MTU 256 /* Default MTU */
81 SIXPF_ERROR, /* Parity, etc. error */
86 struct tty_struct *tty; /* ptr to TTY structure */
87 struct net_device *dev; /* easy for intr handling */
89 /* These are pointers to the malloc()ed frame buffers. */
90 unsigned char *rbuff; /* receiver buffer */
91 int rcount; /* received chars counter */
92 unsigned char *xbuff; /* transmitter buffer */
93 unsigned char *xhead; /* next byte to XMIT */
94 int xleft; /* bytes left in XMIT queue */
96 unsigned char raw_buf[4];
97 unsigned char cooked_buf[400];
99 unsigned int rx_count;
100 unsigned int rx_count_cooked;
102 int mtu; /* Our mtu (to spot changes!) */
103 int buffsize; /* Max buffers sizes */
105 unsigned long flags; /* Flag values/ mode etc */
106 unsigned char mode; /* 6pack mode */
109 unsigned char tx_delay;
110 unsigned char persistence;
111 unsigned char slottime;
112 unsigned char duplex;
113 unsigned char led_state;
114 unsigned char status;
115 unsigned char status1;
116 unsigned char status2;
117 unsigned char tx_enable;
118 unsigned char tnc_state;
120 struct timer_list tx_t;
121 struct timer_list resync_t;
123 struct semaphore dead_sem;
127 #define AX25_6PACK_HEADER_LEN 0
129 static void sixpack_decode(struct sixpack *, unsigned char[], int);
130 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
133 * Perform the persistence/slottime algorithm for CSMA access. If the
134 * persistence check was successful, write the data to the serial driver.
135 * Note that in case of DAMA operation, the data is not sent here.
138 static void sp_xmit_on_air(unsigned long channel)
140 struct sixpack *sp = (struct sixpack *) channel;
141 int actual, when = sp->slottime;
142 static unsigned char random;
144 random = random * 17 + 41;
146 if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
147 sp->led_state = 0x70;
148 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
150 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
153 sp->led_state = 0x60;
154 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
157 mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
160 /* ----> 6pack timer interrupt handler and friends. <---- */
162 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */
163 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
165 unsigned char *msg, *p = icp;
168 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
169 msg = "oversized transmit packet!";
173 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
174 msg = "oversized transmit packet!";
179 msg = "invalid KISS command";
183 if ((p[0] != 0) && (len > 2)) {
184 msg = "KISS control packet too long";
188 if ((p[0] == 0) && (len < 15)) {
189 msg = "bad AX.25 packet to transmit";
193 count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
194 set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
197 case 1: sp->tx_delay = p[1];
199 case 2: sp->persistence = p[1];
201 case 3: sp->slottime = p[1];
203 case 4: /* ignored */
205 case 5: sp->duplex = p[1];
213 * In case of fullduplex or DAMA operation, we don't take care about the
214 * state of the DCD or of any timers, as the determination of the
215 * correct time to send is the job of the AX.25 layer. We send
216 * immediately after data has arrived.
218 if (sp->duplex == 1) {
219 sp->led_state = 0x70;
220 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
222 actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
223 sp->xleft = count - actual;
224 sp->xhead = sp->xbuff + actual;
225 sp->led_state = 0x60;
226 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
229 sp->xhead = sp->xbuff;
231 sp_xmit_on_air((unsigned long)sp);
237 sp->dev->stats.tx_dropped++;
238 netif_start_queue(sp->dev);
240 printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
243 /* Encapsulate an IP datagram and kick it into a TTY queue. */
245 static int sp_xmit(struct sk_buff *skb, struct net_device *dev)
247 struct sixpack *sp = netdev_priv(dev);
249 spin_lock_bh(&sp->lock);
250 /* We were not busy, so we are now... :-) */
251 netif_stop_queue(dev);
252 dev->stats.tx_bytes += skb->len;
253 sp_encaps(sp, skb->data, skb->len);
254 spin_unlock_bh(&sp->lock);
261 static int sp_open_dev(struct net_device *dev)
263 struct sixpack *sp = netdev_priv(dev);
270 /* Close the low-level part of the 6pack channel. */
271 static int sp_close(struct net_device *dev)
273 struct sixpack *sp = netdev_priv(dev);
275 spin_lock_bh(&sp->lock);
277 /* TTY discipline is running. */
278 clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
280 netif_stop_queue(dev);
281 spin_unlock_bh(&sp->lock);
286 /* Return the frame type ID */
287 static int sp_header(struct sk_buff *skb, struct net_device *dev,
288 unsigned short type, const void *daddr,
289 const void *saddr, unsigned len)
292 if (type != ETH_P_AX25)
293 return ax25_hard_header(skb, dev, type, daddr, saddr, len);
298 static int sp_set_mac_address(struct net_device *dev, void *addr)
300 struct sockaddr_ax25 *sa = addr;
302 netif_tx_lock_bh(dev);
303 netif_addr_lock(dev);
304 memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
305 netif_addr_unlock(dev);
306 netif_tx_unlock_bh(dev);
311 static int sp_rebuild_header(struct sk_buff *skb)
314 return ax25_rebuild_header(skb);
320 static const struct header_ops sp_header_ops = {
322 .rebuild = sp_rebuild_header,
325 static void sp_setup(struct net_device *dev)
327 /* Finish setting up the DEVICE info. */
329 dev->hard_start_xmit = sp_xmit;
330 dev->open = sp_open_dev;
331 dev->destructor = free_netdev;
332 dev->stop = sp_close;
334 dev->set_mac_address = sp_set_mac_address;
335 dev->hard_header_len = AX25_MAX_HEADER_LEN;
336 dev->header_ops = &sp_header_ops;
338 dev->addr_len = AX25_ADDR_LEN;
339 dev->type = ARPHRD_AX25;
340 dev->tx_queue_len = 10;
341 dev->tx_timeout = NULL;
343 /* Only activated in AX.25 mode */
344 memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
345 memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
350 /* Send one completely decapsulated IP datagram to the IP layer. */
353 * This is the routine that sends the received data to the kernel AX.25.
354 * 'cmd' is the KISS command. For AX.25 data, it is zero.
357 static void sp_bump(struct sixpack *sp, char cmd)
363 count = sp->rcount + 1;
365 sp->dev->stats.rx_bytes += count;
367 if ((skb = dev_alloc_skb(count)) == NULL)
370 ptr = skb_put(skb, count);
371 *ptr++ = cmd; /* KISS command */
373 memcpy(ptr, sp->cooked_buf + 1, count);
374 skb->protocol = ax25_type_trans(skb, sp->dev);
376 sp->dev->last_rx = jiffies;
377 sp->dev->stats.rx_packets++;
382 sp->dev->stats.rx_dropped++;
386 /* ----------------------------------------------------------------------- */
389 * We have a potential race on dereferencing tty->disc_data, because the tty
390 * layer provides no locking at all - thus one cpu could be running
391 * sixpack_receive_buf while another calls sixpack_close, which zeroes
392 * tty->disc_data and frees the memory that sixpack_receive_buf is using. The
393 * best way to fix this is to use a rwlock in the tty struct, but for now we
394 * use a single global rwlock for all ttys in ppp line discipline.
396 static DEFINE_RWLOCK(disc_data_lock);
398 static struct sixpack *sp_get(struct tty_struct *tty)
402 read_lock(&disc_data_lock);
405 atomic_inc(&sp->refcnt);
406 read_unlock(&disc_data_lock);
411 static void sp_put(struct sixpack *sp)
413 if (atomic_dec_and_test(&sp->refcnt))
418 * Called by the TTY driver when there's room for more data. If we have
419 * more packets to send, we send them here.
421 static void sixpack_write_wakeup(struct tty_struct *tty)
423 struct sixpack *sp = sp_get(tty);
428 if (sp->xleft <= 0) {
429 /* Now serial buffer is almost free & we can start
430 * transmission of another packet */
431 sp->dev->stats.tx_packets++;
432 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
434 netif_wake_queue(sp->dev);
439 actual = tty->ops->write(tty, sp->xhead, sp->xleft);
448 /* ----------------------------------------------------------------------- */
451 * Handle the 'receiver data ready' interrupt.
452 * This function is called by the 'tty_io' module in the kernel when
453 * a block of 6pack data has been received, which can now be decapsulated
454 * and sent on to some IP layer for further processing.
456 static void sixpack_receive_buf(struct tty_struct *tty,
457 const unsigned char *cp, char *fp, int count)
460 unsigned char buf[512];
470 memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));
472 /* Read the characters out of the buffer */
478 if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
479 sp->dev->stats.rx_errors++;
483 sixpack_decode(sp, buf, count1);
490 * Try to resync the TNC. Called by the resync timer defined in
491 * decode_prio_command
494 #define TNC_UNINITIALIZED 0
495 #define TNC_UNSYNC_STARTUP 1
496 #define TNC_UNSYNCED 2
497 #define TNC_IN_SYNC 3
499 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
503 switch (new_tnc_state) {
504 default: /* gcc oh piece-o-crap ... */
505 case TNC_UNSYNC_STARTUP:
506 msg = "Synchronizing with TNC";
509 msg = "Lost synchronization with TNC\n";
516 sp->tnc_state = new_tnc_state;
517 printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
520 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
522 int old_tnc_state = sp->tnc_state;
524 if (old_tnc_state != new_tnc_state)
525 __tnc_set_sync_state(sp, new_tnc_state);
528 static void resync_tnc(unsigned long channel)
530 struct sixpack *sp = (struct sixpack *) channel;
531 static char resync_cmd = 0xe8;
533 /* clear any data that might have been received */
536 sp->rx_count_cooked = 0;
538 /* reset state machine */
546 sp->led_state = 0x60;
547 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
548 sp->tty->ops->write(sp->tty, &resync_cmd, 1);
551 /* Start resync timer again -- the TNC might be still absent */
553 del_timer(&sp->resync_t);
554 sp->resync_t.data = (unsigned long) sp;
555 sp->resync_t.function = resync_tnc;
556 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
557 add_timer(&sp->resync_t);
560 static inline int tnc_init(struct sixpack *sp)
562 unsigned char inbyte = 0xe8;
564 tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
566 sp->tty->ops->write(sp->tty, &inbyte, 1);
568 del_timer(&sp->resync_t);
569 sp->resync_t.data = (unsigned long) sp;
570 sp->resync_t.function = resync_tnc;
571 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
572 add_timer(&sp->resync_t);
578 * Open the high-level part of the 6pack channel.
579 * This function is called by the TTY module when the
580 * 6pack line discipline is called for. Because we are
581 * sure the tty line exists, we only have to link it to
582 * a free 6pcack channel...
584 static int sixpack_open(struct tty_struct *tty)
586 char *rbuff = NULL, *xbuff = NULL;
587 struct net_device *dev;
592 if (!capable(CAP_NET_ADMIN))
594 if (tty->ops->write == NULL)
597 dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup);
603 sp = netdev_priv(dev);
606 spin_lock_init(&sp->lock);
607 atomic_set(&sp->refcnt, 1);
608 init_MUTEX_LOCKED(&sp->dead_sem);
610 /* !!! length of the buffers. MTU is IP MTU, not PACLEN! */
614 rbuff = kmalloc(len + 4, GFP_KERNEL);
615 xbuff = kmalloc(len + 4, GFP_KERNEL);
617 if (rbuff == NULL || xbuff == NULL) {
622 spin_lock_bh(&sp->lock);
629 sp->mtu = AX25_MTU + 73;
633 sp->rx_count_cooked = 0;
636 sp->flags = 0; /* Clear ESCAPE & ERROR flags */
639 sp->tx_delay = SIXP_TXDELAY;
640 sp->persistence = SIXP_PERSIST;
641 sp->slottime = SIXP_SLOTTIME;
642 sp->led_state = 0x60;
648 netif_start_queue(dev);
650 init_timer(&sp->tx_t);
651 sp->tx_t.function = sp_xmit_on_air;
652 sp->tx_t.data = (unsigned long) sp;
654 init_timer(&sp->resync_t);
656 spin_unlock_bh(&sp->lock);
658 /* Done. We have linked the TTY line to a channel. */
660 tty->receive_room = 65536;
662 /* Now we're ready to register. */
663 if (register_netdev(dev))
683 * Close down a 6pack channel.
684 * This means flushing out any pending queues, and then restoring the
685 * TTY line discipline to what it was before it got hooked to 6pack
686 * (which usually is TTY again).
688 static void sixpack_close(struct tty_struct *tty)
692 write_lock(&disc_data_lock);
694 tty->disc_data = NULL;
695 write_unlock(&disc_data_lock);
700 * We have now ensured that nobody can start using ap from now on, but
701 * we have to wait for all existing users to finish.
703 if (!atomic_dec_and_test(&sp->refcnt))
706 unregister_netdev(sp->dev);
708 del_timer(&sp->tx_t);
709 del_timer(&sp->resync_t);
711 /* Free all 6pack frame buffers. */
716 /* Perform I/O control on an active 6pack channel. */
717 static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
718 unsigned int cmd, unsigned long arg)
720 struct sixpack *sp = sp_get(tty);
721 struct net_device *dev = sp->dev;
722 unsigned int tmp, err;
729 err = copy_to_user((void __user *) arg, dev->name,
730 strlen(dev->name) + 1) ? -EFAULT : 0;
734 err = put_user(0, (int __user *) arg);
738 if (get_user(tmp, (int __user *) arg)) {
744 dev->addr_len = AX25_ADDR_LEN;
745 dev->hard_header_len = AX25_KISS_HEADER_LEN +
746 AX25_MAX_HEADER_LEN + 3;
747 dev->type = ARPHRD_AX25;
752 case SIOCSIFHWADDR: {
753 char addr[AX25_ADDR_LEN];
755 if (copy_from_user(&addr,
756 (void __user *) arg, AX25_ADDR_LEN)) {
761 netif_tx_lock_bh(dev);
762 memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
763 netif_tx_unlock_bh(dev);
770 err = tty_mode_ioctl(tty, file, cmd, arg);
778 static struct tty_ldisc_ops sp_ldisc = {
779 .owner = THIS_MODULE,
780 .magic = TTY_LDISC_MAGIC,
782 .open = sixpack_open,
783 .close = sixpack_close,
784 .ioctl = sixpack_ioctl,
785 .receive_buf = sixpack_receive_buf,
786 .write_wakeup = sixpack_write_wakeup,
789 /* Initialize 6pack control device -- register 6pack line discipline */
791 static char msg_banner[] __initdata = KERN_INFO \
792 "AX.25: 6pack driver, " SIXPACK_VERSION "\n";
793 static char msg_regfail[] __initdata = KERN_ERR \
794 "6pack: can't register line discipline (err = %d)\n";
796 static int __init sixpack_init_driver(void)
802 /* Register the provided line protocol discipline */
803 if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
804 printk(msg_regfail, status);
809 static const char msg_unregfail[] __exitdata = KERN_ERR \
810 "6pack: can't unregister line discipline (err = %d)\n";
812 static void __exit sixpack_exit_driver(void)
816 if ((ret = tty_unregister_ldisc(N_6PACK)))
817 printk(msg_unregfail, ret);
820 /* encode an AX.25 packet into 6pack */
822 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
823 int length, unsigned char tx_delay)
826 unsigned char checksum = 0, buf[400];
829 tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
830 tx_buf_raw[raw_count++] = SIXP_SEOF;
833 for (count = 1; count < length; count++)
834 buf[count] = tx_buf[count];
836 for (count = 0; count < length; count++)
837 checksum += buf[count];
838 buf[length] = (unsigned char) 0xff - checksum;
840 for (count = 0; count <= length; count++) {
841 if ((count % 3) == 0) {
842 tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
843 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
844 } else if ((count % 3) == 1) {
845 tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
846 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x3c);
848 tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
849 tx_buf_raw[raw_count++] = (buf[count] >> 2);
852 if ((length % 3) != 2)
854 tx_buf_raw[raw_count++] = SIXP_SEOF;
858 /* decode 4 sixpack-encoded bytes into 3 data bytes */
860 static void decode_data(struct sixpack *sp, unsigned char inbyte)
864 if (sp->rx_count != 3) {
865 sp->raw_buf[sp->rx_count++] = inbyte;
871 sp->cooked_buf[sp->rx_count_cooked++] =
872 buf[0] | ((buf[1] << 2) & 0xc0);
873 sp->cooked_buf[sp->rx_count_cooked++] =
874 (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
875 sp->cooked_buf[sp->rx_count_cooked++] =
876 (buf[2] & 0x03) | (inbyte << 2);
880 /* identify and execute a 6pack priority command byte */
882 static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
884 unsigned char channel;
887 channel = cmd & SIXP_CHN_MASK;
888 if ((cmd & SIXP_PRIO_DATA_MASK) != 0) { /* idle ? */
890 /* RX and DCD flags can only be set in the same prio command,
891 if the DCD flag has been set without the RX flag in the previous
892 prio command. If DCD has not been set before, something in the
893 transmission has gone wrong. In this case, RX and DCD are
894 cleared in order to prevent the decode_data routine from
895 reading further data that might be corrupt. */
897 if (((sp->status & SIXP_DCD_MASK) == 0) &&
898 ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
900 printk(KERN_DEBUG "6pack: protocol violation\n");
903 cmd &= ~SIXP_RX_DCD_MASK;
905 sp->status = cmd & SIXP_PRIO_DATA_MASK;
906 } else { /* output watchdog char if idle */
907 if ((sp->status2 != 0) && (sp->duplex == 1)) {
908 sp->led_state = 0x70;
909 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
911 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
914 sp->led_state = 0x60;
920 /* needed to trigger the TNC watchdog */
921 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
923 /* if the state byte has been received, the TNC is present,
924 so the resync timer can be reset. */
926 if (sp->tnc_state == TNC_IN_SYNC) {
927 del_timer(&sp->resync_t);
928 sp->resync_t.data = (unsigned long) sp;
929 sp->resync_t.function = resync_tnc;
930 sp->resync_t.expires = jiffies + SIXP_INIT_RESYNC_TIMEOUT;
931 add_timer(&sp->resync_t);
934 sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
937 /* identify and execute a standard 6pack command byte */
939 static void decode_std_command(struct sixpack *sp, unsigned char cmd)
941 unsigned char checksum = 0, rest = 0, channel;
944 channel = cmd & SIXP_CHN_MASK;
945 switch (cmd & SIXP_CMD_MASK) { /* normal command */
947 if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
948 if ((sp->status & SIXP_RX_DCD_MASK) ==
950 sp->led_state = 0x68;
951 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
954 sp->led_state = 0x60;
955 /* fill trailing bytes with zeroes */
956 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
959 for (i = rest; i <= 3; i++)
962 sp->rx_count_cooked -= 2;
964 sp->rx_count_cooked -= 1;
965 for (i = 0; i < sp->rx_count_cooked; i++)
966 checksum += sp->cooked_buf[i];
967 if (checksum != SIXP_CHKSUM) {
968 printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
970 sp->rcount = sp->rx_count_cooked-2;
973 sp->rx_count_cooked = 0;
976 case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
978 case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
980 case SIXP_RX_BUF_OVL:
981 printk(KERN_DEBUG "6pack: RX buffer overflow\n");
985 /* decode a 6pack packet */
988 sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
990 unsigned char inbyte;
993 for (count1 = 0; count1 < count; count1++) {
994 inbyte = pre_rbuff[count1];
995 if (inbyte == SIXP_FOUND_TNC) {
996 tnc_set_sync_state(sp, TNC_IN_SYNC);
997 del_timer(&sp->resync_t);
999 if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1000 decode_prio_command(sp, inbyte);
1001 else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1002 decode_std_command(sp, inbyte);
1003 else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
1004 decode_data(sp, inbyte);
1008 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1009 MODULE_DESCRIPTION("6pack driver for AX.25");
1010 MODULE_LICENSE("GPL");
1011 MODULE_ALIAS_LDISC(N_6PACK);
1013 module_init(sixpack_init_driver);
1014 module_exit(sixpack_exit_driver);