2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
43 #include <linux/interrupt.h>
45 #include <linux/inet.h>
46 #include <linux/slab.h>
47 #include <linux/netdevice.h>
48 #ifdef CONFIG_NET_CLS_ACT
49 #include <net/pkt_sched.h>
51 #include <linux/string.h>
52 #include <linux/skbuff.h>
53 #include <linux/splice.h>
54 #include <linux/cache.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/init.h>
57 #include <linux/scatterlist.h>
59 #include <net/protocol.h>
62 #include <net/checksum.h>
65 #include <asm/uaccess.h>
66 #include <asm/system.h>
70 static struct kmem_cache *skbuff_head_cache __read_mostly;
71 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
73 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
74 struct pipe_buffer *buf)
76 struct sk_buff *skb = (struct sk_buff *) buf->private;
81 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
82 struct pipe_buffer *buf)
84 struct sk_buff *skb = (struct sk_buff *) buf->private;
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
96 /* Pipe buffer operations for a socket. */
97 static struct pipe_buf_operations sock_pipe_buf_ops = {
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
114 * skb_over_panic - private function
119 * Out of line support code for skb_put(). Not user callable.
121 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
123 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
124 "data:%p tail:%#lx end:%#lx dev:%s\n",
125 here, skb->len, sz, skb->head, skb->data,
126 (unsigned long)skb->tail, (unsigned long)skb->end,
127 skb->dev ? skb->dev->name : "<NULL>");
132 * skb_under_panic - private function
137 * Out of line support code for skb_push(). Not user callable.
140 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
142 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
143 "data:%p tail:%#lx end:%#lx dev:%s\n",
144 here, skb->len, sz, skb->head, skb->data,
145 (unsigned long)skb->tail, (unsigned long)skb->end,
146 skb->dev ? skb->dev->name : "<NULL>");
150 void skb_truesize_bug(struct sk_buff *skb)
152 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
153 "len=%u, sizeof(sk_buff)=%Zd\n",
154 skb->truesize, skb->len, sizeof(struct sk_buff));
156 EXPORT_SYMBOL(skb_truesize_bug);
158 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
159 * 'private' fields and also do memory statistics to find all the
165 * __alloc_skb - allocate a network buffer
166 * @size: size to allocate
167 * @gfp_mask: allocation mask
168 * @fclone: allocate from fclone cache instead of head cache
169 * and allocate a cloned (child) skb
170 * @node: numa node to allocate memory on
172 * Allocate a new &sk_buff. The returned buffer has no headroom and a
173 * tail room of size bytes. The object has a reference count of one.
174 * The return is the buffer. On a failure the return is %NULL.
176 * Buffers may only be allocated from interrupts using a @gfp_mask of
179 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
180 int fclone, int node)
182 struct kmem_cache *cache;
183 struct skb_shared_info *shinfo;
187 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
190 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
194 size = SKB_DATA_ALIGN(size);
195 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
201 * Only clear those fields we need to clear, not those that we will
202 * actually initialise below. Hence, don't put any more fields after
203 * the tail pointer in struct sk_buff!
205 memset(skb, 0, offsetof(struct sk_buff, tail));
206 skb->truesize = size + sizeof(struct sk_buff);
207 atomic_set(&skb->users, 1);
210 skb_reset_tail_pointer(skb);
211 skb->end = skb->tail + size;
212 /* make sure we initialize shinfo sequentially */
213 shinfo = skb_shinfo(skb);
214 atomic_set(&shinfo->dataref, 1);
215 shinfo->nr_frags = 0;
216 shinfo->gso_size = 0;
217 shinfo->gso_segs = 0;
218 shinfo->gso_type = 0;
219 shinfo->ip6_frag_id = 0;
220 shinfo->frag_list = NULL;
223 struct sk_buff *child = skb + 1;
224 atomic_t *fclone_ref = (atomic_t *) (child + 1);
226 skb->fclone = SKB_FCLONE_ORIG;
227 atomic_set(fclone_ref, 1);
229 child->fclone = SKB_FCLONE_UNAVAILABLE;
234 kmem_cache_free(cache, skb);
240 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
241 * @dev: network device to receive on
242 * @length: length to allocate
243 * @gfp_mask: get_free_pages mask, passed to alloc_skb
245 * Allocate a new &sk_buff and assign it a usage count of one. The
246 * buffer has unspecified headroom built in. Users should allocate
247 * the headroom they think they need without accounting for the
248 * built in space. The built in space is used for optimisations.
250 * %NULL is returned if there is no free memory.
252 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
253 unsigned int length, gfp_t gfp_mask)
255 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
258 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
260 skb_reserve(skb, NET_SKB_PAD);
266 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
268 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
271 page = alloc_pages_node(node, gfp_mask, 0);
274 EXPORT_SYMBOL(__netdev_alloc_page);
276 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
279 skb_fill_page_desc(skb, i, page, off, size);
281 skb->data_len += size;
282 skb->truesize += size;
284 EXPORT_SYMBOL(skb_add_rx_frag);
287 * dev_alloc_skb - allocate an skbuff for receiving
288 * @length: length to allocate
290 * Allocate a new &sk_buff and assign it a usage count of one. The
291 * buffer has unspecified headroom built in. Users should allocate
292 * the headroom they think they need without accounting for the
293 * built in space. The built in space is used for optimisations.
295 * %NULL is returned if there is no free memory. Although this function
296 * allocates memory it can be called from an interrupt.
298 struct sk_buff *dev_alloc_skb(unsigned int length)
301 * There is more code here than it seems:
302 * __dev_alloc_skb is an inline
304 return __dev_alloc_skb(length, GFP_ATOMIC);
306 EXPORT_SYMBOL(dev_alloc_skb);
308 static void skb_drop_list(struct sk_buff **listp)
310 struct sk_buff *list = *listp;
315 struct sk_buff *this = list;
321 static inline void skb_drop_fraglist(struct sk_buff *skb)
323 skb_drop_list(&skb_shinfo(skb)->frag_list);
326 static void skb_clone_fraglist(struct sk_buff *skb)
328 struct sk_buff *list;
330 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
334 static void skb_release_data(struct sk_buff *skb)
337 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
338 &skb_shinfo(skb)->dataref)) {
339 if (skb_shinfo(skb)->nr_frags) {
341 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
342 put_page(skb_shinfo(skb)->frags[i].page);
345 if (skb_shinfo(skb)->frag_list)
346 skb_drop_fraglist(skb);
353 * Free an skbuff by memory without cleaning the state.
355 static void kfree_skbmem(struct sk_buff *skb)
357 struct sk_buff *other;
358 atomic_t *fclone_ref;
360 switch (skb->fclone) {
361 case SKB_FCLONE_UNAVAILABLE:
362 kmem_cache_free(skbuff_head_cache, skb);
365 case SKB_FCLONE_ORIG:
366 fclone_ref = (atomic_t *) (skb + 2);
367 if (atomic_dec_and_test(fclone_ref))
368 kmem_cache_free(skbuff_fclone_cache, skb);
371 case SKB_FCLONE_CLONE:
372 fclone_ref = (atomic_t *) (skb + 1);
375 /* The clone portion is available for
376 * fast-cloning again.
378 skb->fclone = SKB_FCLONE_UNAVAILABLE;
380 if (atomic_dec_and_test(fclone_ref))
381 kmem_cache_free(skbuff_fclone_cache, other);
386 static void skb_release_head_state(struct sk_buff *skb)
388 dst_release(skb->dst);
390 secpath_put(skb->sp);
392 if (skb->destructor) {
394 skb->destructor(skb);
396 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
397 nf_conntrack_put(skb->nfct);
398 nf_conntrack_put_reasm(skb->nfct_reasm);
400 #ifdef CONFIG_BRIDGE_NETFILTER
401 nf_bridge_put(skb->nf_bridge);
403 /* XXX: IS this still necessary? - JHS */
404 #ifdef CONFIG_NET_SCHED
406 #ifdef CONFIG_NET_CLS_ACT
412 /* Free everything but the sk_buff shell. */
413 static void skb_release_all(struct sk_buff *skb)
415 skb_release_head_state(skb);
416 skb_release_data(skb);
420 * __kfree_skb - private function
423 * Free an sk_buff. Release anything attached to the buffer.
424 * Clean the state. This is an internal helper function. Users should
425 * always call kfree_skb
428 void __kfree_skb(struct sk_buff *skb)
430 skb_release_all(skb);
435 * kfree_skb - free an sk_buff
436 * @skb: buffer to free
438 * Drop a reference to the buffer and free it if the usage count has
441 void kfree_skb(struct sk_buff *skb)
445 if (likely(atomic_read(&skb->users) == 1))
447 else if (likely(!atomic_dec_and_test(&skb->users)))
452 int skb_recycle_check(struct sk_buff *skb, int skb_size)
454 struct skb_shared_info *shinfo;
456 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
459 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
460 if (skb_end_pointer(skb) - skb->head < skb_size)
463 if (skb_shared(skb) || skb_cloned(skb))
466 skb_release_head_state(skb);
467 shinfo = skb_shinfo(skb);
468 atomic_set(&shinfo->dataref, 1);
469 shinfo->nr_frags = 0;
470 shinfo->gso_size = 0;
471 shinfo->gso_segs = 0;
472 shinfo->gso_type = 0;
473 shinfo->ip6_frag_id = 0;
474 shinfo->frag_list = NULL;
476 memset(skb, 0, offsetof(struct sk_buff, tail));
477 skb_reset_tail_pointer(skb);
478 skb->data = skb->head + NET_SKB_PAD;
482 EXPORT_SYMBOL(skb_recycle_check);
484 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
486 new->tstamp = old->tstamp;
488 new->transport_header = old->transport_header;
489 new->network_header = old->network_header;
490 new->mac_header = old->mac_header;
491 new->dst = dst_clone(old->dst);
493 new->sp = secpath_get(old->sp);
495 memcpy(new->cb, old->cb, sizeof(old->cb));
496 new->csum_start = old->csum_start;
497 new->csum_offset = old->csum_offset;
498 new->local_df = old->local_df;
499 new->pkt_type = old->pkt_type;
500 new->ip_summed = old->ip_summed;
501 skb_copy_queue_mapping(new, old);
502 new->priority = old->priority;
503 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
504 new->ipvs_property = old->ipvs_property;
506 new->protocol = old->protocol;
507 new->mark = old->mark;
509 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
510 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
511 new->nf_trace = old->nf_trace;
513 #ifdef CONFIG_NET_SCHED
514 new->tc_index = old->tc_index;
515 #ifdef CONFIG_NET_CLS_ACT
516 new->tc_verd = old->tc_verd;
519 new->vlan_tci = old->vlan_tci;
521 skb_copy_secmark(new, old);
524 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
526 #define C(x) n->x = skb->x
528 n->next = n->prev = NULL;
530 __copy_skb_header(n, skb);
535 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
538 n->destructor = NULL;
545 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
549 atomic_set(&n->users, 1);
551 atomic_inc(&(skb_shinfo(skb)->dataref));
559 * skb_morph - morph one skb into another
560 * @dst: the skb to receive the contents
561 * @src: the skb to supply the contents
563 * This is identical to skb_clone except that the target skb is
564 * supplied by the user.
566 * The target skb is returned upon exit.
568 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
570 skb_release_all(dst);
571 return __skb_clone(dst, src);
573 EXPORT_SYMBOL_GPL(skb_morph);
576 * skb_clone - duplicate an sk_buff
577 * @skb: buffer to clone
578 * @gfp_mask: allocation priority
580 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
581 * copies share the same packet data but not structure. The new
582 * buffer has a reference count of 1. If the allocation fails the
583 * function returns %NULL otherwise the new buffer is returned.
585 * If this function is called from an interrupt gfp_mask() must be
589 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
594 if (skb->fclone == SKB_FCLONE_ORIG &&
595 n->fclone == SKB_FCLONE_UNAVAILABLE) {
596 atomic_t *fclone_ref = (atomic_t *) (n + 1);
597 n->fclone = SKB_FCLONE_CLONE;
598 atomic_inc(fclone_ref);
600 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
603 n->fclone = SKB_FCLONE_UNAVAILABLE;
606 return __skb_clone(n, skb);
609 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
611 #ifndef NET_SKBUFF_DATA_USES_OFFSET
613 * Shift between the two data areas in bytes
615 unsigned long offset = new->data - old->data;
618 __copy_skb_header(new, old);
620 #ifndef NET_SKBUFF_DATA_USES_OFFSET
621 /* {transport,network,mac}_header are relative to skb->head */
622 new->transport_header += offset;
623 new->network_header += offset;
624 new->mac_header += offset;
626 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
627 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
628 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
632 * skb_copy - create private copy of an sk_buff
633 * @skb: buffer to copy
634 * @gfp_mask: allocation priority
636 * Make a copy of both an &sk_buff and its data. This is used when the
637 * caller wishes to modify the data and needs a private copy of the
638 * data to alter. Returns %NULL on failure or the pointer to the buffer
639 * on success. The returned buffer has a reference count of 1.
641 * As by-product this function converts non-linear &sk_buff to linear
642 * one, so that &sk_buff becomes completely private and caller is allowed
643 * to modify all the data of returned buffer. This means that this
644 * function is not recommended for use in circumstances when only
645 * header is going to be modified. Use pskb_copy() instead.
648 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
650 int headerlen = skb->data - skb->head;
652 * Allocate the copy buffer
655 #ifdef NET_SKBUFF_DATA_USES_OFFSET
656 n = alloc_skb(skb->end + skb->data_len, gfp_mask);
658 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
663 /* Set the data pointer */
664 skb_reserve(n, headerlen);
665 /* Set the tail pointer and length */
666 skb_put(n, skb->len);
668 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
671 copy_skb_header(n, skb);
677 * pskb_copy - create copy of an sk_buff with private head.
678 * @skb: buffer to copy
679 * @gfp_mask: allocation priority
681 * Make a copy of both an &sk_buff and part of its data, located
682 * in header. Fragmented data remain shared. This is used when
683 * the caller wishes to modify only header of &sk_buff and needs
684 * private copy of the header to alter. Returns %NULL on failure
685 * or the pointer to the buffer on success.
686 * The returned buffer has a reference count of 1.
689 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
692 * Allocate the copy buffer
695 #ifdef NET_SKBUFF_DATA_USES_OFFSET
696 n = alloc_skb(skb->end, gfp_mask);
698 n = alloc_skb(skb->end - skb->head, gfp_mask);
703 /* Set the data pointer */
704 skb_reserve(n, skb->data - skb->head);
705 /* Set the tail pointer and length */
706 skb_put(n, skb_headlen(skb));
708 skb_copy_from_linear_data(skb, n->data, n->len);
710 n->truesize += skb->data_len;
711 n->data_len = skb->data_len;
714 if (skb_shinfo(skb)->nr_frags) {
717 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
718 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
719 get_page(skb_shinfo(n)->frags[i].page);
721 skb_shinfo(n)->nr_frags = i;
724 if (skb_shinfo(skb)->frag_list) {
725 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
726 skb_clone_fraglist(n);
729 copy_skb_header(n, skb);
735 * pskb_expand_head - reallocate header of &sk_buff
736 * @skb: buffer to reallocate
737 * @nhead: room to add at head
738 * @ntail: room to add at tail
739 * @gfp_mask: allocation priority
741 * Expands (or creates identical copy, if &nhead and &ntail are zero)
742 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
743 * reference count of 1. Returns zero in the case of success or error,
744 * if expansion failed. In the last case, &sk_buff is not changed.
746 * All the pointers pointing into skb header may change and must be
747 * reloaded after call to this function.
750 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
755 #ifdef NET_SKBUFF_DATA_USES_OFFSET
756 int size = nhead + skb->end + ntail;
758 int size = nhead + (skb->end - skb->head) + ntail;
767 size = SKB_DATA_ALIGN(size);
769 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
773 /* Copy only real data... and, alas, header. This should be
774 * optimized for the cases when header is void. */
775 #ifdef NET_SKBUFF_DATA_USES_OFFSET
776 memcpy(data + nhead, skb->head, skb->tail);
778 memcpy(data + nhead, skb->head, skb->tail - skb->head);
780 memcpy(data + size, skb_end_pointer(skb),
781 sizeof(struct skb_shared_info));
783 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
784 get_page(skb_shinfo(skb)->frags[i].page);
786 if (skb_shinfo(skb)->frag_list)
787 skb_clone_fraglist(skb);
789 skb_release_data(skb);
791 off = (data + nhead) - skb->head;
795 #ifdef NET_SKBUFF_DATA_USES_OFFSET
799 skb->end = skb->head + size;
801 /* {transport,network,mac}_header and tail are relative to skb->head */
803 skb->transport_header += off;
804 skb->network_header += off;
805 skb->mac_header += off;
806 skb->csum_start += nhead;
810 atomic_set(&skb_shinfo(skb)->dataref, 1);
817 /* Make private copy of skb with writable head and some headroom */
819 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
821 struct sk_buff *skb2;
822 int delta = headroom - skb_headroom(skb);
825 skb2 = pskb_copy(skb, GFP_ATOMIC);
827 skb2 = skb_clone(skb, GFP_ATOMIC);
828 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
839 * skb_copy_expand - copy and expand sk_buff
840 * @skb: buffer to copy
841 * @newheadroom: new free bytes at head
842 * @newtailroom: new free bytes at tail
843 * @gfp_mask: allocation priority
845 * Make a copy of both an &sk_buff and its data and while doing so
846 * allocate additional space.
848 * This is used when the caller wishes to modify the data and needs a
849 * private copy of the data to alter as well as more space for new fields.
850 * Returns %NULL on failure or the pointer to the buffer
851 * on success. The returned buffer has a reference count of 1.
853 * You must pass %GFP_ATOMIC as the allocation priority if this function
854 * is called from an interrupt.
856 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
857 int newheadroom, int newtailroom,
861 * Allocate the copy buffer
863 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
865 int oldheadroom = skb_headroom(skb);
866 int head_copy_len, head_copy_off;
872 skb_reserve(n, newheadroom);
874 /* Set the tail pointer and length */
875 skb_put(n, skb->len);
877 head_copy_len = oldheadroom;
879 if (newheadroom <= head_copy_len)
880 head_copy_len = newheadroom;
882 head_copy_off = newheadroom - head_copy_len;
884 /* Copy the linear header and data. */
885 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
886 skb->len + head_copy_len))
889 copy_skb_header(n, skb);
891 off = newheadroom - oldheadroom;
892 n->csum_start += off;
893 #ifdef NET_SKBUFF_DATA_USES_OFFSET
894 n->transport_header += off;
895 n->network_header += off;
896 n->mac_header += off;
903 * skb_pad - zero pad the tail of an skb
904 * @skb: buffer to pad
907 * Ensure that a buffer is followed by a padding area that is zero
908 * filled. Used by network drivers which may DMA or transfer data
909 * beyond the buffer end onto the wire.
911 * May return error in out of memory cases. The skb is freed on error.
914 int skb_pad(struct sk_buff *skb, int pad)
919 /* If the skbuff is non linear tailroom is always zero.. */
920 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
921 memset(skb->data+skb->len, 0, pad);
925 ntail = skb->data_len + pad - (skb->end - skb->tail);
926 if (likely(skb_cloned(skb) || ntail > 0)) {
927 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
932 /* FIXME: The use of this function with non-linear skb's really needs
935 err = skb_linearize(skb);
939 memset(skb->data + skb->len, 0, pad);
948 * skb_put - add data to a buffer
949 * @skb: buffer to use
950 * @len: amount of data to add
952 * This function extends the used data area of the buffer. If this would
953 * exceed the total buffer size the kernel will panic. A pointer to the
954 * first byte of the extra data is returned.
956 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
958 unsigned char *tmp = skb_tail_pointer(skb);
959 SKB_LINEAR_ASSERT(skb);
962 if (unlikely(skb->tail > skb->end))
963 skb_over_panic(skb, len, __builtin_return_address(0));
966 EXPORT_SYMBOL(skb_put);
969 * skb_push - add data to the start of a buffer
970 * @skb: buffer to use
971 * @len: amount of data to add
973 * This function extends the used data area of the buffer at the buffer
974 * start. If this would exceed the total buffer headroom the kernel will
975 * panic. A pointer to the first byte of the extra data is returned.
977 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
981 if (unlikely(skb->data<skb->head))
982 skb_under_panic(skb, len, __builtin_return_address(0));
985 EXPORT_SYMBOL(skb_push);
988 * skb_pull - remove data from the start of a buffer
989 * @skb: buffer to use
990 * @len: amount of data to remove
992 * This function removes data from the start of a buffer, returning
993 * the memory to the headroom. A pointer to the next data in the buffer
994 * is returned. Once the data has been pulled future pushes will overwrite
997 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
999 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1001 EXPORT_SYMBOL(skb_pull);
1004 * skb_trim - remove end from a buffer
1005 * @skb: buffer to alter
1008 * Cut the length of a buffer down by removing data from the tail. If
1009 * the buffer is already under the length specified it is not modified.
1010 * The skb must be linear.
1012 void skb_trim(struct sk_buff *skb, unsigned int len)
1015 __skb_trim(skb, len);
1017 EXPORT_SYMBOL(skb_trim);
1019 /* Trims skb to length len. It can change skb pointers.
1022 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1024 struct sk_buff **fragp;
1025 struct sk_buff *frag;
1026 int offset = skb_headlen(skb);
1027 int nfrags = skb_shinfo(skb)->nr_frags;
1031 if (skb_cloned(skb) &&
1032 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1039 for (; i < nfrags; i++) {
1040 int end = offset + skb_shinfo(skb)->frags[i].size;
1047 skb_shinfo(skb)->frags[i++].size = len - offset;
1050 skb_shinfo(skb)->nr_frags = i;
1052 for (; i < nfrags; i++)
1053 put_page(skb_shinfo(skb)->frags[i].page);
1055 if (skb_shinfo(skb)->frag_list)
1056 skb_drop_fraglist(skb);
1060 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1061 fragp = &frag->next) {
1062 int end = offset + frag->len;
1064 if (skb_shared(frag)) {
1065 struct sk_buff *nfrag;
1067 nfrag = skb_clone(frag, GFP_ATOMIC);
1068 if (unlikely(!nfrag))
1071 nfrag->next = frag->next;
1083 unlikely((err = pskb_trim(frag, len - offset))))
1087 skb_drop_list(&frag->next);
1092 if (len > skb_headlen(skb)) {
1093 skb->data_len -= skb->len - len;
1098 skb_set_tail_pointer(skb, len);
1105 * __pskb_pull_tail - advance tail of skb header
1106 * @skb: buffer to reallocate
1107 * @delta: number of bytes to advance tail
1109 * The function makes a sense only on a fragmented &sk_buff,
1110 * it expands header moving its tail forward and copying necessary
1111 * data from fragmented part.
1113 * &sk_buff MUST have reference count of 1.
1115 * Returns %NULL (and &sk_buff does not change) if pull failed
1116 * or value of new tail of skb in the case of success.
1118 * All the pointers pointing into skb header may change and must be
1119 * reloaded after call to this function.
1122 /* Moves tail of skb head forward, copying data from fragmented part,
1123 * when it is necessary.
1124 * 1. It may fail due to malloc failure.
1125 * 2. It may change skb pointers.
1127 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1129 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1131 /* If skb has not enough free space at tail, get new one
1132 * plus 128 bytes for future expansions. If we have enough
1133 * room at tail, reallocate without expansion only if skb is cloned.
1135 int i, k, eat = (skb->tail + delta) - skb->end;
1137 if (eat > 0 || skb_cloned(skb)) {
1138 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1143 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1146 /* Optimization: no fragments, no reasons to preestimate
1147 * size of pulled pages. Superb.
1149 if (!skb_shinfo(skb)->frag_list)
1152 /* Estimate size of pulled pages. */
1154 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1155 if (skb_shinfo(skb)->frags[i].size >= eat)
1157 eat -= skb_shinfo(skb)->frags[i].size;
1160 /* If we need update frag list, we are in troubles.
1161 * Certainly, it possible to add an offset to skb data,
1162 * but taking into account that pulling is expected to
1163 * be very rare operation, it is worth to fight against
1164 * further bloating skb head and crucify ourselves here instead.
1165 * Pure masohism, indeed. 8)8)
1168 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1169 struct sk_buff *clone = NULL;
1170 struct sk_buff *insp = NULL;
1175 if (list->len <= eat) {
1176 /* Eaten as whole. */
1181 /* Eaten partially. */
1183 if (skb_shared(list)) {
1184 /* Sucks! We need to fork list. :-( */
1185 clone = skb_clone(list, GFP_ATOMIC);
1191 /* This may be pulled without
1195 if (!pskb_pull(list, eat)) {
1204 /* Free pulled out fragments. */
1205 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1206 skb_shinfo(skb)->frag_list = list->next;
1209 /* And insert new clone at head. */
1212 skb_shinfo(skb)->frag_list = clone;
1215 /* Success! Now we may commit changes to skb data. */
1220 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1221 if (skb_shinfo(skb)->frags[i].size <= eat) {
1222 put_page(skb_shinfo(skb)->frags[i].page);
1223 eat -= skb_shinfo(skb)->frags[i].size;
1225 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1227 skb_shinfo(skb)->frags[k].page_offset += eat;
1228 skb_shinfo(skb)->frags[k].size -= eat;
1234 skb_shinfo(skb)->nr_frags = k;
1237 skb->data_len -= delta;
1239 return skb_tail_pointer(skb);
1242 /* Copy some data bits from skb to kernel buffer. */
1244 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1247 int start = skb_headlen(skb);
1249 if (offset > (int)skb->len - len)
1253 if ((copy = start - offset) > 0) {
1256 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1257 if ((len -= copy) == 0)
1263 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1266 WARN_ON(start > offset + len);
1268 end = start + skb_shinfo(skb)->frags[i].size;
1269 if ((copy = end - offset) > 0) {
1275 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1277 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1278 offset - start, copy);
1279 kunmap_skb_frag(vaddr);
1281 if ((len -= copy) == 0)
1289 if (skb_shinfo(skb)->frag_list) {
1290 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1292 for (; list; list = list->next) {
1295 WARN_ON(start > offset + len);
1297 end = start + list->len;
1298 if ((copy = end - offset) > 0) {
1301 if (skb_copy_bits(list, offset - start,
1304 if ((len -= copy) == 0)
1320 * Callback from splice_to_pipe(), if we need to release some pages
1321 * at the end of the spd in case we error'ed out in filling the pipe.
1323 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1325 struct sk_buff *skb = (struct sk_buff *) spd->partial[i].private;
1331 * Fill page/offset/length into spd, if it can hold more pages.
1333 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1334 unsigned int len, unsigned int offset,
1335 struct sk_buff *skb)
1337 if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1340 spd->pages[spd->nr_pages] = page;
1341 spd->partial[spd->nr_pages].len = len;
1342 spd->partial[spd->nr_pages].offset = offset;
1343 spd->partial[spd->nr_pages].private = (unsigned long) skb_get(skb);
1348 static inline void __segment_seek(struct page **page, unsigned int *poff,
1349 unsigned int *plen, unsigned int off)
1352 *page += *poff / PAGE_SIZE;
1353 *poff = *poff % PAGE_SIZE;
1357 static inline int __splice_segment(struct page *page, unsigned int poff,
1358 unsigned int plen, unsigned int *off,
1359 unsigned int *len, struct sk_buff *skb,
1360 struct splice_pipe_desc *spd)
1365 /* skip this segment if already processed */
1371 /* ignore any bits we already processed */
1373 __segment_seek(&page, &poff, &plen, *off);
1378 unsigned int flen = min(*len, plen);
1380 /* the linear region may spread across several pages */
1381 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1383 if (spd_fill_page(spd, page, flen, poff, skb))
1386 __segment_seek(&page, &poff, &plen, flen);
1389 } while (*len && plen);
1395 * Map linear and fragment data from the skb to spd. It reports failure if the
1396 * pipe is full or if we already spliced the requested length.
1398 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1400 struct splice_pipe_desc *spd)
1405 * map the linear part
1407 if (__splice_segment(virt_to_page(skb->data),
1408 (unsigned long) skb->data & (PAGE_SIZE - 1),
1410 offset, len, skb, spd))
1414 * then map the fragments
1416 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1417 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1419 if (__splice_segment(f->page, f->page_offset, f->size,
1420 offset, len, skb, spd))
1428 * Map data from the skb to a pipe. Should handle both the linear part,
1429 * the fragments, and the frag list. It does NOT handle frag lists within
1430 * the frag list, if such a thing exists. We'd probably need to recurse to
1431 * handle that cleanly.
1433 int skb_splice_bits(struct sk_buff *__skb, unsigned int offset,
1434 struct pipe_inode_info *pipe, unsigned int tlen,
1437 struct partial_page partial[PIPE_BUFFERS];
1438 struct page *pages[PIPE_BUFFERS];
1439 struct splice_pipe_desc spd = {
1443 .ops = &sock_pipe_buf_ops,
1444 .spd_release = sock_spd_release,
1446 struct sk_buff *skb;
1449 * I'd love to avoid the clone here, but tcp_read_sock()
1450 * ignores reference counts and unconditonally kills the sk_buff
1451 * on return from the actor.
1453 skb = skb_clone(__skb, GFP_KERNEL);
1458 * __skb_splice_bits() only fails if the output has no room left,
1459 * so no point in going over the frag_list for the error case.
1461 if (__skb_splice_bits(skb, &offset, &tlen, &spd))
1467 * now see if we have a frag_list to map
1469 if (skb_shinfo(skb)->frag_list) {
1470 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1472 for (; list && tlen; list = list->next) {
1473 if (__skb_splice_bits(list, &offset, &tlen, &spd))
1480 * drop our reference to the clone, the pipe consumption will
1487 struct sock *sk = __skb->sk;
1490 * Drop the socket lock, otherwise we have reverse
1491 * locking dependencies between sk_lock and i_mutex
1492 * here as compared to sendfile(). We enter here
1493 * with the socket lock held, and splice_to_pipe() will
1494 * grab the pipe inode lock. For sendfile() emulation,
1495 * we call into ->sendpage() with the i_mutex lock held
1496 * and networking will grab the socket lock.
1499 ret = splice_to_pipe(pipe, &spd);
1508 * skb_store_bits - store bits from kernel buffer to skb
1509 * @skb: destination buffer
1510 * @offset: offset in destination
1511 * @from: source buffer
1512 * @len: number of bytes to copy
1514 * Copy the specified number of bytes from the source buffer to the
1515 * destination skb. This function handles all the messy bits of
1516 * traversing fragment lists and such.
1519 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1522 int start = skb_headlen(skb);
1524 if (offset > (int)skb->len - len)
1527 if ((copy = start - offset) > 0) {
1530 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1531 if ((len -= copy) == 0)
1537 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1538 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1541 WARN_ON(start > offset + len);
1543 end = start + frag->size;
1544 if ((copy = end - offset) > 0) {
1550 vaddr = kmap_skb_frag(frag);
1551 memcpy(vaddr + frag->page_offset + offset - start,
1553 kunmap_skb_frag(vaddr);
1555 if ((len -= copy) == 0)
1563 if (skb_shinfo(skb)->frag_list) {
1564 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1566 for (; list; list = list->next) {
1569 WARN_ON(start > offset + len);
1571 end = start + list->len;
1572 if ((copy = end - offset) > 0) {
1575 if (skb_store_bits(list, offset - start,
1578 if ((len -= copy) == 0)
1593 EXPORT_SYMBOL(skb_store_bits);
1595 /* Checksum skb data. */
1597 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1598 int len, __wsum csum)
1600 int start = skb_headlen(skb);
1601 int i, copy = start - offset;
1604 /* Checksum header. */
1608 csum = csum_partial(skb->data + offset, copy, csum);
1609 if ((len -= copy) == 0)
1615 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1618 WARN_ON(start > offset + len);
1620 end = start + skb_shinfo(skb)->frags[i].size;
1621 if ((copy = end - offset) > 0) {
1624 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1628 vaddr = kmap_skb_frag(frag);
1629 csum2 = csum_partial(vaddr + frag->page_offset +
1630 offset - start, copy, 0);
1631 kunmap_skb_frag(vaddr);
1632 csum = csum_block_add(csum, csum2, pos);
1641 if (skb_shinfo(skb)->frag_list) {
1642 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1644 for (; list; list = list->next) {
1647 WARN_ON(start > offset + len);
1649 end = start + list->len;
1650 if ((copy = end - offset) > 0) {
1654 csum2 = skb_checksum(list, offset - start,
1656 csum = csum_block_add(csum, csum2, pos);
1657 if ((len -= copy) == 0)
1670 /* Both of above in one bottle. */
1672 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1673 u8 *to, int len, __wsum csum)
1675 int start = skb_headlen(skb);
1676 int i, copy = start - offset;
1683 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1685 if ((len -= copy) == 0)
1692 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1695 WARN_ON(start > offset + len);
1697 end = start + skb_shinfo(skb)->frags[i].size;
1698 if ((copy = end - offset) > 0) {
1701 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1705 vaddr = kmap_skb_frag(frag);
1706 csum2 = csum_partial_copy_nocheck(vaddr +
1710 kunmap_skb_frag(vaddr);
1711 csum = csum_block_add(csum, csum2, pos);
1721 if (skb_shinfo(skb)->frag_list) {
1722 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1724 for (; list; list = list->next) {
1728 WARN_ON(start > offset + len);
1730 end = start + list->len;
1731 if ((copy = end - offset) > 0) {
1734 csum2 = skb_copy_and_csum_bits(list,
1737 csum = csum_block_add(csum, csum2, pos);
1738 if ((len -= copy) == 0)
1751 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1756 if (skb->ip_summed == CHECKSUM_PARTIAL)
1757 csstart = skb->csum_start - skb_headroom(skb);
1759 csstart = skb_headlen(skb);
1761 BUG_ON(csstart > skb_headlen(skb));
1763 skb_copy_from_linear_data(skb, to, csstart);
1766 if (csstart != skb->len)
1767 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1768 skb->len - csstart, 0);
1770 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1771 long csstuff = csstart + skb->csum_offset;
1773 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1778 * skb_dequeue - remove from the head of the queue
1779 * @list: list to dequeue from
1781 * Remove the head of the list. The list lock is taken so the function
1782 * may be used safely with other locking list functions. The head item is
1783 * returned or %NULL if the list is empty.
1786 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1788 unsigned long flags;
1789 struct sk_buff *result;
1791 spin_lock_irqsave(&list->lock, flags);
1792 result = __skb_dequeue(list);
1793 spin_unlock_irqrestore(&list->lock, flags);
1798 * skb_dequeue_tail - remove from the tail of the queue
1799 * @list: list to dequeue from
1801 * Remove the tail of the list. The list lock is taken so the function
1802 * may be used safely with other locking list functions. The tail item is
1803 * returned or %NULL if the list is empty.
1805 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1807 unsigned long flags;
1808 struct sk_buff *result;
1810 spin_lock_irqsave(&list->lock, flags);
1811 result = __skb_dequeue_tail(list);
1812 spin_unlock_irqrestore(&list->lock, flags);
1817 * skb_queue_purge - empty a list
1818 * @list: list to empty
1820 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1821 * the list and one reference dropped. This function takes the list
1822 * lock and is atomic with respect to other list locking functions.
1824 void skb_queue_purge(struct sk_buff_head *list)
1826 struct sk_buff *skb;
1827 while ((skb = skb_dequeue(list)) != NULL)
1832 * skb_queue_head - queue a buffer at the list head
1833 * @list: list to use
1834 * @newsk: buffer to queue
1836 * Queue a buffer at the start of the list. This function takes the
1837 * list lock and can be used safely with other locking &sk_buff functions
1840 * A buffer cannot be placed on two lists at the same time.
1842 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1844 unsigned long flags;
1846 spin_lock_irqsave(&list->lock, flags);
1847 __skb_queue_head(list, newsk);
1848 spin_unlock_irqrestore(&list->lock, flags);
1852 * skb_queue_tail - queue a buffer at the list tail
1853 * @list: list to use
1854 * @newsk: buffer to queue
1856 * Queue a buffer at the tail of the list. This function takes the
1857 * list lock and can be used safely with other locking &sk_buff functions
1860 * A buffer cannot be placed on two lists at the same time.
1862 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1864 unsigned long flags;
1866 spin_lock_irqsave(&list->lock, flags);
1867 __skb_queue_tail(list, newsk);
1868 spin_unlock_irqrestore(&list->lock, flags);
1872 * skb_unlink - remove a buffer from a list
1873 * @skb: buffer to remove
1874 * @list: list to use
1876 * Remove a packet from a list. The list locks are taken and this
1877 * function is atomic with respect to other list locked calls
1879 * You must know what list the SKB is on.
1881 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1883 unsigned long flags;
1885 spin_lock_irqsave(&list->lock, flags);
1886 __skb_unlink(skb, list);
1887 spin_unlock_irqrestore(&list->lock, flags);
1891 * skb_append - append a buffer
1892 * @old: buffer to insert after
1893 * @newsk: buffer to insert
1894 * @list: list to use
1896 * Place a packet after a given packet in a list. The list locks are taken
1897 * and this function is atomic with respect to other list locked calls.
1898 * A buffer cannot be placed on two lists at the same time.
1900 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1902 unsigned long flags;
1904 spin_lock_irqsave(&list->lock, flags);
1905 __skb_queue_after(list, old, newsk);
1906 spin_unlock_irqrestore(&list->lock, flags);
1911 * skb_insert - insert a buffer
1912 * @old: buffer to insert before
1913 * @newsk: buffer to insert
1914 * @list: list to use
1916 * Place a packet before a given packet in a list. The list locks are
1917 * taken and this function is atomic with respect to other list locked
1920 * A buffer cannot be placed on two lists at the same time.
1922 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1924 unsigned long flags;
1926 spin_lock_irqsave(&list->lock, flags);
1927 __skb_insert(newsk, old->prev, old, list);
1928 spin_unlock_irqrestore(&list->lock, flags);
1931 static inline void skb_split_inside_header(struct sk_buff *skb,
1932 struct sk_buff* skb1,
1933 const u32 len, const int pos)
1937 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1939 /* And move data appendix as is. */
1940 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1941 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1943 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1944 skb_shinfo(skb)->nr_frags = 0;
1945 skb1->data_len = skb->data_len;
1946 skb1->len += skb1->data_len;
1949 skb_set_tail_pointer(skb, len);
1952 static inline void skb_split_no_header(struct sk_buff *skb,
1953 struct sk_buff* skb1,
1954 const u32 len, int pos)
1957 const int nfrags = skb_shinfo(skb)->nr_frags;
1959 skb_shinfo(skb)->nr_frags = 0;
1960 skb1->len = skb1->data_len = skb->len - len;
1962 skb->data_len = len - pos;
1964 for (i = 0; i < nfrags; i++) {
1965 int size = skb_shinfo(skb)->frags[i].size;
1967 if (pos + size > len) {
1968 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1972 * We have two variants in this case:
1973 * 1. Move all the frag to the second
1974 * part, if it is possible. F.e.
1975 * this approach is mandatory for TUX,
1976 * where splitting is expensive.
1977 * 2. Split is accurately. We make this.
1979 get_page(skb_shinfo(skb)->frags[i].page);
1980 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1981 skb_shinfo(skb1)->frags[0].size -= len - pos;
1982 skb_shinfo(skb)->frags[i].size = len - pos;
1983 skb_shinfo(skb)->nr_frags++;
1987 skb_shinfo(skb)->nr_frags++;
1990 skb_shinfo(skb1)->nr_frags = k;
1994 * skb_split - Split fragmented skb to two parts at length len.
1995 * @skb: the buffer to split
1996 * @skb1: the buffer to receive the second part
1997 * @len: new length for skb
1999 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2001 int pos = skb_headlen(skb);
2003 if (len < pos) /* Split line is inside header. */
2004 skb_split_inside_header(skb, skb1, len, pos);
2005 else /* Second chunk has no header, nothing to copy. */
2006 skb_split_no_header(skb, skb1, len, pos);
2010 * skb_prepare_seq_read - Prepare a sequential read of skb data
2011 * @skb: the buffer to read
2012 * @from: lower offset of data to be read
2013 * @to: upper offset of data to be read
2014 * @st: state variable
2016 * Initializes the specified state variable. Must be called before
2017 * invoking skb_seq_read() for the first time.
2019 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2020 unsigned int to, struct skb_seq_state *st)
2022 st->lower_offset = from;
2023 st->upper_offset = to;
2024 st->root_skb = st->cur_skb = skb;
2025 st->frag_idx = st->stepped_offset = 0;
2026 st->frag_data = NULL;
2030 * skb_seq_read - Sequentially read skb data
2031 * @consumed: number of bytes consumed by the caller so far
2032 * @data: destination pointer for data to be returned
2033 * @st: state variable
2035 * Reads a block of skb data at &consumed relative to the
2036 * lower offset specified to skb_prepare_seq_read(). Assigns
2037 * the head of the data block to &data and returns the length
2038 * of the block or 0 if the end of the skb data or the upper
2039 * offset has been reached.
2041 * The caller is not required to consume all of the data
2042 * returned, i.e. &consumed is typically set to the number
2043 * of bytes already consumed and the next call to
2044 * skb_seq_read() will return the remaining part of the block.
2046 * Note 1: The size of each block of data returned can be arbitary,
2047 * this limitation is the cost for zerocopy seqeuental
2048 * reads of potentially non linear data.
2050 * Note 2: Fragment lists within fragments are not implemented
2051 * at the moment, state->root_skb could be replaced with
2052 * a stack for this purpose.
2054 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2055 struct skb_seq_state *st)
2057 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2060 if (unlikely(abs_offset >= st->upper_offset))
2064 block_limit = skb_headlen(st->cur_skb);
2066 if (abs_offset < block_limit) {
2067 *data = st->cur_skb->data + abs_offset;
2068 return block_limit - abs_offset;
2071 if (st->frag_idx == 0 && !st->frag_data)
2072 st->stepped_offset += skb_headlen(st->cur_skb);
2074 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2075 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2076 block_limit = frag->size + st->stepped_offset;
2078 if (abs_offset < block_limit) {
2080 st->frag_data = kmap_skb_frag(frag);
2082 *data = (u8 *) st->frag_data + frag->page_offset +
2083 (abs_offset - st->stepped_offset);
2085 return block_limit - abs_offset;
2088 if (st->frag_data) {
2089 kunmap_skb_frag(st->frag_data);
2090 st->frag_data = NULL;
2094 st->stepped_offset += frag->size;
2097 if (st->frag_data) {
2098 kunmap_skb_frag(st->frag_data);
2099 st->frag_data = NULL;
2102 if (st->cur_skb->next) {
2103 st->cur_skb = st->cur_skb->next;
2106 } else if (st->root_skb == st->cur_skb &&
2107 skb_shinfo(st->root_skb)->frag_list) {
2108 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2116 * skb_abort_seq_read - Abort a sequential read of skb data
2117 * @st: state variable
2119 * Must be called if skb_seq_read() was not called until it
2122 void skb_abort_seq_read(struct skb_seq_state *st)
2125 kunmap_skb_frag(st->frag_data);
2128 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2130 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2131 struct ts_config *conf,
2132 struct ts_state *state)
2134 return skb_seq_read(offset, text, TS_SKB_CB(state));
2137 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2139 skb_abort_seq_read(TS_SKB_CB(state));
2143 * skb_find_text - Find a text pattern in skb data
2144 * @skb: the buffer to look in
2145 * @from: search offset
2147 * @config: textsearch configuration
2148 * @state: uninitialized textsearch state variable
2150 * Finds a pattern in the skb data according to the specified
2151 * textsearch configuration. Use textsearch_next() to retrieve
2152 * subsequent occurrences of the pattern. Returns the offset
2153 * to the first occurrence or UINT_MAX if no match was found.
2155 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2156 unsigned int to, struct ts_config *config,
2157 struct ts_state *state)
2161 config->get_next_block = skb_ts_get_next_block;
2162 config->finish = skb_ts_finish;
2164 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2166 ret = textsearch_find(config, state);
2167 return (ret <= to - from ? ret : UINT_MAX);
2171 * skb_append_datato_frags: - append the user data to a skb
2172 * @sk: sock structure
2173 * @skb: skb structure to be appened with user data.
2174 * @getfrag: call back function to be used for getting the user data
2175 * @from: pointer to user message iov
2176 * @length: length of the iov message
2178 * Description: This procedure append the user data in the fragment part
2179 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2181 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2182 int (*getfrag)(void *from, char *to, int offset,
2183 int len, int odd, struct sk_buff *skb),
2184 void *from, int length)
2187 skb_frag_t *frag = NULL;
2188 struct page *page = NULL;
2194 /* Return error if we don't have space for new frag */
2195 frg_cnt = skb_shinfo(skb)->nr_frags;
2196 if (frg_cnt >= MAX_SKB_FRAGS)
2199 /* allocate a new page for next frag */
2200 page = alloc_pages(sk->sk_allocation, 0);
2202 /* If alloc_page fails just return failure and caller will
2203 * free previous allocated pages by doing kfree_skb()
2208 /* initialize the next frag */
2209 sk->sk_sndmsg_page = page;
2210 sk->sk_sndmsg_off = 0;
2211 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2212 skb->truesize += PAGE_SIZE;
2213 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2215 /* get the new initialized frag */
2216 frg_cnt = skb_shinfo(skb)->nr_frags;
2217 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2219 /* copy the user data to page */
2220 left = PAGE_SIZE - frag->page_offset;
2221 copy = (length > left)? left : length;
2223 ret = getfrag(from, (page_address(frag->page) +
2224 frag->page_offset + frag->size),
2225 offset, copy, 0, skb);
2229 /* copy was successful so update the size parameters */
2230 sk->sk_sndmsg_off += copy;
2233 skb->data_len += copy;
2237 } while (length > 0);
2243 * skb_pull_rcsum - pull skb and update receive checksum
2244 * @skb: buffer to update
2245 * @len: length of data pulled
2247 * This function performs an skb_pull on the packet and updates
2248 * the CHECKSUM_COMPLETE checksum. It should be used on
2249 * receive path processing instead of skb_pull unless you know
2250 * that the checksum difference is zero (e.g., a valid IP header)
2251 * or you are setting ip_summed to CHECKSUM_NONE.
2253 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2255 BUG_ON(len > skb->len);
2257 BUG_ON(skb->len < skb->data_len);
2258 skb_postpull_rcsum(skb, skb->data, len);
2259 return skb->data += len;
2262 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2265 * skb_segment - Perform protocol segmentation on skb.
2266 * @skb: buffer to segment
2267 * @features: features for the output path (see dev->features)
2269 * This function performs segmentation on the given skb. It returns
2270 * a pointer to the first in a list of new skbs for the segments.
2271 * In case of error it returns ERR_PTR(err).
2273 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2275 struct sk_buff *segs = NULL;
2276 struct sk_buff *tail = NULL;
2277 unsigned int mss = skb_shinfo(skb)->gso_size;
2278 unsigned int doffset = skb->data - skb_mac_header(skb);
2279 unsigned int offset = doffset;
2280 unsigned int headroom;
2282 int sg = features & NETIF_F_SG;
2283 int nfrags = skb_shinfo(skb)->nr_frags;
2288 __skb_push(skb, doffset);
2289 headroom = skb_headroom(skb);
2290 pos = skb_headlen(skb);
2293 struct sk_buff *nskb;
2299 len = skb->len - offset;
2303 hsize = skb_headlen(skb) - offset;
2306 if (hsize > len || !sg)
2309 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
2310 if (unlikely(!nskb))
2319 __copy_skb_header(nskb, skb);
2320 nskb->mac_len = skb->mac_len;
2322 skb_reserve(nskb, headroom);
2323 skb_reset_mac_header(nskb);
2324 skb_set_network_header(nskb, skb->mac_len);
2325 nskb->transport_header = (nskb->network_header +
2326 skb_network_header_len(skb));
2327 skb_copy_from_linear_data(skb, skb_put(nskb, doffset),
2330 nskb->ip_summed = CHECKSUM_NONE;
2331 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2337 frag = skb_shinfo(nskb)->frags;
2340 skb_copy_from_linear_data_offset(skb, offset,
2341 skb_put(nskb, hsize), hsize);
2343 while (pos < offset + len) {
2344 BUG_ON(i >= nfrags);
2346 *frag = skb_shinfo(skb)->frags[i];
2347 get_page(frag->page);
2351 frag->page_offset += offset - pos;
2352 frag->size -= offset - pos;
2357 if (pos + size <= offset + len) {
2361 frag->size -= pos + size - (offset + len);
2368 skb_shinfo(nskb)->nr_frags = k;
2369 nskb->data_len = len - hsize;
2370 nskb->len += nskb->data_len;
2371 nskb->truesize += nskb->data_len;
2372 } while ((offset += len) < skb->len);
2377 while ((skb = segs)) {
2381 return ERR_PTR(err);
2384 EXPORT_SYMBOL_GPL(skb_segment);
2386 void __init skb_init(void)
2388 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2389 sizeof(struct sk_buff),
2391 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2393 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2394 (2*sizeof(struct sk_buff)) +
2397 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2402 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2403 * @skb: Socket buffer containing the buffers to be mapped
2404 * @sg: The scatter-gather list to map into
2405 * @offset: The offset into the buffer's contents to start mapping
2406 * @len: Length of buffer space to be mapped
2408 * Fill the specified scatter-gather list with mappings/pointers into a
2409 * region of the buffer space attached to a socket buffer.
2412 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2414 int start = skb_headlen(skb);
2415 int i, copy = start - offset;
2421 sg_set_buf(sg, skb->data + offset, copy);
2423 if ((len -= copy) == 0)
2428 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2431 WARN_ON(start > offset + len);
2433 end = start + skb_shinfo(skb)->frags[i].size;
2434 if ((copy = end - offset) > 0) {
2435 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2439 sg_set_page(&sg[elt], frag->page, copy,
2440 frag->page_offset+offset-start);
2449 if (skb_shinfo(skb)->frag_list) {
2450 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2452 for (; list; list = list->next) {
2455 WARN_ON(start > offset + len);
2457 end = start + list->len;
2458 if ((copy = end - offset) > 0) {
2461 elt += __skb_to_sgvec(list, sg+elt, offset - start,
2463 if ((len -= copy) == 0)
2474 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2476 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2478 sg_mark_end(&sg[nsg - 1]);
2484 * skb_cow_data - Check that a socket buffer's data buffers are writable
2485 * @skb: The socket buffer to check.
2486 * @tailbits: Amount of trailing space to be added
2487 * @trailer: Returned pointer to the skb where the @tailbits space begins
2489 * Make sure that the data buffers attached to a socket buffer are
2490 * writable. If they are not, private copies are made of the data buffers
2491 * and the socket buffer is set to use these instead.
2493 * If @tailbits is given, make sure that there is space to write @tailbits
2494 * bytes of data beyond current end of socket buffer. @trailer will be
2495 * set to point to the skb in which this space begins.
2497 * The number of scatterlist elements required to completely map the
2498 * COW'd and extended socket buffer will be returned.
2500 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2504 struct sk_buff *skb1, **skb_p;
2506 /* If skb is cloned or its head is paged, reallocate
2507 * head pulling out all the pages (pages are considered not writable
2508 * at the moment even if they are anonymous).
2510 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2511 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2514 /* Easy case. Most of packets will go this way. */
2515 if (!skb_shinfo(skb)->frag_list) {
2516 /* A little of trouble, not enough of space for trailer.
2517 * This should not happen, when stack is tuned to generate
2518 * good frames. OK, on miss we reallocate and reserve even more
2519 * space, 128 bytes is fair. */
2521 if (skb_tailroom(skb) < tailbits &&
2522 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2530 /* Misery. We are in troubles, going to mincer fragments... */
2533 skb_p = &skb_shinfo(skb)->frag_list;
2536 while ((skb1 = *skb_p) != NULL) {
2539 /* The fragment is partially pulled by someone,
2540 * this can happen on input. Copy it and everything
2543 if (skb_shared(skb1))
2546 /* If the skb is the last, worry about trailer. */
2548 if (skb1->next == NULL && tailbits) {
2549 if (skb_shinfo(skb1)->nr_frags ||
2550 skb_shinfo(skb1)->frag_list ||
2551 skb_tailroom(skb1) < tailbits)
2552 ntail = tailbits + 128;
2558 skb_shinfo(skb1)->nr_frags ||
2559 skb_shinfo(skb1)->frag_list) {
2560 struct sk_buff *skb2;
2562 /* Fuck, we are miserable poor guys... */
2564 skb2 = skb_copy(skb1, GFP_ATOMIC);
2566 skb2 = skb_copy_expand(skb1,
2570 if (unlikely(skb2 == NULL))
2574 skb_set_owner_w(skb2, skb1->sk);
2576 /* Looking around. Are we still alive?
2577 * OK, link new skb, drop old one */
2579 skb2->next = skb1->next;
2586 skb_p = &skb1->next;
2593 * skb_partial_csum_set - set up and verify partial csum values for packet
2594 * @skb: the skb to set
2595 * @start: the number of bytes after skb->data to start checksumming.
2596 * @off: the offset from start to place the checksum.
2598 * For untrusted partially-checksummed packets, we need to make sure the values
2599 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
2601 * This function checks and sets those values and skb->ip_summed: if this
2602 * returns false you should drop the packet.
2604 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
2606 if (unlikely(start > skb->len - 2) ||
2607 unlikely((int)start + off > skb->len - 2)) {
2608 if (net_ratelimit())
2610 "bad partial csum: csum=%u/%u len=%u\n",
2611 start, off, skb->len);
2614 skb->ip_summed = CHECKSUM_PARTIAL;
2615 skb->csum_start = skb_headroom(skb) + start;
2616 skb->csum_offset = off;
2620 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
2622 if (net_ratelimit())
2623 pr_warning("%s: received packets cannot be forwarded"
2624 " while LRO is enabled\n", skb->dev->name);
2627 EXPORT_SYMBOL(___pskb_trim);
2628 EXPORT_SYMBOL(__kfree_skb);
2629 EXPORT_SYMBOL(kfree_skb);
2630 EXPORT_SYMBOL(__pskb_pull_tail);
2631 EXPORT_SYMBOL(__alloc_skb);
2632 EXPORT_SYMBOL(__netdev_alloc_skb);
2633 EXPORT_SYMBOL(pskb_copy);
2634 EXPORT_SYMBOL(pskb_expand_head);
2635 EXPORT_SYMBOL(skb_checksum);
2636 EXPORT_SYMBOL(skb_clone);
2637 EXPORT_SYMBOL(skb_copy);
2638 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2639 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2640 EXPORT_SYMBOL(skb_copy_bits);
2641 EXPORT_SYMBOL(skb_copy_expand);
2642 EXPORT_SYMBOL(skb_over_panic);
2643 EXPORT_SYMBOL(skb_pad);
2644 EXPORT_SYMBOL(skb_realloc_headroom);
2645 EXPORT_SYMBOL(skb_under_panic);
2646 EXPORT_SYMBOL(skb_dequeue);
2647 EXPORT_SYMBOL(skb_dequeue_tail);
2648 EXPORT_SYMBOL(skb_insert);
2649 EXPORT_SYMBOL(skb_queue_purge);
2650 EXPORT_SYMBOL(skb_queue_head);
2651 EXPORT_SYMBOL(skb_queue_tail);
2652 EXPORT_SYMBOL(skb_unlink);
2653 EXPORT_SYMBOL(skb_append);
2654 EXPORT_SYMBOL(skb_split);
2655 EXPORT_SYMBOL(skb_prepare_seq_read);
2656 EXPORT_SYMBOL(skb_seq_read);
2657 EXPORT_SYMBOL(skb_abort_seq_read);
2658 EXPORT_SYMBOL(skb_find_text);
2659 EXPORT_SYMBOL(skb_append_datato_frags);
2660 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
2662 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2663 EXPORT_SYMBOL_GPL(skb_cow_data);
2664 EXPORT_SYMBOL_GPL(skb_partial_csum_set);