4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/compiler.h>
17 #include <linux/uaccess.h>
18 #include <linux/aio.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
38 * FIXME: remove all knowledge of the buffer layer from the core VM
40 #include <linux/buffer_head.h> /* for generic_osync_inode */
45 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
46 loff_t offset, unsigned long nr_segs);
49 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * Shared mappings now work. 15.8.1995 Bruno.
54 * finished 'unifying' the page and buffer cache and SMP-threaded the
55 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
63 * ->i_mmap_lock (vmtruncate)
64 * ->private_lock (__free_pte->__set_page_dirty_buffers)
65 * ->swap_lock (exclusive_swap_page, others)
66 * ->mapping->tree_lock
69 * ->i_mmap_lock (truncate->unmap_mapping_range)
73 * ->page_table_lock or pte_lock (various, mainly in memory.c)
74 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 * ->lock_page (access_process_vm)
83 * ->i_alloc_sem (various)
86 * ->sb_lock (fs/fs-writeback.c)
87 * ->mapping->tree_lock (__sync_single_inode)
90 * ->anon_vma.lock (vma_adjust)
93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
95 * ->page_table_lock or pte_lock
96 * ->swap_lock (try_to_unmap_one)
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
99 * ->zone.lru_lock (follow_page->mark_page_accessed)
100 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (page_remove_rmap->set_page_dirty)
104 * ->inode_lock (zap_pte_range->set_page_dirty)
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 * ->dcache_lock (proc_pid_lookup)
112 * Remove a page from the page cache and free it. Caller has to make
113 * sure the page is locked and that nobody else uses it - or that usage
114 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
116 void __remove_from_page_cache(struct page *page)
118 struct address_space *mapping = page->mapping;
120 radix_tree_delete(&mapping->page_tree, page->index);
121 page->mapping = NULL;
126 void remove_from_page_cache(struct page *page)
128 struct address_space *mapping = page->mapping;
130 BUG_ON(!PageLocked(page));
132 write_lock_irq(&mapping->tree_lock);
133 __remove_from_page_cache(page);
134 write_unlock_irq(&mapping->tree_lock);
137 static int sync_page(void *word)
139 struct address_space *mapping;
142 page = container_of((unsigned long *)word, struct page, flags);
145 * page_mapping() is being called without PG_locked held.
146 * Some knowledge of the state and use of the page is used to
147 * reduce the requirements down to a memory barrier.
148 * The danger here is of a stale page_mapping() return value
149 * indicating a struct address_space different from the one it's
150 * associated with when it is associated with one.
151 * After smp_mb(), it's either the correct page_mapping() for
152 * the page, or an old page_mapping() and the page's own
153 * page_mapping() has gone NULL.
154 * The ->sync_page() address_space operation must tolerate
155 * page_mapping() going NULL. By an amazing coincidence,
156 * this comes about because none of the users of the page
157 * in the ->sync_page() methods make essential use of the
158 * page_mapping(), merely passing the page down to the backing
159 * device's unplug functions when it's non-NULL, which in turn
160 * ignore it for all cases but swap, where only page_private(page) is
161 * of interest. When page_mapping() does go NULL, the entire
162 * call stack gracefully ignores the page and returns.
166 mapping = page_mapping(page);
167 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
168 mapping->a_ops->sync_page(page);
174 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
175 * @mapping: address space structure to write
176 * @start: offset in bytes where the range starts
177 * @end: offset in bytes where the range ends (inclusive)
178 * @sync_mode: enable synchronous operation
180 * Start writeback against all of a mapping's dirty pages that lie
181 * within the byte offsets <start, end> inclusive.
183 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
184 * opposed to a regular memory cleansing writeback. The difference between
185 * these two operations is that if a dirty page/buffer is encountered, it must
186 * be waited upon, and not just skipped over.
188 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
189 loff_t end, int sync_mode)
192 struct writeback_control wbc = {
193 .sync_mode = sync_mode,
194 .nr_to_write = mapping->nrpages * 2,
195 .range_start = start,
199 if (!mapping_cap_writeback_dirty(mapping))
202 ret = do_writepages(mapping, &wbc);
206 static inline int __filemap_fdatawrite(struct address_space *mapping,
209 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
212 int filemap_fdatawrite(struct address_space *mapping)
214 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
216 EXPORT_SYMBOL(filemap_fdatawrite);
218 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
221 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
225 * filemap_flush - mostly a non-blocking flush
226 * @mapping: target address_space
228 * This is a mostly non-blocking flush. Not suitable for data-integrity
229 * purposes - I/O may not be started against all dirty pages.
231 int filemap_flush(struct address_space *mapping)
233 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
235 EXPORT_SYMBOL(filemap_flush);
238 * wait_on_page_writeback_range - wait for writeback to complete
239 * @mapping: target address_space
240 * @start: beginning page index
241 * @end: ending page index
243 * Wait for writeback to complete against pages indexed by start->end
246 int wait_on_page_writeback_range(struct address_space *mapping,
247 pgoff_t start, pgoff_t end)
257 pagevec_init(&pvec, 0);
259 while ((index <= end) &&
260 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
261 PAGECACHE_TAG_WRITEBACK,
262 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
265 for (i = 0; i < nr_pages; i++) {
266 struct page *page = pvec.pages[i];
268 /* until radix tree lookup accepts end_index */
269 if (page->index > end)
272 wait_on_page_writeback(page);
276 pagevec_release(&pvec);
280 /* Check for outstanding write errors */
281 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
283 if (test_and_clear_bit(AS_EIO, &mapping->flags))
290 * sync_page_range - write and wait on all pages in the passed range
291 * @inode: target inode
292 * @mapping: target address_space
293 * @pos: beginning offset in pages to write
294 * @count: number of bytes to write
296 * Write and wait upon all the pages in the passed range. This is a "data
297 * integrity" operation. It waits upon in-flight writeout before starting and
298 * waiting upon new writeout. If there was an IO error, return it.
300 * We need to re-take i_mutex during the generic_osync_inode list walk because
301 * it is otherwise livelockable.
303 int sync_page_range(struct inode *inode, struct address_space *mapping,
304 loff_t pos, loff_t count)
306 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
307 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
310 if (!mapping_cap_writeback_dirty(mapping) || !count)
312 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
314 mutex_lock(&inode->i_mutex);
315 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
316 mutex_unlock(&inode->i_mutex);
319 ret = wait_on_page_writeback_range(mapping, start, end);
322 EXPORT_SYMBOL(sync_page_range);
325 * sync_page_range_nolock
326 * @inode: target inode
327 * @mapping: target address_space
328 * @pos: beginning offset in pages to write
329 * @count: number of bytes to write
331 * Note: Holding i_mutex across sync_page_range_nolock is not a good idea
332 * as it forces O_SYNC writers to different parts of the same file
333 * to be serialised right until io completion.
335 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
336 loff_t pos, loff_t count)
338 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
339 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
342 if (!mapping_cap_writeback_dirty(mapping) || !count)
344 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
346 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
348 ret = wait_on_page_writeback_range(mapping, start, end);
351 EXPORT_SYMBOL(sync_page_range_nolock);
354 * filemap_fdatawait - wait for all under-writeback pages to complete
355 * @mapping: address space structure to wait for
357 * Walk the list of under-writeback pages of the given address space
358 * and wait for all of them.
360 int filemap_fdatawait(struct address_space *mapping)
362 loff_t i_size = i_size_read(mapping->host);
367 return wait_on_page_writeback_range(mapping, 0,
368 (i_size - 1) >> PAGE_CACHE_SHIFT);
370 EXPORT_SYMBOL(filemap_fdatawait);
372 int filemap_write_and_wait(struct address_space *mapping)
376 if (mapping->nrpages) {
377 err = filemap_fdatawrite(mapping);
379 * Even if the above returned error, the pages may be
380 * written partially (e.g. -ENOSPC), so we wait for it.
381 * But the -EIO is special case, it may indicate the worst
382 * thing (e.g. bug) happened, so we avoid waiting for it.
385 int err2 = filemap_fdatawait(mapping);
392 EXPORT_SYMBOL(filemap_write_and_wait);
395 * filemap_write_and_wait_range - write out & wait on a file range
396 * @mapping: the address_space for the pages
397 * @lstart: offset in bytes where the range starts
398 * @lend: offset in bytes where the range ends (inclusive)
400 * Write out and wait upon file offsets lstart->lend, inclusive.
402 * Note that `lend' is inclusive (describes the last byte to be written) so
403 * that this function can be used to write to the very end-of-file (end = -1).
405 int filemap_write_and_wait_range(struct address_space *mapping,
406 loff_t lstart, loff_t lend)
410 if (mapping->nrpages) {
411 err = __filemap_fdatawrite_range(mapping, lstart, lend,
413 /* See comment of filemap_write_and_wait() */
415 int err2 = wait_on_page_writeback_range(mapping,
416 lstart >> PAGE_CACHE_SHIFT,
417 lend >> PAGE_CACHE_SHIFT);
426 * add_to_page_cache - add newly allocated pagecache pages
428 * @mapping: the page's address_space
429 * @offset: page index
430 * @gfp_mask: page allocation mode
432 * This function is used to add newly allocated pagecache pages;
433 * the page is new, so we can just run SetPageLocked() against it.
434 * The other page state flags were set by rmqueue().
436 * This function does not add the page to the LRU. The caller must do that.
438 int add_to_page_cache(struct page *page, struct address_space *mapping,
439 pgoff_t offset, gfp_t gfp_mask)
441 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
444 write_lock_irq(&mapping->tree_lock);
445 error = radix_tree_insert(&mapping->page_tree, offset, page);
447 page_cache_get(page);
449 page->mapping = mapping;
450 page->index = offset;
454 write_unlock_irq(&mapping->tree_lock);
455 radix_tree_preload_end();
459 EXPORT_SYMBOL(add_to_page_cache);
461 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
462 pgoff_t offset, gfp_t gfp_mask)
464 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
471 struct page *page_cache_alloc(struct address_space *x)
473 if (cpuset_do_page_mem_spread()) {
474 int n = cpuset_mem_spread_node();
475 return alloc_pages_node(n, mapping_gfp_mask(x), 0);
477 return alloc_pages(mapping_gfp_mask(x), 0);
479 EXPORT_SYMBOL(page_cache_alloc);
481 struct page *page_cache_alloc_cold(struct address_space *x)
483 if (cpuset_do_page_mem_spread()) {
484 int n = cpuset_mem_spread_node();
485 return alloc_pages_node(n, mapping_gfp_mask(x)|__GFP_COLD, 0);
487 return alloc_pages(mapping_gfp_mask(x)|__GFP_COLD, 0);
489 EXPORT_SYMBOL(page_cache_alloc_cold);
493 * In order to wait for pages to become available there must be
494 * waitqueues associated with pages. By using a hash table of
495 * waitqueues where the bucket discipline is to maintain all
496 * waiters on the same queue and wake all when any of the pages
497 * become available, and for the woken contexts to check to be
498 * sure the appropriate page became available, this saves space
499 * at a cost of "thundering herd" phenomena during rare hash
502 static wait_queue_head_t *page_waitqueue(struct page *page)
504 const struct zone *zone = page_zone(page);
506 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
509 static inline void wake_up_page(struct page *page, int bit)
511 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
514 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
516 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
518 if (test_bit(bit_nr, &page->flags))
519 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
520 TASK_UNINTERRUPTIBLE);
522 EXPORT_SYMBOL(wait_on_page_bit);
525 * unlock_page - unlock a locked page
528 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
529 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
530 * mechananism between PageLocked pages and PageWriteback pages is shared.
531 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
533 * The first mb is necessary to safely close the critical section opened by the
534 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
535 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
536 * parallel wait_on_page_locked()).
538 void fastcall unlock_page(struct page *page)
540 smp_mb__before_clear_bit();
541 if (!TestClearPageLocked(page))
543 smp_mb__after_clear_bit();
544 wake_up_page(page, PG_locked);
546 EXPORT_SYMBOL(unlock_page);
549 * end_page_writeback - end writeback against a page
552 void end_page_writeback(struct page *page)
554 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
555 if (!test_clear_page_writeback(page))
558 smp_mb__after_clear_bit();
559 wake_up_page(page, PG_writeback);
561 EXPORT_SYMBOL(end_page_writeback);
564 * __lock_page - get a lock on the page, assuming we need to sleep to get it
565 * @page: the page to lock
567 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
568 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
569 * chances are that on the second loop, the block layer's plug list is empty,
570 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
572 void fastcall __lock_page(struct page *page)
574 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
576 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
577 TASK_UNINTERRUPTIBLE);
579 EXPORT_SYMBOL(__lock_page);
582 * find_get_page - find and get a page reference
583 * @mapping: the address_space to search
584 * @offset: the page index
586 * A rather lightweight function, finding and getting a reference to a
587 * hashed page atomically.
589 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
593 read_lock_irq(&mapping->tree_lock);
594 page = radix_tree_lookup(&mapping->page_tree, offset);
596 page_cache_get(page);
597 read_unlock_irq(&mapping->tree_lock);
600 EXPORT_SYMBOL(find_get_page);
603 * find_trylock_page - find and lock a page
604 * @mapping: the address_space to search
605 * @offset: the page index
607 * Same as find_get_page(), but trylock it instead of incrementing the count.
609 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
613 read_lock_irq(&mapping->tree_lock);
614 page = radix_tree_lookup(&mapping->page_tree, offset);
615 if (page && TestSetPageLocked(page))
617 read_unlock_irq(&mapping->tree_lock);
620 EXPORT_SYMBOL(find_trylock_page);
623 * find_lock_page - locate, pin and lock a pagecache page
624 * @mapping: the address_space to search
625 * @offset: the page index
627 * Locates the desired pagecache page, locks it, increments its reference
628 * count and returns its address.
630 * Returns zero if the page was not present. find_lock_page() may sleep.
632 struct page *find_lock_page(struct address_space *mapping,
633 unsigned long offset)
637 read_lock_irq(&mapping->tree_lock);
639 page = radix_tree_lookup(&mapping->page_tree, offset);
641 page_cache_get(page);
642 if (TestSetPageLocked(page)) {
643 read_unlock_irq(&mapping->tree_lock);
645 read_lock_irq(&mapping->tree_lock);
647 /* Has the page been truncated while we slept? */
648 if (unlikely(page->mapping != mapping ||
649 page->index != offset)) {
651 page_cache_release(page);
656 read_unlock_irq(&mapping->tree_lock);
659 EXPORT_SYMBOL(find_lock_page);
662 * find_or_create_page - locate or add a pagecache page
663 * @mapping: the page's address_space
664 * @index: the page's index into the mapping
665 * @gfp_mask: page allocation mode
667 * Locates a page in the pagecache. If the page is not present, a new page
668 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
669 * LRU list. The returned page is locked and has its reference count
672 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
675 * find_or_create_page() returns the desired page's address, or zero on
678 struct page *find_or_create_page(struct address_space *mapping,
679 unsigned long index, gfp_t gfp_mask)
681 struct page *page, *cached_page = NULL;
684 page = find_lock_page(mapping, index);
687 cached_page = alloc_page(gfp_mask);
691 err = add_to_page_cache_lru(cached_page, mapping,
696 } else if (err == -EEXIST)
700 page_cache_release(cached_page);
703 EXPORT_SYMBOL(find_or_create_page);
706 * find_get_pages - gang pagecache lookup
707 * @mapping: The address_space to search
708 * @start: The starting page index
709 * @nr_pages: The maximum number of pages
710 * @pages: Where the resulting pages are placed
712 * find_get_pages() will search for and return a group of up to
713 * @nr_pages pages in the mapping. The pages are placed at @pages.
714 * find_get_pages() takes a reference against the returned pages.
716 * The search returns a group of mapping-contiguous pages with ascending
717 * indexes. There may be holes in the indices due to not-present pages.
719 * find_get_pages() returns the number of pages which were found.
721 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
722 unsigned int nr_pages, struct page **pages)
727 read_lock_irq(&mapping->tree_lock);
728 ret = radix_tree_gang_lookup(&mapping->page_tree,
729 (void **)pages, start, nr_pages);
730 for (i = 0; i < ret; i++)
731 page_cache_get(pages[i]);
732 read_unlock_irq(&mapping->tree_lock);
737 * find_get_pages_contig - gang contiguous pagecache lookup
738 * @mapping: The address_space to search
739 * @index: The starting page index
740 * @nr_pages: The maximum number of pages
741 * @pages: Where the resulting pages are placed
743 * find_get_pages_contig() works exactly like find_get_pages(), except
744 * that the returned number of pages are guaranteed to be contiguous.
746 * find_get_pages_contig() returns the number of pages which were found.
748 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
749 unsigned int nr_pages, struct page **pages)
754 read_lock_irq(&mapping->tree_lock);
755 ret = radix_tree_gang_lookup(&mapping->page_tree,
756 (void **)pages, index, nr_pages);
757 for (i = 0; i < ret; i++) {
758 if (pages[i]->mapping == NULL || pages[i]->index != index)
761 page_cache_get(pages[i]);
764 read_unlock_irq(&mapping->tree_lock);
769 * find_get_pages_tag - find and return pages that match @tag
770 * @mapping: the address_space to search
771 * @index: the starting page index
772 * @tag: the tag index
773 * @nr_pages: the maximum number of pages
774 * @pages: where the resulting pages are placed
776 * Like find_get_pages, except we only return pages which are tagged with
777 * @tag. We update @index to index the next page for the traversal.
779 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
780 int tag, unsigned int nr_pages, struct page **pages)
785 read_lock_irq(&mapping->tree_lock);
786 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
787 (void **)pages, *index, nr_pages, tag);
788 for (i = 0; i < ret; i++)
789 page_cache_get(pages[i]);
791 *index = pages[ret - 1]->index + 1;
792 read_unlock_irq(&mapping->tree_lock);
797 * grab_cache_page_nowait - returns locked page at given index in given cache
798 * @mapping: target address_space
799 * @index: the page index
801 * Same as grab_cache_page, but do not wait if the page is unavailable.
802 * This is intended for speculative data generators, where the data can
803 * be regenerated if the page couldn't be grabbed. This routine should
804 * be safe to call while holding the lock for another page.
806 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
807 * and deadlock against the caller's locked page.
810 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
812 struct page *page = find_get_page(mapping, index);
816 if (!TestSetPageLocked(page))
818 page_cache_release(page);
821 gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
822 page = alloc_pages(gfp_mask, 0);
823 if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
824 page_cache_release(page);
829 EXPORT_SYMBOL(grab_cache_page_nowait);
832 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
833 * a _large_ part of the i/o request. Imagine the worst scenario:
835 * ---R__________________________________________B__________
836 * ^ reading here ^ bad block(assume 4k)
838 * read(R) => miss => readahead(R...B) => media error => frustrating retries
839 * => failing the whole request => read(R) => read(R+1) =>
840 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
841 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
842 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
844 * It is going insane. Fix it by quickly scaling down the readahead size.
846 static void shrink_readahead_size_eio(struct file *filp,
847 struct file_ra_state *ra)
853 printk(KERN_WARNING "Reducing readahead size to %luK\n",
854 ra->ra_pages << (PAGE_CACHE_SHIFT - 10));
858 * do_generic_mapping_read - generic file read routine
859 * @mapping: address_space to be read
860 * @_ra: file's readahead state
861 * @filp: the file to read
862 * @ppos: current file position
863 * @desc: read_descriptor
864 * @actor: read method
866 * This is a generic file read routine, and uses the
867 * mapping->a_ops->readpage() function for the actual low-level stuff.
869 * This is really ugly. But the goto's actually try to clarify some
870 * of the logic when it comes to error handling etc.
872 * Note the struct file* is only passed for the use of readpage.
875 void do_generic_mapping_read(struct address_space *mapping,
876 struct file_ra_state *_ra,
879 read_descriptor_t *desc,
882 struct inode *inode = mapping->host;
884 unsigned long end_index;
885 unsigned long offset;
886 unsigned long last_index;
887 unsigned long next_index;
888 unsigned long prev_index;
890 struct page *cached_page;
892 struct file_ra_state ra = *_ra;
895 index = *ppos >> PAGE_CACHE_SHIFT;
897 prev_index = ra.prev_page;
898 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
899 offset = *ppos & ~PAGE_CACHE_MASK;
901 isize = i_size_read(inode);
905 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
908 unsigned long nr, ret;
910 /* nr is the maximum number of bytes to copy from this page */
911 nr = PAGE_CACHE_SIZE;
912 if (index >= end_index) {
913 if (index > end_index)
915 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
923 if (index == next_index)
924 next_index = page_cache_readahead(mapping, &ra, filp,
925 index, last_index - index);
928 page = find_get_page(mapping, index);
929 if (unlikely(page == NULL)) {
930 handle_ra_miss(mapping, &ra, index);
933 if (!PageUptodate(page))
934 goto page_not_up_to_date;
937 /* If users can be writing to this page using arbitrary
938 * virtual addresses, take care about potential aliasing
939 * before reading the page on the kernel side.
941 if (mapping_writably_mapped(mapping))
942 flush_dcache_page(page);
945 * When (part of) the same page is read multiple times
946 * in succession, only mark it as accessed the first time.
948 if (prev_index != index)
949 mark_page_accessed(page);
953 * Ok, we have the page, and it's up-to-date, so
954 * now we can copy it to user space...
956 * The actor routine returns how many bytes were actually used..
957 * NOTE! This may not be the same as how much of a user buffer
958 * we filled up (we may be padding etc), so we can only update
959 * "pos" here (the actor routine has to update the user buffer
960 * pointers and the remaining count).
962 ret = actor(desc, page, offset, nr);
964 index += offset >> PAGE_CACHE_SHIFT;
965 offset &= ~PAGE_CACHE_MASK;
967 page_cache_release(page);
968 if (ret == nr && desc->count)
973 /* Get exclusive access to the page ... */
976 /* Did it get unhashed before we got the lock? */
977 if (!page->mapping) {
979 page_cache_release(page);
983 /* Did somebody else fill it already? */
984 if (PageUptodate(page)) {
990 /* Start the actual read. The read will unlock the page. */
991 error = mapping->a_ops->readpage(filp, page);
993 if (unlikely(error)) {
994 if (error == AOP_TRUNCATED_PAGE) {
995 page_cache_release(page);
1001 if (!PageUptodate(page)) {
1003 if (!PageUptodate(page)) {
1004 if (page->mapping == NULL) {
1006 * invalidate_inode_pages got it
1009 page_cache_release(page);
1014 shrink_readahead_size_eio(filp, &ra);
1015 goto readpage_error;
1021 * i_size must be checked after we have done ->readpage.
1023 * Checking i_size after the readpage allows us to calculate
1024 * the correct value for "nr", which means the zero-filled
1025 * part of the page is not copied back to userspace (unless
1026 * another truncate extends the file - this is desired though).
1028 isize = i_size_read(inode);
1029 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1030 if (unlikely(!isize || index > end_index)) {
1031 page_cache_release(page);
1035 /* nr is the maximum number of bytes to copy from this page */
1036 nr = PAGE_CACHE_SIZE;
1037 if (index == end_index) {
1038 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1040 page_cache_release(page);
1048 /* UHHUH! A synchronous read error occurred. Report it */
1049 desc->error = error;
1050 page_cache_release(page);
1055 * Ok, it wasn't cached, so we need to create a new
1059 cached_page = page_cache_alloc_cold(mapping);
1061 desc->error = -ENOMEM;
1065 error = add_to_page_cache_lru(cached_page, mapping,
1068 if (error == -EEXIST)
1070 desc->error = error;
1081 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1083 page_cache_release(cached_page);
1085 file_accessed(filp);
1087 EXPORT_SYMBOL(do_generic_mapping_read);
1089 int file_read_actor(read_descriptor_t *desc, struct page *page,
1090 unsigned long offset, unsigned long size)
1093 unsigned long left, count = desc->count;
1099 * Faults on the destination of a read are common, so do it before
1102 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1103 kaddr = kmap_atomic(page, KM_USER0);
1104 left = __copy_to_user_inatomic(desc->arg.buf,
1105 kaddr + offset, size);
1106 kunmap_atomic(kaddr, KM_USER0);
1111 /* Do it the slow way */
1113 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1118 desc->error = -EFAULT;
1121 desc->count = count - size;
1122 desc->written += size;
1123 desc->arg.buf += size;
1128 * __generic_file_aio_read - generic filesystem read routine
1129 * @iocb: kernel I/O control block
1130 * @iov: io vector request
1131 * @nr_segs: number of segments in the iovec
1132 * @ppos: current file position
1134 * This is the "read()" routine for all filesystems
1135 * that can use the page cache directly.
1138 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1139 unsigned long nr_segs, loff_t *ppos)
1141 struct file *filp = iocb->ki_filp;
1147 for (seg = 0; seg < nr_segs; seg++) {
1148 const struct iovec *iv = &iov[seg];
1151 * If any segment has a negative length, or the cumulative
1152 * length ever wraps negative then return -EINVAL.
1154 count += iv->iov_len;
1155 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1157 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1162 count -= iv->iov_len; /* This segment is no good */
1166 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1167 if (filp->f_flags & O_DIRECT) {
1168 loff_t pos = *ppos, size;
1169 struct address_space *mapping;
1170 struct inode *inode;
1172 mapping = filp->f_mapping;
1173 inode = mapping->host;
1176 goto out; /* skip atime */
1177 size = i_size_read(inode);
1179 retval = generic_file_direct_IO(READ, iocb,
1181 if (retval > 0 && !is_sync_kiocb(iocb))
1182 retval = -EIOCBQUEUED;
1184 *ppos = pos + retval;
1186 file_accessed(filp);
1192 for (seg = 0; seg < nr_segs; seg++) {
1193 read_descriptor_t desc;
1196 desc.arg.buf = iov[seg].iov_base;
1197 desc.count = iov[seg].iov_len;
1198 if (desc.count == 0)
1201 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1202 retval += desc.written;
1204 retval = retval ?: desc.error;
1212 EXPORT_SYMBOL(__generic_file_aio_read);
1215 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1217 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1219 BUG_ON(iocb->ki_pos != pos);
1220 return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1222 EXPORT_SYMBOL(generic_file_aio_read);
1225 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1227 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1231 init_sync_kiocb(&kiocb, filp);
1232 ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1233 if (-EIOCBQUEUED == ret)
1234 ret = wait_on_sync_kiocb(&kiocb);
1237 EXPORT_SYMBOL(generic_file_read);
1239 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1242 unsigned long count = desc->count;
1243 struct file *file = desc->arg.data;
1248 written = file->f_op->sendpage(file, page, offset,
1249 size, &file->f_pos, size<count);
1251 desc->error = written;
1254 desc->count = count - written;
1255 desc->written += written;
1259 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1260 size_t count, read_actor_t actor, void *target)
1262 read_descriptor_t desc;
1269 desc.arg.data = target;
1272 do_generic_file_read(in_file, ppos, &desc, actor);
1274 return desc.written;
1277 EXPORT_SYMBOL(generic_file_sendfile);
1280 do_readahead(struct address_space *mapping, struct file *filp,
1281 unsigned long index, unsigned long nr)
1283 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1286 force_page_cache_readahead(mapping, filp, index,
1287 max_sane_readahead(nr));
1291 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1299 if (file->f_mode & FMODE_READ) {
1300 struct address_space *mapping = file->f_mapping;
1301 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1302 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1303 unsigned long len = end - start + 1;
1304 ret = do_readahead(mapping, file, start, len);
1312 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1314 * page_cache_read - adds requested page to the page cache if not already there
1315 * @file: file to read
1316 * @offset: page index
1318 * This adds the requested page to the page cache if it isn't already there,
1319 * and schedules an I/O to read in its contents from disk.
1321 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1323 struct address_space *mapping = file->f_mapping;
1328 page = page_cache_alloc_cold(mapping);
1332 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1334 ret = mapping->a_ops->readpage(file, page);
1335 else if (ret == -EEXIST)
1336 ret = 0; /* losing race to add is OK */
1338 page_cache_release(page);
1340 } while (ret == AOP_TRUNCATED_PAGE);
1345 #define MMAP_LOTSAMISS (100)
1348 * filemap_nopage - read in file data for page fault handling
1349 * @area: the applicable vm_area
1350 * @address: target address to read in
1351 * @type: returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1353 * filemap_nopage() is invoked via the vma operations vector for a
1354 * mapped memory region to read in file data during a page fault.
1356 * The goto's are kind of ugly, but this streamlines the normal case of having
1357 * it in the page cache, and handles the special cases reasonably without
1358 * having a lot of duplicated code.
1360 struct page *filemap_nopage(struct vm_area_struct *area,
1361 unsigned long address, int *type)
1364 struct file *file = area->vm_file;
1365 struct address_space *mapping = file->f_mapping;
1366 struct file_ra_state *ra = &file->f_ra;
1367 struct inode *inode = mapping->host;
1369 unsigned long size, pgoff;
1370 int did_readaround = 0, majmin = VM_FAULT_MINOR;
1372 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1375 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1377 goto outside_data_content;
1379 /* If we don't want any read-ahead, don't bother */
1380 if (VM_RandomReadHint(area))
1381 goto no_cached_page;
1384 * The readahead code wants to be told about each and every page
1385 * so it can build and shrink its windows appropriately
1387 * For sequential accesses, we use the generic readahead logic.
1389 if (VM_SequentialReadHint(area))
1390 page_cache_readahead(mapping, ra, file, pgoff, 1);
1393 * Do we have something in the page cache already?
1396 page = find_get_page(mapping, pgoff);
1398 unsigned long ra_pages;
1400 if (VM_SequentialReadHint(area)) {
1401 handle_ra_miss(mapping, ra, pgoff);
1402 goto no_cached_page;
1407 * Do we miss much more than hit in this file? If so,
1408 * stop bothering with read-ahead. It will only hurt.
1410 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1411 goto no_cached_page;
1414 * To keep the pgmajfault counter straight, we need to
1415 * check did_readaround, as this is an inner loop.
1417 if (!did_readaround) {
1418 majmin = VM_FAULT_MAJOR;
1419 inc_page_state(pgmajfault);
1422 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1426 if (pgoff > ra_pages / 2)
1427 start = pgoff - ra_pages / 2;
1428 do_page_cache_readahead(mapping, file, start, ra_pages);
1430 page = find_get_page(mapping, pgoff);
1432 goto no_cached_page;
1435 if (!did_readaround)
1439 * Ok, found a page in the page cache, now we need to check
1440 * that it's up-to-date.
1442 if (!PageUptodate(page))
1443 goto page_not_uptodate;
1447 * Found the page and have a reference on it.
1449 mark_page_accessed(page);
1454 outside_data_content:
1456 * An external ptracer can access pages that normally aren't
1459 if (area->vm_mm == current->mm)
1461 /* Fall through to the non-read-ahead case */
1464 * We're only likely to ever get here if MADV_RANDOM is in
1467 error = page_cache_read(file, pgoff);
1471 * The page we want has now been added to the page cache.
1472 * In the unlikely event that someone removed it in the
1473 * meantime, we'll just come back here and read it again.
1479 * An error return from page_cache_read can result if the
1480 * system is low on memory, or a problem occurs while trying
1483 if (error == -ENOMEM)
1488 if (!did_readaround) {
1489 majmin = VM_FAULT_MAJOR;
1490 inc_page_state(pgmajfault);
1494 /* Did it get unhashed while we waited for it? */
1495 if (!page->mapping) {
1497 page_cache_release(page);
1501 /* Did somebody else get it up-to-date? */
1502 if (PageUptodate(page)) {
1507 error = mapping->a_ops->readpage(file, page);
1509 wait_on_page_locked(page);
1510 if (PageUptodate(page))
1512 } else if (error == AOP_TRUNCATED_PAGE) {
1513 page_cache_release(page);
1518 * Umm, take care of errors if the page isn't up-to-date.
1519 * Try to re-read it _once_. We do this synchronously,
1520 * because there really aren't any performance issues here
1521 * and we need to check for errors.
1525 /* Somebody truncated the page on us? */
1526 if (!page->mapping) {
1528 page_cache_release(page);
1532 /* Somebody else successfully read it in? */
1533 if (PageUptodate(page)) {
1537 ClearPageError(page);
1538 error = mapping->a_ops->readpage(file, page);
1540 wait_on_page_locked(page);
1541 if (PageUptodate(page))
1543 } else if (error == AOP_TRUNCATED_PAGE) {
1544 page_cache_release(page);
1549 * Things didn't work out. Return zero to tell the
1550 * mm layer so, possibly freeing the page cache page first.
1552 shrink_readahead_size_eio(file, ra);
1553 page_cache_release(page);
1556 EXPORT_SYMBOL(filemap_nopage);
1558 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1561 struct address_space *mapping = file->f_mapping;
1566 * Do we have something in the page cache already?
1569 page = find_get_page(mapping, pgoff);
1573 goto no_cached_page;
1577 * Ok, found a page in the page cache, now we need to check
1578 * that it's up-to-date.
1580 if (!PageUptodate(page)) {
1582 page_cache_release(page);
1585 goto page_not_uptodate;
1590 * Found the page and have a reference on it.
1592 mark_page_accessed(page);
1596 error = page_cache_read(file, pgoff);
1599 * The page we want has now been added to the page cache.
1600 * In the unlikely event that someone removed it in the
1601 * meantime, we'll just come back here and read it again.
1607 * An error return from page_cache_read can result if the
1608 * system is low on memory, or a problem occurs while trying
1616 /* Did it get unhashed while we waited for it? */
1617 if (!page->mapping) {
1622 /* Did somebody else get it up-to-date? */
1623 if (PageUptodate(page)) {
1628 error = mapping->a_ops->readpage(file, page);
1630 wait_on_page_locked(page);
1631 if (PageUptodate(page))
1633 } else if (error == AOP_TRUNCATED_PAGE) {
1634 page_cache_release(page);
1639 * Umm, take care of errors if the page isn't up-to-date.
1640 * Try to re-read it _once_. We do this synchronously,
1641 * because there really aren't any performance issues here
1642 * and we need to check for errors.
1646 /* Somebody truncated the page on us? */
1647 if (!page->mapping) {
1651 /* Somebody else successfully read it in? */
1652 if (PageUptodate(page)) {
1657 ClearPageError(page);
1658 error = mapping->a_ops->readpage(file, page);
1660 wait_on_page_locked(page);
1661 if (PageUptodate(page))
1663 } else if (error == AOP_TRUNCATED_PAGE) {
1664 page_cache_release(page);
1669 * Things didn't work out. Return zero to tell the
1670 * mm layer so, possibly freeing the page cache page first.
1673 page_cache_release(page);
1678 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1679 unsigned long len, pgprot_t prot, unsigned long pgoff,
1682 struct file *file = vma->vm_file;
1683 struct address_space *mapping = file->f_mapping;
1684 struct inode *inode = mapping->host;
1686 struct mm_struct *mm = vma->vm_mm;
1691 force_page_cache_readahead(mapping, vma->vm_file,
1692 pgoff, len >> PAGE_CACHE_SHIFT);
1695 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1696 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1699 page = filemap_getpage(file, pgoff, nonblock);
1701 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1702 * done in shmem_populate calling shmem_getpage */
1703 if (!page && !nonblock)
1707 err = install_page(mm, vma, addr, page, prot);
1709 page_cache_release(page);
1712 } else if (vma->vm_flags & VM_NONLINEAR) {
1713 /* No page was found just because we can't read it in now (being
1714 * here implies nonblock != 0), but the page may exist, so set
1715 * the PTE to fault it in later. */
1716 err = install_file_pte(mm, vma, addr, pgoff, prot);
1729 EXPORT_SYMBOL(filemap_populate);
1731 struct vm_operations_struct generic_file_vm_ops = {
1732 .nopage = filemap_nopage,
1733 .populate = filemap_populate,
1736 /* This is used for a general mmap of a disk file */
1738 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1740 struct address_space *mapping = file->f_mapping;
1742 if (!mapping->a_ops->readpage)
1744 file_accessed(file);
1745 vma->vm_ops = &generic_file_vm_ops;
1750 * This is for filesystems which do not implement ->writepage.
1752 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1754 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1756 return generic_file_mmap(file, vma);
1759 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1763 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1767 #endif /* CONFIG_MMU */
1769 EXPORT_SYMBOL(generic_file_mmap);
1770 EXPORT_SYMBOL(generic_file_readonly_mmap);
1772 static inline struct page *__read_cache_page(struct address_space *mapping,
1773 unsigned long index,
1774 int (*filler)(void *,struct page*),
1777 struct page *page, *cached_page = NULL;
1780 page = find_get_page(mapping, index);
1783 cached_page = page_cache_alloc_cold(mapping);
1785 return ERR_PTR(-ENOMEM);
1787 err = add_to_page_cache_lru(cached_page, mapping,
1792 /* Presumably ENOMEM for radix tree node */
1793 page_cache_release(cached_page);
1794 return ERR_PTR(err);
1798 err = filler(data, page);
1800 page_cache_release(page);
1801 page = ERR_PTR(err);
1805 page_cache_release(cached_page);
1810 * read_cache_page - read into page cache, fill it if needed
1811 * @mapping: the page's address_space
1812 * @index: the page index
1813 * @filler: function to perform the read
1814 * @data: destination for read data
1816 * Read into the page cache. If a page already exists,
1817 * and PageUptodate() is not set, try to fill the page.
1819 struct page *read_cache_page(struct address_space *mapping,
1820 unsigned long index,
1821 int (*filler)(void *,struct page*),
1828 page = __read_cache_page(mapping, index, filler, data);
1831 mark_page_accessed(page);
1832 if (PageUptodate(page))
1836 if (!page->mapping) {
1838 page_cache_release(page);
1841 if (PageUptodate(page)) {
1845 err = filler(data, page);
1847 page_cache_release(page);
1848 page = ERR_PTR(err);
1853 EXPORT_SYMBOL(read_cache_page);
1856 * If the page was newly created, increment its refcount and add it to the
1857 * caller's lru-buffering pagevec. This function is specifically for
1858 * generic_file_write().
1860 static inline struct page *
1861 __grab_cache_page(struct address_space *mapping, unsigned long index,
1862 struct page **cached_page, struct pagevec *lru_pvec)
1867 page = find_lock_page(mapping, index);
1869 if (!*cached_page) {
1870 *cached_page = page_cache_alloc(mapping);
1874 err = add_to_page_cache(*cached_page, mapping,
1879 page = *cached_page;
1880 page_cache_get(page);
1881 if (!pagevec_add(lru_pvec, page))
1882 __pagevec_lru_add(lru_pvec);
1883 *cached_page = NULL;
1890 * The logic we want is
1892 * if suid or (sgid and xgrp)
1895 int remove_suid(struct dentry *dentry)
1897 mode_t mode = dentry->d_inode->i_mode;
1901 /* suid always must be killed */
1902 if (unlikely(mode & S_ISUID))
1903 kill = ATTR_KILL_SUID;
1906 * sgid without any exec bits is just a mandatory locking mark; leave
1907 * it alone. If some exec bits are set, it's a real sgid; kill it.
1909 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1910 kill |= ATTR_KILL_SGID;
1912 if (unlikely(kill && !capable(CAP_FSETID))) {
1913 struct iattr newattrs;
1915 newattrs.ia_valid = ATTR_FORCE | kill;
1916 result = notify_change(dentry, &newattrs);
1920 EXPORT_SYMBOL(remove_suid);
1923 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1924 const struct iovec *iov, size_t base, size_t bytes)
1926 size_t copied = 0, left = 0;
1929 char __user *buf = iov->iov_base + base;
1930 int copy = min(bytes, iov->iov_len - base);
1933 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1942 return copied - left;
1946 * Performs necessary checks before doing a write
1948 * Can adjust writing position or amount of bytes to write.
1949 * Returns appropriate error code that caller should return or
1950 * zero in case that write should be allowed.
1952 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1954 struct inode *inode = file->f_mapping->host;
1955 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1957 if (unlikely(*pos < 0))
1961 /* FIXME: this is for backwards compatibility with 2.4 */
1962 if (file->f_flags & O_APPEND)
1963 *pos = i_size_read(inode);
1965 if (limit != RLIM_INFINITY) {
1966 if (*pos >= limit) {
1967 send_sig(SIGXFSZ, current, 0);
1970 if (*count > limit - (typeof(limit))*pos) {
1971 *count = limit - (typeof(limit))*pos;
1979 if (unlikely(*pos + *count > MAX_NON_LFS &&
1980 !(file->f_flags & O_LARGEFILE))) {
1981 if (*pos >= MAX_NON_LFS) {
1982 send_sig(SIGXFSZ, current, 0);
1985 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1986 *count = MAX_NON_LFS - (unsigned long)*pos;
1991 * Are we about to exceed the fs block limit ?
1993 * If we have written data it becomes a short write. If we have
1994 * exceeded without writing data we send a signal and return EFBIG.
1995 * Linus frestrict idea will clean these up nicely..
1997 if (likely(!isblk)) {
1998 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1999 if (*count || *pos > inode->i_sb->s_maxbytes) {
2000 send_sig(SIGXFSZ, current, 0);
2003 /* zero-length writes at ->s_maxbytes are OK */
2006 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2007 *count = inode->i_sb->s_maxbytes - *pos;
2010 if (bdev_read_only(I_BDEV(inode)))
2012 isize = i_size_read(inode);
2013 if (*pos >= isize) {
2014 if (*count || *pos > isize)
2018 if (*pos + *count > isize)
2019 *count = isize - *pos;
2023 EXPORT_SYMBOL(generic_write_checks);
2026 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2027 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2028 size_t count, size_t ocount)
2030 struct file *file = iocb->ki_filp;
2031 struct address_space *mapping = file->f_mapping;
2032 struct inode *inode = mapping->host;
2035 if (count != ocount)
2036 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2038 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2040 loff_t end = pos + written;
2041 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2042 i_size_write(inode, end);
2043 mark_inode_dirty(inode);
2049 * Sync the fs metadata but not the minor inode changes and
2050 * of course not the data as we did direct DMA for the IO.
2051 * i_mutex is held, which protects generic_osync_inode() from
2054 if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2055 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2059 if (written == count && !is_sync_kiocb(iocb))
2060 written = -EIOCBQUEUED;
2063 EXPORT_SYMBOL(generic_file_direct_write);
2066 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2067 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2068 size_t count, ssize_t written)
2070 struct file *file = iocb->ki_filp;
2071 struct address_space * mapping = file->f_mapping;
2072 struct address_space_operations *a_ops = mapping->a_ops;
2073 struct inode *inode = mapping->host;
2076 struct page *cached_page = NULL;
2078 struct pagevec lru_pvec;
2079 const struct iovec *cur_iov = iov; /* current iovec */
2080 size_t iov_base = 0; /* offset in the current iovec */
2083 pagevec_init(&lru_pvec, 0);
2086 * handle partial DIO write. Adjust cur_iov if needed.
2088 if (likely(nr_segs == 1))
2089 buf = iov->iov_base + written;
2091 filemap_set_next_iovec(&cur_iov, &iov_base, written);
2092 buf = cur_iov->iov_base + iov_base;
2096 unsigned long index;
2097 unsigned long offset;
2098 unsigned long maxlen;
2101 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2102 index = pos >> PAGE_CACHE_SHIFT;
2103 bytes = PAGE_CACHE_SIZE - offset;
2108 * Bring in the user page that we will copy from _first_.
2109 * Otherwise there's a nasty deadlock on copying from the
2110 * same page as we're writing to, without it being marked
2113 maxlen = cur_iov->iov_len - iov_base;
2116 fault_in_pages_readable(buf, maxlen);
2118 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2124 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2125 if (unlikely(status)) {
2126 loff_t isize = i_size_read(inode);
2128 if (status != AOP_TRUNCATED_PAGE)
2130 page_cache_release(page);
2131 if (status == AOP_TRUNCATED_PAGE)
2134 * prepare_write() may have instantiated a few blocks
2135 * outside i_size. Trim these off again.
2137 if (pos + bytes > isize)
2138 vmtruncate(inode, isize);
2141 if (likely(nr_segs == 1))
2142 copied = filemap_copy_from_user(page, offset,
2145 copied = filemap_copy_from_user_iovec(page, offset,
2146 cur_iov, iov_base, bytes);
2147 flush_dcache_page(page);
2148 status = a_ops->commit_write(file, page, offset, offset+bytes);
2149 if (status == AOP_TRUNCATED_PAGE) {
2150 page_cache_release(page);
2153 if (likely(copied > 0)) {
2162 if (unlikely(nr_segs > 1)) {
2163 filemap_set_next_iovec(&cur_iov,
2166 buf = cur_iov->iov_base +
2173 if (unlikely(copied != bytes))
2177 mark_page_accessed(page);
2178 page_cache_release(page);
2181 balance_dirty_pages_ratelimited(mapping);
2187 page_cache_release(cached_page);
2190 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2192 if (likely(status >= 0)) {
2193 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2194 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2195 status = generic_osync_inode(inode, mapping,
2196 OSYNC_METADATA|OSYNC_DATA);
2201 * If we get here for O_DIRECT writes then we must have fallen through
2202 * to buffered writes (block instantiation inside i_size). So we sync
2203 * the file data here, to try to honour O_DIRECT expectations.
2205 if (unlikely(file->f_flags & O_DIRECT) && written)
2206 status = filemap_write_and_wait(mapping);
2208 pagevec_lru_add(&lru_pvec);
2209 return written ? written : status;
2211 EXPORT_SYMBOL(generic_file_buffered_write);
2214 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2215 unsigned long nr_segs, loff_t *ppos)
2217 struct file *file = iocb->ki_filp;
2218 struct address_space * mapping = file->f_mapping;
2219 size_t ocount; /* original count */
2220 size_t count; /* after file limit checks */
2221 struct inode *inode = mapping->host;
2228 for (seg = 0; seg < nr_segs; seg++) {
2229 const struct iovec *iv = &iov[seg];
2232 * If any segment has a negative length, or the cumulative
2233 * length ever wraps negative then return -EINVAL.
2235 ocount += iv->iov_len;
2236 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2238 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2243 ocount -= iv->iov_len; /* This segment is no good */
2250 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2252 /* We can write back this queue in page reclaim */
2253 current->backing_dev_info = mapping->backing_dev_info;
2256 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2263 err = remove_suid(file->f_dentry);
2267 file_update_time(file);
2269 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2270 if (unlikely(file->f_flags & O_DIRECT)) {
2271 written = generic_file_direct_write(iocb, iov,
2272 &nr_segs, pos, ppos, count, ocount);
2273 if (written < 0 || written == count)
2276 * direct-io write to a hole: fall through to buffered I/O
2277 * for completing the rest of the request.
2283 written = generic_file_buffered_write(iocb, iov, nr_segs,
2284 pos, ppos, count, written);
2286 current->backing_dev_info = NULL;
2287 return written ? written : err;
2289 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2292 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2293 unsigned long nr_segs, loff_t *ppos)
2295 struct file *file = iocb->ki_filp;
2296 struct address_space *mapping = file->f_mapping;
2297 struct inode *inode = mapping->host;
2301 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2303 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2306 err = sync_page_range_nolock(inode, mapping, pos, ret);
2314 __generic_file_write_nolock(struct file *file, const struct iovec *iov,
2315 unsigned long nr_segs, loff_t *ppos)
2320 init_sync_kiocb(&kiocb, file);
2321 ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2322 if (ret == -EIOCBQUEUED)
2323 ret = wait_on_sync_kiocb(&kiocb);
2328 generic_file_write_nolock(struct file *file, const struct iovec *iov,
2329 unsigned long nr_segs, loff_t *ppos)
2334 init_sync_kiocb(&kiocb, file);
2335 ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2336 if (-EIOCBQUEUED == ret)
2337 ret = wait_on_sync_kiocb(&kiocb);
2340 EXPORT_SYMBOL(generic_file_write_nolock);
2342 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2343 size_t count, loff_t pos)
2345 struct file *file = iocb->ki_filp;
2346 struct address_space *mapping = file->f_mapping;
2347 struct inode *inode = mapping->host;
2349 struct iovec local_iov = { .iov_base = (void __user *)buf,
2352 BUG_ON(iocb->ki_pos != pos);
2354 mutex_lock(&inode->i_mutex);
2355 ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2357 mutex_unlock(&inode->i_mutex);
2359 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2362 err = sync_page_range(inode, mapping, pos, ret);
2368 EXPORT_SYMBOL(generic_file_aio_write);
2370 ssize_t generic_file_write(struct file *file, const char __user *buf,
2371 size_t count, loff_t *ppos)
2373 struct address_space *mapping = file->f_mapping;
2374 struct inode *inode = mapping->host;
2376 struct iovec local_iov = { .iov_base = (void __user *)buf,
2379 mutex_lock(&inode->i_mutex);
2380 ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2381 mutex_unlock(&inode->i_mutex);
2383 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2386 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2392 EXPORT_SYMBOL(generic_file_write);
2394 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2395 unsigned long nr_segs, loff_t *ppos)
2400 init_sync_kiocb(&kiocb, filp);
2401 ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2402 if (-EIOCBQUEUED == ret)
2403 ret = wait_on_sync_kiocb(&kiocb);
2406 EXPORT_SYMBOL(generic_file_readv);
2408 ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2409 unsigned long nr_segs, loff_t *ppos)
2411 struct address_space *mapping = file->f_mapping;
2412 struct inode *inode = mapping->host;
2415 mutex_lock(&inode->i_mutex);
2416 ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2417 mutex_unlock(&inode->i_mutex);
2419 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2422 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2428 EXPORT_SYMBOL(generic_file_writev);
2431 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2432 * went wrong during pagecache shootdown.
2435 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2436 loff_t offset, unsigned long nr_segs)
2438 struct file *file = iocb->ki_filp;
2439 struct address_space *mapping = file->f_mapping;
2441 size_t write_len = 0;
2444 * If it's a write, unmap all mmappings of the file up-front. This
2445 * will cause any pte dirty bits to be propagated into the pageframes
2446 * for the subsequent filemap_write_and_wait().
2449 write_len = iov_length(iov, nr_segs);
2450 if (mapping_mapped(mapping))
2451 unmap_mapping_range(mapping, offset, write_len, 0);
2454 retval = filemap_write_and_wait(mapping);
2456 retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2458 if (rw == WRITE && mapping->nrpages) {
2459 pgoff_t end = (offset + write_len - 1)
2460 >> PAGE_CACHE_SHIFT;
2461 int err = invalidate_inode_pages2_range(mapping,
2462 offset >> PAGE_CACHE_SHIFT, end);