2 * DECnet An implementation of the DECnet protocol suite for the LINUX
3 * operating system. DECnet is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * DECnet Neighbour Functions (Adjacency Database and
9 * Author: Steve Whitehouse <SteveW@ACM.org>
13 * Steve Whitehouse : Fixed router listing routine
14 * Steve Whitehouse : Added error_report functions
15 * Steve Whitehouse : Added default router detection
16 * Steve Whitehouse : Hop counts in outgoing messages
17 * Steve Whitehouse : Fixed src/dst in outgoing messages so
18 * forwarding now stands a good chance of
20 * Steve Whitehouse : Fixed neighbour states (for now anyway).
21 * Steve Whitehouse : Made error_report functions dummies. This
22 * is not the right place to return skbs.
23 * Steve Whitehouse : Convert to seq_file
27 #include <linux/config.h>
28 #include <linux/net.h>
29 #include <linux/module.h>
30 #include <linux/socket.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/init.h>
34 #include <linux/proc_fs.h>
35 #include <linux/string.h>
36 #include <linux/netfilter_decnet.h>
37 #include <linux/spinlock.h>
38 #include <linux/seq_file.h>
39 #include <linux/rcupdate.h>
40 #include <linux/jhash.h>
41 #include <asm/atomic.h>
42 #include <net/neighbour.h>
46 #include <net/dn_dev.h>
47 #include <net/dn_neigh.h>
48 #include <net/dn_route.h>
50 static u32 dn_neigh_hash(const void *pkey, const struct net_device *dev);
51 static int dn_neigh_construct(struct neighbour *);
52 static void dn_long_error_report(struct neighbour *, struct sk_buff *);
53 static void dn_short_error_report(struct neighbour *, struct sk_buff *);
54 static int dn_long_output(struct sk_buff *);
55 static int dn_short_output(struct sk_buff *);
56 static int dn_phase3_output(struct sk_buff *);
60 * For talking to broadcast devices: Ethernet & PPP
62 static struct neigh_ops dn_long_ops = {
64 .error_report = dn_long_error_report,
65 .output = dn_long_output,
66 .connected_output = dn_long_output,
67 .hh_output = dev_queue_xmit,
68 .queue_xmit = dev_queue_xmit,
72 * For talking to pointopoint and multidrop devices: DDCMP and X.25
74 static struct neigh_ops dn_short_ops = {
76 .error_report = dn_short_error_report,
77 .output = dn_short_output,
78 .connected_output = dn_short_output,
79 .hh_output = dev_queue_xmit,
80 .queue_xmit = dev_queue_xmit,
84 * For talking to DECnet phase III nodes
86 static struct neigh_ops dn_phase3_ops = {
88 .error_report = dn_short_error_report, /* Can use short version here */
89 .output = dn_phase3_output,
90 .connected_output = dn_phase3_output,
91 .hh_output = dev_queue_xmit,
92 .queue_xmit = dev_queue_xmit
95 struct neigh_table dn_neigh_table = {
97 .entry_size = sizeof(struct dn_neigh),
98 .key_len = sizeof(dn_address),
99 .hash = dn_neigh_hash,
100 .constructor = dn_neigh_construct,
101 .id = "dn_neigh_cache",
103 .tbl = &dn_neigh_table,
104 .base_reachable_time = 30 * HZ,
105 .retrans_time = 1 * HZ,
106 .gc_staletime = 60 * HZ,
107 .reachable_time = 30 * HZ,
108 .delay_probe_time = 5 * HZ,
118 .gc_interval = 30 * HZ,
124 static u32 dn_neigh_hash(const void *pkey, const struct net_device *dev)
126 return jhash_2words(*(dn_address *)pkey, 0, dn_neigh_table.hash_rnd);
129 static int dn_neigh_construct(struct neighbour *neigh)
131 struct net_device *dev = neigh->dev;
132 struct dn_neigh *dn = (struct dn_neigh *)neigh;
133 struct dn_dev *dn_db;
134 struct neigh_parms *parms;
137 dn_db = rcu_dereference(dev->dn_ptr);
143 parms = dn_db->neigh_parms;
149 __neigh_parms_put(neigh->parms);
150 neigh->parms = neigh_parms_clone(parms);
154 neigh->ops = &dn_long_ops;
156 neigh->ops = &dn_short_ops;
158 if (dn->flags & DN_NDFLAG_P3)
159 neigh->ops = &dn_phase3_ops;
161 neigh->nud_state = NUD_NOARP;
162 neigh->output = neigh->ops->connected_output;
164 if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT))
165 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
166 else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK))
167 dn_dn2eth(neigh->ha, dn->addr);
170 printk(KERN_DEBUG "Trying to create neigh for hw %d\n", dev->type);
175 * Make an estimate of the remote block size by assuming that its
176 * two less then the device mtu, which it true for ethernet (and
177 * other things which support long format headers) since there is
178 * an extra length field (of 16 bits) which isn't part of the
179 * ethernet headers and which the DECnet specs won't admit is part
180 * of the DECnet routing headers either.
182 * If we over estimate here its no big deal, the NSP negotiations
183 * will prevent us from sending packets which are too large for the
184 * remote node to handle. In any case this figure is normally updated
185 * by a hello message in most cases.
187 dn->blksize = dev->mtu - 2;
192 static void dn_long_error_report(struct neighbour *neigh, struct sk_buff *skb)
194 printk(KERN_DEBUG "dn_long_error_report: called\n");
199 static void dn_short_error_report(struct neighbour *neigh, struct sk_buff *skb)
201 printk(KERN_DEBUG "dn_short_error_report: called\n");
205 static int dn_neigh_output_packet(struct sk_buff *skb)
207 struct dst_entry *dst = skb->dst;
208 struct dn_route *rt = (struct dn_route *)dst;
209 struct neighbour *neigh = dst->neighbour;
210 struct net_device *dev = neigh->dev;
211 char mac_addr[ETH_ALEN];
213 dn_dn2eth(mac_addr, rt->rt_local_src);
214 if (!dev->hard_header || dev->hard_header(skb, dev, ntohs(skb->protocol), neigh->ha, mac_addr, skb->len) >= 0)
215 return neigh->ops->queue_xmit(skb);
218 printk(KERN_DEBUG "dn_neigh_output_packet: oops, can't send packet\n");
224 static int dn_long_output(struct sk_buff *skb)
226 struct dst_entry *dst = skb->dst;
227 struct neighbour *neigh = dst->neighbour;
228 struct net_device *dev = neigh->dev;
229 int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3;
231 struct dn_long_packet *lp;
232 struct dn_skb_cb *cb = DN_SKB_CB(skb);
235 if (skb_headroom(skb) < headroom) {
236 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
239 printk(KERN_CRIT "dn_long_output: no memory\n");
246 printk(KERN_INFO "dn_long_output: Increasing headroom\n");
249 data = skb_push(skb, sizeof(struct dn_long_packet) + 3);
250 lp = (struct dn_long_packet *)(data+3);
252 *((unsigned short *)data) = dn_htons(skb->len - 2);
253 *(data + 2) = 1 | DN_RT_F_PF; /* Padding */
255 lp->msgflg = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS));
256 lp->d_area = lp->d_subarea = 0;
257 dn_dn2eth(lp->d_id, dn_ntohs(cb->dst));
258 lp->s_area = lp->s_subarea = 0;
259 dn_dn2eth(lp->s_id, dn_ntohs(cb->src));
261 lp->visit_ct = cb->hops & 0x3f;
265 skb->nh.raw = skb->data;
267 return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet);
270 static int dn_short_output(struct sk_buff *skb)
272 struct dst_entry *dst = skb->dst;
273 struct neighbour *neigh = dst->neighbour;
274 struct net_device *dev = neigh->dev;
275 int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
276 struct dn_short_packet *sp;
278 struct dn_skb_cb *cb = DN_SKB_CB(skb);
281 if (skb_headroom(skb) < headroom) {
282 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
285 printk(KERN_CRIT "dn_short_output: no memory\n");
292 printk(KERN_INFO "dn_short_output: Increasing headroom\n");
295 data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
296 *((unsigned short *)data) = dn_htons(skb->len - 2);
297 sp = (struct dn_short_packet *)(data+2);
299 sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
300 sp->dstnode = cb->dst;
301 sp->srcnode = cb->src;
302 sp->forward = cb->hops & 0x3f;
304 skb->nh.raw = skb->data;
306 return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet);
310 * Phase 3 output is the same is short output, execpt that
311 * it clears the area bits before transmission.
313 static int dn_phase3_output(struct sk_buff *skb)
315 struct dst_entry *dst = skb->dst;
316 struct neighbour *neigh = dst->neighbour;
317 struct net_device *dev = neigh->dev;
318 int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
319 struct dn_short_packet *sp;
321 struct dn_skb_cb *cb = DN_SKB_CB(skb);
323 if (skb_headroom(skb) < headroom) {
324 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
327 printk(KERN_CRIT "dn_phase3_output: no memory\n");
334 printk(KERN_INFO "dn_phase3_output: Increasing headroom\n");
337 data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
338 *((unsigned short *)data) = dn_htons(skb->len - 2);
339 sp = (struct dn_short_packet *)(data + 2);
341 sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
342 sp->dstnode = cb->dst & dn_htons(0x03ff);
343 sp->srcnode = cb->src & dn_htons(0x03ff);
344 sp->forward = cb->hops & 0x3f;
346 skb->nh.raw = skb->data;
348 return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet);
352 * Unfortunately, the neighbour code uses the device in its hash
353 * function, so we don't get any advantage from it. This function
354 * basically does a neigh_lookup(), but without comparing the device
355 * field. This is required for the On-Ethernet cache
359 * Pointopoint link receives a hello message
361 void dn_neigh_pointopoint_hello(struct sk_buff *skb)
367 * Ethernet router hello message received
369 int dn_neigh_router_hello(struct sk_buff *skb)
371 struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data;
373 struct neighbour *neigh;
375 struct dn_dev *dn_db;
378 src = dn_htons(dn_eth2dn(msg->id));
380 neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
382 dn = (struct dn_neigh *)neigh;
385 write_lock(&neigh->lock);
387 neigh->used = jiffies;
388 dn_db = (struct dn_dev *)neigh->dev->dn_ptr;
390 if (!(neigh->nud_state & NUD_PERMANENT)) {
391 neigh->updated = jiffies;
393 if (neigh->dev->type == ARPHRD_ETHER)
394 memcpy(neigh->ha, ð_hdr(skb)->h_source, ETH_ALEN);
396 dn->blksize = dn_ntohs(msg->blksize);
397 dn->priority = msg->priority;
399 dn->flags &= ~DN_NDFLAG_P3;
401 switch(msg->iinfo & DN_RT_INFO_TYPE) {
402 case DN_RT_INFO_L1RT:
403 dn->flags &=~DN_NDFLAG_R2;
404 dn->flags |= DN_NDFLAG_R1;
406 case DN_RT_INFO_L2RT:
407 dn->flags |= DN_NDFLAG_R2;
411 if (!dn_db->router) {
412 dn_db->router = neigh_clone(neigh);
414 if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority)
415 neigh_release(xchg(&dn_db->router, neigh_clone(neigh)));
417 write_unlock(&neigh->lock);
418 neigh_release(neigh);
426 * Endnode hello message received
428 int dn_neigh_endnode_hello(struct sk_buff *skb)
430 struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data;
431 struct neighbour *neigh;
435 src = dn_htons(dn_eth2dn(msg->id));
437 neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
439 dn = (struct dn_neigh *)neigh;
442 write_lock(&neigh->lock);
444 neigh->used = jiffies;
446 if (!(neigh->nud_state & NUD_PERMANENT)) {
447 neigh->updated = jiffies;
449 if (neigh->dev->type == ARPHRD_ETHER)
450 memcpy(neigh->ha, ð_hdr(skb)->h_source, ETH_ALEN);
451 dn->flags &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2);
452 dn->blksize = dn_ntohs(msg->blksize);
456 write_unlock(&neigh->lock);
457 neigh_release(neigh);
464 static char *dn_find_slot(char *base, int max, int priority)
467 unsigned char *min = NULL;
469 base += 6; /* skip first id */
471 for(i = 0; i < max; i++) {
472 if (!min || (*base < *min))
474 base += 7; /* find next priority */
480 return (*min < priority) ? (min - 6) : NULL;
483 struct elist_cb_state {
484 struct net_device *dev;
490 static void neigh_elist_cb(struct neighbour *neigh, void *_info)
492 struct elist_cb_state *s = _info;
493 struct dn_dev *dn_db;
496 if (neigh->dev != s->dev)
499 dn = (struct dn_neigh *) neigh;
500 if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2)))
503 dn_db = (struct dn_dev *) s->dev->dn_ptr;
504 if (dn_db->parms.forwarding == 1 && (dn->flags & DN_NDFLAG_R2))
508 s->rs = dn_find_slot(s->ptr, s->n, dn->priority);
514 dn_dn2eth(s->rs, dn->addr);
516 *(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0;
517 *(s->rs) |= dn->priority;
521 int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n)
523 struct elist_cb_state state;
531 neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state);
537 #ifdef CONFIG_PROC_FS
539 static inline void dn_neigh_format_entry(struct seq_file *seq,
542 struct dn_neigh *dn = (struct dn_neigh *) n;
543 char buf[DN_ASCBUF_LEN];
546 seq_printf(seq, "%-7s %s%s%s %02x %02d %07ld %-8s\n",
547 dn_addr2asc(dn_ntohs(dn->addr), buf),
548 (dn->flags&DN_NDFLAG_R1) ? "1" : "-",
549 (dn->flags&DN_NDFLAG_R2) ? "2" : "-",
550 (dn->flags&DN_NDFLAG_P3) ? "3" : "-",
552 atomic_read(&dn->n.refcnt),
554 (dn->n.dev) ? dn->n.dev->name : "?");
555 read_unlock(&n->lock);
558 static int dn_neigh_seq_show(struct seq_file *seq, void *v)
560 if (v == SEQ_START_TOKEN) {
561 seq_puts(seq, "Addr Flags State Use Blksize Dev\n");
563 dn_neigh_format_entry(seq, v);
569 static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos)
571 return neigh_seq_start(seq, pos, &dn_neigh_table,
572 NEIGH_SEQ_NEIGH_ONLY);
575 static struct seq_operations dn_neigh_seq_ops = {
576 .start = dn_neigh_seq_start,
577 .next = neigh_seq_next,
578 .stop = neigh_seq_stop,
579 .show = dn_neigh_seq_show,
582 static int dn_neigh_seq_open(struct inode *inode, struct file *file)
584 struct seq_file *seq;
586 struct neigh_seq_state *s = kmalloc(sizeof(*s), GFP_KERNEL);
591 memset(s, 0, sizeof(*s));
592 rc = seq_open(file, &dn_neigh_seq_ops);
596 seq = file->private_data;
598 memset(s, 0, sizeof(*s));
606 static struct file_operations dn_neigh_seq_fops = {
607 .owner = THIS_MODULE,
608 .open = dn_neigh_seq_open,
611 .release = seq_release_private,
616 void __init dn_neigh_init(void)
618 neigh_table_init(&dn_neigh_table);
619 proc_net_fops_create("decnet_neigh", S_IRUGO, &dn_neigh_seq_fops);
622 void __exit dn_neigh_cleanup(void)
624 proc_net_remove("decnet_neigh");
625 neigh_table_clear(&dn_neigh_table);