[MIPS] tlbex: Size optimize code by declaring a few functions inline.
[linux-2.6] / arch / arm / mach-sa1100 / cpu-sa1110.c
1 /*
2  *  linux/arch/arm/mach-sa1100/cpu-sa1110.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *
6  *  $Id: cpu-sa1110.c,v 1.9 2002/07/06 16:53:18 rmk Exp $
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * Note: there are two erratas that apply to the SA1110 here:
13  *  7 - SDRAM auto-power-up failure (rev A0)
14  * 13 - Corruption of internal register reads/writes following
15  *      SDRAM reads (rev A0, B0, B1)
16  *
17  * We ignore rev. A0 and B0 devices; I don't think they're worth supporting.
18  *
19  * The SDRAM type can be passed on the command line as cpu_sa1110.sdram=type
20  */
21 #include <linux/moduleparam.h>
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/cpufreq.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28
29 #include <asm/hardware.h>
30 #include <asm/mach-types.h>
31 #include <asm/io.h>
32 #include <asm/system.h>
33
34 #include "generic.h"
35
36 #undef DEBUG
37
38 static struct cpufreq_driver sa1110_driver;
39
40 struct sdram_params {
41         const char name[16];
42         u_char  rows;           /* bits                          */
43         u_char  cas_latency;    /* cycles                        */
44         u_char  tck;            /* clock cycle time (ns)         */
45         u_char  trcd;           /* activate to r/w (ns)          */
46         u_char  trp;            /* precharge to activate (ns)    */
47         u_char  twr;            /* write recovery time (ns)      */
48         u_short refresh;        /* refresh time for array (us)   */
49 };
50
51 struct sdram_info {
52         u_int   mdcnfg;
53         u_int   mdrefr;
54         u_int   mdcas[3];
55 };
56
57 static struct sdram_params sdram_tbl[] __initdata = {
58         {       /* Toshiba TC59SM716 CL2 */
59                 .name           = "TC59SM716-CL2",
60                 .rows           = 12,
61                 .tck            = 10,
62                 .trcd           = 20,
63                 .trp            = 20,
64                 .twr            = 10,
65                 .refresh        = 64000,
66                 .cas_latency    = 2,
67         }, {    /* Toshiba TC59SM716 CL3 */
68                 .name           = "TC59SM716-CL3",
69                 .rows           = 12,
70                 .tck            = 8,
71                 .trcd           = 20,
72                 .trp            = 20,
73                 .twr            = 8,
74                 .refresh        = 64000,
75                 .cas_latency    = 3,
76         }, {    /* Samsung K4S641632D TC75 */
77                 .name           = "K4S641632D",
78                 .rows           = 14,
79                 .tck            = 9,
80                 .trcd           = 27,
81                 .trp            = 20,
82                 .twr            = 9,
83                 .refresh        = 64000,
84                 .cas_latency    = 3,
85         }, {    /* Samsung K4S281632B-1H */
86                 .name           = "K4S281632B-1H",
87                 .rows           = 12,
88                 .tck            = 10,
89                 .trp            = 20,
90                 .twr            = 10,
91                 .refresh        = 64000,
92                 .cas_latency    = 3,
93         }, {    /* Samsung KM416S4030CT */
94                 .name           = "KM416S4030CT",
95                 .rows           = 13,
96                 .tck            = 8,
97                 .trcd           = 24,   /* 3 CLKs */
98                 .trp            = 24,   /* 3 CLKs */
99                 .twr            = 16,   /* Trdl: 2 CLKs */
100                 .refresh        = 64000,
101                 .cas_latency    = 3,
102         }, {    /* Winbond W982516AH75L CL3 */
103                 .name           = "W982516AH75L",
104                 .rows           = 16,
105                 .tck            = 8,
106                 .trcd           = 20,
107                 .trp            = 20,
108                 .twr            = 8,
109                 .refresh        = 64000,
110                 .cas_latency    = 3,
111         },
112 };
113
114 static struct sdram_params sdram_params;
115
116 /*
117  * Given a period in ns and frequency in khz, calculate the number of
118  * cycles of frequency in period.  Note that we round up to the next
119  * cycle, even if we are only slightly over.
120  */
121 static inline u_int ns_to_cycles(u_int ns, u_int khz)
122 {
123         return (ns * khz + 999999) / 1000000;
124 }
125
126 /*
127  * Create the MDCAS register bit pattern.
128  */
129 static inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd)
130 {
131         u_int shift;
132
133         rcd = 2 * rcd - 1;
134         shift = delayed + 1 + rcd;
135
136         mdcas[0]  = (1 << rcd) - 1;
137         mdcas[0] |= 0x55555555 << shift;
138         mdcas[1]  = mdcas[2] = 0x55555555 << (shift & 1);
139 }
140
141 static void
142 sdram_calculate_timing(struct sdram_info *sd, u_int cpu_khz,
143                        struct sdram_params *sdram)
144 {
145         u_int mem_khz, sd_khz, trp, twr;
146
147         mem_khz = cpu_khz / 2;
148         sd_khz = mem_khz;
149
150         /*
151          * If SDCLK would invalidate the SDRAM timings,
152          * run SDCLK at half speed.
153          *
154          * CPU steppings prior to B2 must either run the memory at
155          * half speed or use delayed read latching (errata 13).
156          */
157         if ((ns_to_cycles(sdram->tck, sd_khz) > 1) ||
158             (CPU_REVISION < CPU_SA1110_B2 && sd_khz < 62000))
159                 sd_khz /= 2;
160
161         sd->mdcnfg = MDCNFG & 0x007f007f;
162
163         twr = ns_to_cycles(sdram->twr, mem_khz);
164
165         /* trp should always be >1 */
166         trp = ns_to_cycles(sdram->trp, mem_khz) - 1;
167         if (trp < 1)
168                 trp = 1;
169
170         sd->mdcnfg |= trp << 8;
171         sd->mdcnfg |= trp << 24;
172         sd->mdcnfg |= sdram->cas_latency << 12;
173         sd->mdcnfg |= sdram->cas_latency << 28;
174         sd->mdcnfg |= twr << 14;
175         sd->mdcnfg |= twr << 30;
176
177         sd->mdrefr = MDREFR & 0xffbffff0;
178         sd->mdrefr |= 7;
179
180         if (sd_khz != mem_khz)
181                 sd->mdrefr |= MDREFR_K1DB2;
182
183         /* initial number of '1's in MDCAS + 1 */
184         set_mdcas(sd->mdcas, sd_khz >= 62000, ns_to_cycles(sdram->trcd, mem_khz));
185
186 #ifdef DEBUG
187         printk("MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n",
188                 sd->mdcnfg, sd->mdrefr, sd->mdcas[0], sd->mdcas[1], sd->mdcas[2]);
189 #endif
190 }
191
192 /*
193  * Set the SDRAM refresh rate.
194  */
195 static inline void sdram_set_refresh(u_int dri)
196 {
197         MDREFR = (MDREFR & 0xffff000f) | (dri << 4);
198         (void) MDREFR;
199 }
200
201 /*
202  * Update the refresh period.  We do this such that we always refresh
203  * the SDRAMs within their permissible period.  The refresh period is
204  * always a multiple of the memory clock (fixed at cpu_clock / 2).
205  *
206  * FIXME: we don't currently take account of burst accesses here,
207  * but neither do Intels DM nor Angel.
208  */
209 static void
210 sdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram)
211 {
212         u_int ns_row = (sdram->refresh * 1000) >> sdram->rows;
213         u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32;
214
215 #ifdef DEBUG
216         mdelay(250);
217         printk("new dri value = %d\n", dri);
218 #endif
219
220         sdram_set_refresh(dri);
221 }
222
223 /*
224  * Ok, set the CPU frequency.  
225  */
226 static int sa1110_target(struct cpufreq_policy *policy,
227                          unsigned int target_freq,
228                          unsigned int relation)
229 {
230         struct sdram_params *sdram = &sdram_params;
231         struct cpufreq_freqs freqs;
232         struct sdram_info sd;
233         unsigned long flags;
234         unsigned int ppcr, unused;
235
236         switch(relation){
237         case CPUFREQ_RELATION_L:
238                 ppcr = sa11x0_freq_to_ppcr(target_freq);
239                 if (sa11x0_ppcr_to_freq(ppcr) > policy->max)
240                         ppcr--;
241                 break;
242         case CPUFREQ_RELATION_H:
243                 ppcr = sa11x0_freq_to_ppcr(target_freq);
244                 if (ppcr && (sa11x0_ppcr_to_freq(ppcr) > target_freq) &&
245                     (sa11x0_ppcr_to_freq(ppcr-1) >= policy->min))
246                         ppcr--;
247                 break;
248         default:
249                 return -EINVAL;
250         }
251
252         freqs.old = sa11x0_getspeed(0);
253         freqs.new = sa11x0_ppcr_to_freq(ppcr);
254         freqs.cpu = 0;
255
256         sdram_calculate_timing(&sd, freqs.new, sdram);
257
258 #if 0
259         /*
260          * These values are wrong according to the SA1110 documentation
261          * and errata, but they seem to work.  Need to get a storage
262          * scope on to the SDRAM signals to work out why.
263          */
264         if (policy->max < 147500) {
265                 sd.mdrefr |= MDREFR_K1DB2;
266                 sd.mdcas[0] = 0xaaaaaa7f;
267         } else {
268                 sd.mdrefr &= ~MDREFR_K1DB2;
269                 sd.mdcas[0] = 0xaaaaaa9f;
270         }
271         sd.mdcas[1] = 0xaaaaaaaa;
272         sd.mdcas[2] = 0xaaaaaaaa;
273 #endif
274
275         cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
276
277         /*
278          * The clock could be going away for some time.  Set the SDRAMs
279          * to refresh rapidly (every 64 memory clock cycles).  To get
280          * through the whole array, we need to wait 262144 mclk cycles.
281          * We wait 20ms to be safe.
282          */
283         sdram_set_refresh(2);
284         if (!irqs_disabled()) {
285                 msleep(20);
286         } else {
287                 mdelay(20);
288         }
289
290         /*
291          * Reprogram the DRAM timings with interrupts disabled, and
292          * ensure that we are doing this within a complete cache line.
293          * This means that we won't access SDRAM for the duration of
294          * the programming.
295          */
296         local_irq_save(flags);
297         asm("mcr p15, 0, %0, c7, c10, 4" : : "r" (0));
298         udelay(10);
299         __asm__ __volatile__("                                  \n\
300                 b       2f                                      \n\
301                 .align  5                                       \n\
302 1:              str     %3, [%1, #0]            @ MDCNFG        \n\
303                 str     %4, [%1, #28]           @ MDREFR        \n\
304                 str     %5, [%1, #4]            @ MDCAS0        \n\
305                 str     %6, [%1, #8]            @ MDCAS1        \n\
306                 str     %7, [%1, #12]           @ MDCAS2        \n\
307                 str     %8, [%2, #0]            @ PPCR          \n\
308                 ldr     %0, [%1, #0]                            \n\
309                 b       3f                                      \n\
310 2:              b       1b                                      \n\
311 3:              nop                                             \n\
312                 nop"
313                 : "=&r" (unused)
314                 : "r" (&MDCNFG), "r" (&PPCR), "0" (sd.mdcnfg),
315                   "r" (sd.mdrefr), "r" (sd.mdcas[0]),
316                   "r" (sd.mdcas[1]), "r" (sd.mdcas[2]), "r" (ppcr));
317         local_irq_restore(flags);
318
319         /*
320          * Now, return the SDRAM refresh back to normal.
321          */
322         sdram_update_refresh(freqs.new, sdram);
323
324         cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
325
326         return 0;
327 }
328
329 static int __init sa1110_cpu_init(struct cpufreq_policy *policy)
330 {
331         if (policy->cpu != 0)
332                 return -EINVAL;
333         policy->cur = policy->min = policy->max = sa11x0_getspeed(0);
334         policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
335         policy->cpuinfo.min_freq = 59000;
336         policy->cpuinfo.max_freq = 287000;
337         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
338         return 0;
339 }
340
341 static struct cpufreq_driver sa1110_driver = {
342         .flags          = CPUFREQ_STICKY,
343         .verify         = sa11x0_verify_speed,
344         .target         = sa1110_target,
345         .get            = sa11x0_getspeed,
346         .init           = sa1110_cpu_init,
347         .name           = "sa1110",
348 };
349
350 static struct sdram_params *sa1110_find_sdram(const char *name)
351 {
352         struct sdram_params *sdram;
353
354         for (sdram = sdram_tbl; sdram < sdram_tbl + ARRAY_SIZE(sdram_tbl); sdram++)
355                 if (strcmp(name, sdram->name) == 0)
356                         return sdram;
357
358         return NULL;
359 }
360
361 static char sdram_name[16];
362
363 static int __init sa1110_clk_init(void)
364 {
365         struct sdram_params *sdram;
366         const char *name = sdram_name;
367
368         if (!name[0]) {
369                 if (machine_is_assabet())
370                         name = "TC59SM716-CL3";
371
372                 if (machine_is_pt_system3())
373                         name = "K4S641632D";
374
375                 if (machine_is_h3100())
376                         name = "KM416S4030CT";
377                 if (machine_is_jornada720())
378                         name = "K4S281632B-1H";
379         }
380
381         sdram = sa1110_find_sdram(name);
382         if (sdram) {
383                 printk(KERN_DEBUG "SDRAM: tck: %d trcd: %d trp: %d"
384                         " twr: %d refresh: %d cas_latency: %d\n",
385                         sdram->tck, sdram->trcd, sdram->trp,
386                         sdram->twr, sdram->refresh, sdram->cas_latency);
387
388                 memcpy(&sdram_params, sdram, sizeof(sdram_params));
389
390                 return cpufreq_register_driver(&sa1110_driver);
391         }
392
393         return 0;
394 }
395
396 module_param_string(sdram, sdram_name, sizeof(sdram_name), 0);
397 arch_initcall(sa1110_clk_init);