2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
45 * Include the apic definitions for x86 to have the APIC timer related defines
46 * available also for UP (on SMP it gets magically included via linux/smp.h).
47 * asm/acpi.h is not an option, as it would require more include magic. Also
48 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
55 #include <asm/uaccess.h>
57 #include <acpi/acpi_bus.h>
58 #include <acpi/processor.h>
60 #define ACPI_PROCESSOR_COMPONENT 0x01000000
61 #define ACPI_PROCESSOR_CLASS "processor"
62 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
63 ACPI_MODULE_NAME("processor_idle");
64 #define ACPI_PROCESSOR_FILE_POWER "power"
65 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
66 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
67 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
68 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
69 static void (*pm_idle_save) (void) __read_mostly;
70 module_param(max_cstate, uint, 0644);
72 static unsigned int nocst __read_mostly;
73 module_param(nocst, uint, 0000);
76 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
77 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
78 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
79 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
80 * reduce history for more aggressive entry into C3
82 static unsigned int bm_history __read_mostly =
83 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
84 module_param(bm_history, uint, 0644);
85 /* --------------------------------------------------------------------------
87 -------------------------------------------------------------------------- */
90 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
91 * For now disable this. Probably a bug somewhere else.
93 * To skip this limit, boot/load with a large max_cstate limit.
95 static int set_max_cstate(struct dmi_system_id *id)
97 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
100 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
101 " Override with \"processor.max_cstate=%d\"\n", id->ident,
102 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
104 max_cstate = (long)id->driver_data;
109 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
110 callers to only run once -AK */
111 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
112 { set_max_cstate, "IBM ThinkPad R40e", {
113 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
114 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
115 { set_max_cstate, "IBM ThinkPad R40e", {
116 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
117 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
118 { set_max_cstate, "IBM ThinkPad R40e", {
119 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
120 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
121 { set_max_cstate, "IBM ThinkPad R40e", {
122 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
123 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
124 { set_max_cstate, "IBM ThinkPad R40e", {
125 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
126 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
127 { set_max_cstate, "IBM ThinkPad R40e", {
128 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
129 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
130 { set_max_cstate, "IBM ThinkPad R40e", {
131 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
132 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
133 { set_max_cstate, "IBM ThinkPad R40e", {
134 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
135 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
136 { set_max_cstate, "IBM ThinkPad R40e", {
137 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
138 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
139 { set_max_cstate, "IBM ThinkPad R40e", {
140 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
141 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
142 { set_max_cstate, "IBM ThinkPad R40e", {
143 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
144 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
145 { set_max_cstate, "IBM ThinkPad R40e", {
146 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
147 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
148 { set_max_cstate, "IBM ThinkPad R40e", {
149 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
150 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
151 { set_max_cstate, "IBM ThinkPad R40e", {
152 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
153 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
154 { set_max_cstate, "IBM ThinkPad R40e", {
155 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
156 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
157 { set_max_cstate, "IBM ThinkPad R40e", {
158 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
159 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
160 { set_max_cstate, "Medion 41700", {
161 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
162 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
163 { set_max_cstate, "Clevo 5600D", {
164 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
165 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
170 static inline u32 ticks_elapsed(u32 t1, u32 t2)
174 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
175 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
177 return ((0xFFFFFFFF - t1) + t2);
181 acpi_processor_power_activate(struct acpi_processor *pr,
182 struct acpi_processor_cx *new)
184 struct acpi_processor_cx *old;
189 old = pr->power.state;
192 old->promotion.count = 0;
193 new->demotion.count = 0;
195 /* Cleanup from old state. */
199 /* Disable bus master reload */
200 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
201 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
206 /* Prepare to use new state. */
209 /* Enable bus master reload */
210 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
211 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
215 pr->power.state = new;
220 static void acpi_safe_halt(void)
222 current_thread_info()->status &= ~TS_POLLING;
224 * TS_POLLING-cleared state must be visible before we
230 current_thread_info()->status |= TS_POLLING;
233 static atomic_t c3_cpu_count;
235 /* Common C-state entry for C2, C3, .. */
236 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
238 if (cstate->space_id == ACPI_CSTATE_FFH) {
239 /* Call into architectural FFH based C-state */
240 acpi_processor_ffh_cstate_enter(cstate);
243 /* IO port based C-state */
244 inb(cstate->address);
245 /* Dummy wait op - must do something useless after P_LVL2 read
246 because chipsets cannot guarantee that STPCLK# signal
247 gets asserted in time to freeze execution properly. */
248 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
252 #ifdef ARCH_APICTIMER_STOPS_ON_C3
255 * Some BIOS implementations switch to C3 in the published C2 state.
256 * This seems to be a common problem on AMD boxen, but other vendors
257 * are affected too. We pick the most conservative approach: we assume
258 * that the local APIC stops in both C2 and C3.
260 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
261 struct acpi_processor_cx *cx)
263 struct acpi_processor_power *pwr = &pr->power;
264 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
267 * Check, if one of the previous states already marked the lapic
270 if (pwr->timer_broadcast_on_state < state)
273 if (cx->type >= type)
274 pr->power.timer_broadcast_on_state = state;
277 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
279 #ifdef CONFIG_GENERIC_CLOCKEVENTS
280 unsigned long reason;
282 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
283 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
285 clockevents_notify(reason, &pr->id);
287 cpumask_t mask = cpumask_of_cpu(pr->id);
289 if (pr->power.timer_broadcast_on_state < INT_MAX)
290 on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
292 on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
296 /* Power(C) State timer broadcast control */
297 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
298 struct acpi_processor_cx *cx,
301 #ifdef CONFIG_GENERIC_CLOCKEVENTS
303 int state = cx - pr->power.states;
305 if (state >= pr->power.timer_broadcast_on_state) {
306 unsigned long reason;
308 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
309 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
310 clockevents_notify(reason, &pr->id);
317 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
318 struct acpi_processor_cx *cstate) { }
319 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
320 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
321 struct acpi_processor_cx *cx,
328 static void acpi_processor_idle(void)
330 struct acpi_processor *pr = NULL;
331 struct acpi_processor_cx *cx = NULL;
332 struct acpi_processor_cx *next_state = NULL;
337 * Interrupts must be disabled during bus mastering calculations and
338 * for C2/C3 transitions.
342 pr = processors[smp_processor_id()];
349 * Check whether we truly need to go idle, or should
352 if (unlikely(need_resched())) {
357 cx = pr->power.state;
369 * Check for bus mastering activity (if required), record, and check
372 if (pr->flags.bm_check) {
374 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
379 pr->power.bm_activity <<= diff;
381 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
383 pr->power.bm_activity |= 0x1;
384 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
387 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
388 * the true state of bus mastering activity; forcing us to
389 * manually check the BMIDEA bit of each IDE channel.
391 else if (errata.piix4.bmisx) {
392 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
393 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
394 pr->power.bm_activity |= 0x1;
397 pr->power.bm_check_timestamp = jiffies;
400 * If bus mastering is or was active this jiffy, demote
401 * to avoid a faulty transition. Note that the processor
402 * won't enter a low-power state during this call (to this
403 * function) but should upon the next.
405 * TBD: A better policy might be to fallback to the demotion
406 * state (use it for this quantum only) istead of
407 * demoting -- and rely on duration as our sole demotion
408 * qualification. This may, however, introduce DMA
409 * issues (e.g. floppy DMA transfer overrun/underrun).
411 if ((pr->power.bm_activity & 0x1) &&
412 cx->demotion.threshold.bm) {
414 next_state = cx->demotion.state;
419 #ifdef CONFIG_HOTPLUG_CPU
421 * Check for P_LVL2_UP flag before entering C2 and above on
422 * an SMP system. We do it here instead of doing it at _CST/P_LVL
423 * detection phase, to work cleanly with logical CPU hotplug.
425 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
426 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
427 cx = &pr->power.states[ACPI_STATE_C1];
433 * Invoke the current Cx state to put the processor to sleep.
435 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
436 current_thread_info()->status &= ~TS_POLLING;
438 * TS_POLLING-cleared state must be visible before we
442 if (need_resched()) {
443 current_thread_info()->status |= TS_POLLING;
454 * Use the appropriate idle routine, the one that would
455 * be used without acpi C-states.
463 * TBD: Can't get time duration while in C1, as resumes
464 * go to an ISR rather than here. Need to instrument
465 * base interrupt handler.
467 * Note: the TSC better not stop in C1, sched_clock() will
470 sleep_ticks = 0xFFFFFFFF;
474 /* Get start time (ticks) */
475 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
476 /* Tell the scheduler that we are going deep-idle: */
477 sched_clock_idle_sleep_event();
479 acpi_state_timer_broadcast(pr, cx, 1);
480 acpi_cstate_enter(cx);
481 /* Get end time (ticks) */
482 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
484 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
485 /* TSC halts in C2, so notify users */
486 mark_tsc_unstable("possible TSC halt in C2");
488 /* Compute time (ticks) that we were actually asleep */
489 sleep_ticks = ticks_elapsed(t1, t2);
491 /* Tell the scheduler how much we idled: */
492 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
494 /* Re-enable interrupts */
496 /* Do not account our idle-switching overhead: */
497 sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
499 current_thread_info()->status |= TS_POLLING;
500 acpi_state_timer_broadcast(pr, cx, 0);
506 * bm_check implies we need ARB_DIS
507 * !bm_check implies we need cache flush
508 * bm_control implies whether we can do ARB_DIS
510 * That leaves a case where bm_check is set and bm_control is
511 * not set. In that case we cannot do much, we enter C3
512 * without doing anything.
514 if (pr->flags.bm_check && pr->flags.bm_control) {
515 if (atomic_inc_return(&c3_cpu_count) ==
518 * All CPUs are trying to go to C3
519 * Disable bus master arbitration
521 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
523 } else if (!pr->flags.bm_check) {
524 /* SMP with no shared cache... Invalidate cache */
525 ACPI_FLUSH_CPU_CACHE();
528 /* Get start time (ticks) */
529 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
531 acpi_state_timer_broadcast(pr, cx, 1);
532 /* Tell the scheduler that we are going deep-idle: */
533 sched_clock_idle_sleep_event();
534 acpi_cstate_enter(cx);
535 /* Get end time (ticks) */
536 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
537 if (pr->flags.bm_check && pr->flags.bm_control) {
538 /* Enable bus master arbitration */
539 atomic_dec(&c3_cpu_count);
540 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
543 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
544 /* TSC halts in C3, so notify users */
545 mark_tsc_unstable("TSC halts in C3");
547 /* Compute time (ticks) that we were actually asleep */
548 sleep_ticks = ticks_elapsed(t1, t2);
549 /* Tell the scheduler how much we idled: */
550 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
552 /* Re-enable interrupts */
554 /* Do not account our idle-switching overhead: */
555 sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
557 current_thread_info()->status |= TS_POLLING;
558 acpi_state_timer_broadcast(pr, cx, 0);
566 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
567 cx->time += sleep_ticks;
569 next_state = pr->power.state;
571 #ifdef CONFIG_HOTPLUG_CPU
572 /* Don't do promotion/demotion */
573 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
574 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
583 * Track the number of longs (time asleep is greater than threshold)
584 * and promote when the count threshold is reached. Note that bus
585 * mastering activity may prevent promotions.
586 * Do not promote above max_cstate.
588 if (cx->promotion.state &&
589 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
590 if (sleep_ticks > cx->promotion.threshold.ticks &&
591 cx->promotion.state->latency <= system_latency_constraint()) {
592 cx->promotion.count++;
593 cx->demotion.count = 0;
594 if (cx->promotion.count >=
595 cx->promotion.threshold.count) {
596 if (pr->flags.bm_check) {
598 (pr->power.bm_activity & cx->
599 promotion.threshold.bm)) {
605 next_state = cx->promotion.state;
615 * Track the number of shorts (time asleep is less than time threshold)
616 * and demote when the usage threshold is reached.
618 if (cx->demotion.state) {
619 if (sleep_ticks < cx->demotion.threshold.ticks) {
620 cx->demotion.count++;
621 cx->promotion.count = 0;
622 if (cx->demotion.count >= cx->demotion.threshold.count) {
623 next_state = cx->demotion.state;
631 * Demote if current state exceeds max_cstate
632 * or if the latency of the current state is unacceptable
634 if ((pr->power.state - pr->power.states) > max_cstate ||
635 pr->power.state->latency > system_latency_constraint()) {
636 if (cx->demotion.state)
637 next_state = cx->demotion.state;
643 * If we're going to start using a new Cx state we must clean up
644 * from the previous and prepare to use the new.
646 if (next_state != pr->power.state)
647 acpi_processor_power_activate(pr, next_state);
650 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
653 unsigned int state_is_set = 0;
654 struct acpi_processor_cx *lower = NULL;
655 struct acpi_processor_cx *higher = NULL;
656 struct acpi_processor_cx *cx;
663 * This function sets the default Cx state policy (OS idle handler).
664 * Our scheme is to promote quickly to C2 but more conservatively
665 * to C3. We're favoring C2 for its characteristics of low latency
666 * (quick response), good power savings, and ability to allow bus
667 * mastering activity. Note that the Cx state policy is completely
668 * customizable and can be altered dynamically.
672 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
673 cx = &pr->power.states[i];
678 pr->power.state = cx;
687 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
688 cx = &pr->power.states[i];
693 cx->demotion.state = lower;
694 cx->demotion.threshold.ticks = cx->latency_ticks;
695 cx->demotion.threshold.count = 1;
696 if (cx->type == ACPI_STATE_C3)
697 cx->demotion.threshold.bm = bm_history;
704 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
705 cx = &pr->power.states[i];
710 cx->promotion.state = higher;
711 cx->promotion.threshold.ticks = cx->latency_ticks;
712 if (cx->type >= ACPI_STATE_C2)
713 cx->promotion.threshold.count = 4;
715 cx->promotion.threshold.count = 10;
716 if (higher->type == ACPI_STATE_C3)
717 cx->promotion.threshold.bm = bm_history;
726 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
735 /* if info is obtained from pblk/fadt, type equals state */
736 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
737 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
739 #ifndef CONFIG_HOTPLUG_CPU
741 * Check for P_LVL2_UP flag before entering C2 and above on
744 if ((num_online_cpus() > 1) &&
745 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
749 /* determine C2 and C3 address from pblk */
750 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
751 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
753 /* determine latencies from FADT */
754 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
755 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
757 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
758 "lvl2[0x%08x] lvl3[0x%08x]\n",
759 pr->power.states[ACPI_STATE_C2].address,
760 pr->power.states[ACPI_STATE_C3].address));
765 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
767 if (!pr->power.states[ACPI_STATE_C1].valid) {
768 /* set the first C-State to C1 */
769 /* all processors need to support C1 */
770 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
771 pr->power.states[ACPI_STATE_C1].valid = 1;
773 /* the C0 state only exists as a filler in our array */
774 pr->power.states[ACPI_STATE_C0].valid = 1;
778 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
780 acpi_status status = 0;
784 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
785 union acpi_object *cst;
793 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
794 if (ACPI_FAILURE(status)) {
795 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
799 cst = buffer.pointer;
801 /* There must be at least 2 elements */
802 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
803 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
808 count = cst->package.elements[0].integer.value;
810 /* Validate number of power states. */
811 if (count < 1 || count != cst->package.count - 1) {
812 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
817 /* Tell driver that at least _CST is supported. */
818 pr->flags.has_cst = 1;
820 for (i = 1; i <= count; i++) {
821 union acpi_object *element;
822 union acpi_object *obj;
823 struct acpi_power_register *reg;
824 struct acpi_processor_cx cx;
826 memset(&cx, 0, sizeof(cx));
828 element = &(cst->package.elements[i]);
829 if (element->type != ACPI_TYPE_PACKAGE)
832 if (element->package.count != 4)
835 obj = &(element->package.elements[0]);
837 if (obj->type != ACPI_TYPE_BUFFER)
840 reg = (struct acpi_power_register *)obj->buffer.pointer;
842 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
843 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
846 /* There should be an easy way to extract an integer... */
847 obj = &(element->package.elements[1]);
848 if (obj->type != ACPI_TYPE_INTEGER)
851 cx.type = obj->integer.value;
853 * Some buggy BIOSes won't list C1 in _CST -
854 * Let acpi_processor_get_power_info_default() handle them later
856 if (i == 1 && cx.type != ACPI_STATE_C1)
859 cx.address = reg->address;
860 cx.index = current_count + 1;
862 cx.space_id = ACPI_CSTATE_SYSTEMIO;
863 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
864 if (acpi_processor_ffh_cstate_probe
865 (pr->id, &cx, reg) == 0) {
866 cx.space_id = ACPI_CSTATE_FFH;
867 } else if (cx.type != ACPI_STATE_C1) {
869 * C1 is a special case where FIXED_HARDWARE
870 * can be handled in non-MWAIT way as well.
871 * In that case, save this _CST entry info.
872 * That is, we retain space_id of SYSTEM_IO for
874 * Otherwise, ignore this info and continue.
880 obj = &(element->package.elements[2]);
881 if (obj->type != ACPI_TYPE_INTEGER)
884 cx.latency = obj->integer.value;
886 obj = &(element->package.elements[3]);
887 if (obj->type != ACPI_TYPE_INTEGER)
890 cx.power = obj->integer.value;
893 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
896 * We support total ACPI_PROCESSOR_MAX_POWER - 1
897 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
899 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
901 "Limiting number of power states to max (%d)\n",
902 ACPI_PROCESSOR_MAX_POWER);
904 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
909 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
912 /* Validate number of power states discovered */
913 if (current_count < 2)
917 kfree(buffer.pointer);
922 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
929 * C2 latency must be less than or equal to 100
932 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
933 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
934 "latency too large [%d]\n", cx->latency));
939 * Otherwise we've met all of our C2 requirements.
940 * Normalize the C2 latency to expidite policy
943 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
948 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
949 struct acpi_processor_cx *cx)
951 static int bm_check_flag;
958 * C3 latency must be less than or equal to 1000
961 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
962 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
963 "latency too large [%d]\n", cx->latency));
968 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
969 * DMA transfers are used by any ISA device to avoid livelock.
970 * Note that we could disable Type-F DMA (as recommended by
971 * the erratum), but this is known to disrupt certain ISA
972 * devices thus we take the conservative approach.
974 else if (errata.piix4.fdma) {
975 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
976 "C3 not supported on PIIX4 with Type-F DMA\n"));
980 /* All the logic here assumes flags.bm_check is same across all CPUs */
981 if (!bm_check_flag) {
982 /* Determine whether bm_check is needed based on CPU */
983 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
984 bm_check_flag = pr->flags.bm_check;
986 pr->flags.bm_check = bm_check_flag;
989 if (pr->flags.bm_check) {
990 if (!pr->flags.bm_control) {
991 if (pr->flags.has_cst != 1) {
992 /* bus mastering control is necessary */
993 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
994 "C3 support requires BM control\n"));
997 /* Here we enter C3 without bus mastering */
998 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
999 "C3 support without BM control\n"));
1004 * WBINVD should be set in fadt, for C3 state to be
1005 * supported on when bm_check is not required.
1007 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1008 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1009 "Cache invalidation should work properly"
1010 " for C3 to be enabled on SMP systems\n"));
1013 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1017 * Otherwise we've met all of our C3 requirements.
1018 * Normalize the C3 latency to expidite policy. Enable
1019 * checking of bus mastering status (bm_check) so we can
1020 * use this in our C3 policy
1023 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1028 static int acpi_processor_power_verify(struct acpi_processor *pr)
1031 unsigned int working = 0;
1033 pr->power.timer_broadcast_on_state = INT_MAX;
1035 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1036 struct acpi_processor_cx *cx = &pr->power.states[i];
1044 acpi_processor_power_verify_c2(cx);
1046 acpi_timer_check_state(i, pr, cx);
1050 acpi_processor_power_verify_c3(pr, cx);
1052 acpi_timer_check_state(i, pr, cx);
1060 acpi_propagate_timer_broadcast(pr);
1065 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1071 /* NOTE: the idle thread may not be running while calling
1074 /* Zero initialize all the C-states info. */
1075 memset(pr->power.states, 0, sizeof(pr->power.states));
1077 result = acpi_processor_get_power_info_cst(pr);
1078 if (result == -ENODEV)
1079 result = acpi_processor_get_power_info_fadt(pr);
1084 acpi_processor_get_power_info_default(pr);
1086 pr->power.count = acpi_processor_power_verify(pr);
1089 * Set Default Policy
1090 * ------------------
1091 * Now that we know which states are supported, set the default
1092 * policy. Note that this policy can be changed dynamically
1093 * (e.g. encourage deeper sleeps to conserve battery life when
1096 result = acpi_processor_set_power_policy(pr);
1101 * if one state of type C2 or C3 is available, mark this
1102 * CPU as being "idle manageable"
1104 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1105 if (pr->power.states[i].valid) {
1106 pr->power.count = i;
1107 if (pr->power.states[i].type >= ACPI_STATE_C2)
1108 pr->flags.power = 1;
1115 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1127 if (!pr->flags.power_setup_done)
1130 /* Fall back to the default idle loop */
1131 pm_idle = pm_idle_save;
1132 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1134 pr->flags.power = 0;
1135 result = acpi_processor_get_power_info(pr);
1136 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1137 pm_idle = acpi_processor_idle;
1142 /* proc interface */
1144 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1146 struct acpi_processor *pr = seq->private;
1153 seq_printf(seq, "active state: C%zd\n"
1155 "bus master activity: %08x\n"
1156 "maximum allowed latency: %d usec\n",
1157 pr->power.state ? pr->power.state - pr->power.states : 0,
1158 max_cstate, (unsigned)pr->power.bm_activity,
1159 system_latency_constraint());
1161 seq_puts(seq, "states:\n");
1163 for (i = 1; i <= pr->power.count; i++) {
1164 seq_printf(seq, " %cC%d: ",
1165 (&pr->power.states[i] ==
1166 pr->power.state ? '*' : ' '), i);
1168 if (!pr->power.states[i].valid) {
1169 seq_puts(seq, "<not supported>\n");
1173 switch (pr->power.states[i].type) {
1175 seq_printf(seq, "type[C1] ");
1178 seq_printf(seq, "type[C2] ");
1181 seq_printf(seq, "type[C3] ");
1184 seq_printf(seq, "type[--] ");
1188 if (pr->power.states[i].promotion.state)
1189 seq_printf(seq, "promotion[C%zd] ",
1190 (pr->power.states[i].promotion.state -
1193 seq_puts(seq, "promotion[--] ");
1195 if (pr->power.states[i].demotion.state)
1196 seq_printf(seq, "demotion[C%zd] ",
1197 (pr->power.states[i].demotion.state -
1200 seq_puts(seq, "demotion[--] ");
1202 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1203 pr->power.states[i].latency,
1204 pr->power.states[i].usage,
1205 (unsigned long long)pr->power.states[i].time);
1212 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1214 return single_open(file, acpi_processor_power_seq_show,
1218 static const struct file_operations acpi_processor_power_fops = {
1219 .open = acpi_processor_power_open_fs,
1221 .llseek = seq_lseek,
1222 .release = single_release,
1226 static void smp_callback(void *v)
1228 /* we already woke the CPU up, nothing more to do */
1232 * This function gets called when a part of the kernel has a new latency
1233 * requirement. This means we need to get all processors out of their C-state,
1234 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1235 * wakes them all right up.
1237 static int acpi_processor_latency_notify(struct notifier_block *b,
1238 unsigned long l, void *v)
1240 smp_call_function(smp_callback, NULL, 0, 1);
1244 static struct notifier_block acpi_processor_latency_notifier = {
1245 .notifier_call = acpi_processor_latency_notify,
1249 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1250 struct acpi_device *device)
1252 acpi_status status = 0;
1253 static int first_run;
1254 struct proc_dir_entry *entry = NULL;
1259 dmi_check_system(processor_power_dmi_table);
1260 if (max_cstate < ACPI_C_STATES_MAX)
1262 "ACPI: processor limited to max C-state %d\n",
1266 register_latency_notifier(&acpi_processor_latency_notifier);
1273 if (acpi_gbl_FADT.cst_control && !nocst) {
1275 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1276 if (ACPI_FAILURE(status)) {
1277 ACPI_EXCEPTION((AE_INFO, status,
1278 "Notifying BIOS of _CST ability failed"));
1282 acpi_processor_get_power_info(pr);
1285 * Install the idle handler if processor power management is supported.
1286 * Note that we use previously set idle handler will be used on
1287 * platforms that only support C1.
1289 if ((pr->flags.power) && (!boot_option_idle_override)) {
1290 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1291 for (i = 1; i <= pr->power.count; i++)
1292 if (pr->power.states[i].valid)
1293 printk(" C%d[C%d]", i,
1294 pr->power.states[i].type);
1298 pm_idle_save = pm_idle;
1299 pm_idle = acpi_processor_idle;
1304 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1305 S_IRUGO, acpi_device_dir(device));
1309 entry->proc_fops = &acpi_processor_power_fops;
1310 entry->data = acpi_driver_data(device);
1311 entry->owner = THIS_MODULE;
1314 pr->flags.power_setup_done = 1;
1319 int acpi_processor_power_exit(struct acpi_processor *pr,
1320 struct acpi_device *device)
1323 pr->flags.power_setup_done = 0;
1325 if (acpi_device_dir(device))
1326 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1327 acpi_device_dir(device));
1329 /* Unregister the idle handler when processor #0 is removed. */
1331 pm_idle = pm_idle_save;
1334 * We are about to unload the current idle thread pm callback
1335 * (pm_idle), Wait for all processors to update cached/local
1336 * copies of pm_idle before proceeding.
1340 unregister_latency_notifier(&acpi_processor_latency_notifier);