2 * Linux INET6 implementation
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * $Id: route.c,v 1.56 2001/10/31 21:55:55 davem Exp $
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
18 * YOSHIFUJI Hideaki @USAGI
19 * reworked default router selection.
20 * - respect outgoing interface
21 * - select from (probably) reachable routers (i.e.
22 * routers in REACHABLE, STALE, DELAY or PROBE states).
23 * - always select the same router if it is (probably)
24 * reachable. otherwise, round-robin the list.
26 * Fixed routing subtrees.
29 #include <linux/capability.h>
30 #include <linux/errno.h>
31 #include <linux/types.h>
32 #include <linux/times.h>
33 #include <linux/socket.h>
34 #include <linux/sockios.h>
35 #include <linux/net.h>
36 #include <linux/route.h>
37 #include <linux/netdevice.h>
38 #include <linux/in6.h>
39 #include <linux/init.h>
40 #include <linux/if_arp.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
49 #include <net/ip6_fib.h>
50 #include <net/ip6_route.h>
51 #include <net/ndisc.h>
52 #include <net/addrconf.h>
54 #include <linux/rtnetlink.h>
57 #include <net/netevent.h>
58 #include <net/netlink.h>
60 #include <asm/uaccess.h>
63 #include <linux/sysctl.h>
66 /* Set to 3 to get tracing. */
70 #define RDBG(x) printk x
71 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
74 #define RT6_TRACE(x...) do { ; } while (0)
77 #define CLONE_OFFLINK_ROUTE 0
79 static int ip6_rt_max_size = 4096;
80 static int ip6_rt_gc_min_interval = HZ / 2;
81 static int ip6_rt_gc_timeout = 60*HZ;
82 int ip6_rt_gc_interval = 30*HZ;
83 static int ip6_rt_gc_elasticity = 9;
84 static int ip6_rt_mtu_expires = 10*60*HZ;
85 static int ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40;
87 static struct rt6_info * ip6_rt_copy(struct rt6_info *ort);
88 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie);
89 static struct dst_entry *ip6_negative_advice(struct dst_entry *);
90 static void ip6_dst_destroy(struct dst_entry *);
91 static void ip6_dst_ifdown(struct dst_entry *,
92 struct net_device *dev, int how);
93 static int ip6_dst_gc(void);
95 static int ip6_pkt_discard(struct sk_buff *skb);
96 static int ip6_pkt_discard_out(struct sk_buff *skb);
97 static void ip6_link_failure(struct sk_buff *skb);
98 static void ip6_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
100 #ifdef CONFIG_IPV6_ROUTE_INFO
101 static struct rt6_info *rt6_add_route_info(struct in6_addr *prefix, int prefixlen,
102 struct in6_addr *gwaddr, int ifindex,
104 static struct rt6_info *rt6_get_route_info(struct in6_addr *prefix, int prefixlen,
105 struct in6_addr *gwaddr, int ifindex);
108 static struct dst_ops ip6_dst_ops = {
110 .protocol = __constant_htons(ETH_P_IPV6),
113 .check = ip6_dst_check,
114 .destroy = ip6_dst_destroy,
115 .ifdown = ip6_dst_ifdown,
116 .negative_advice = ip6_negative_advice,
117 .link_failure = ip6_link_failure,
118 .update_pmtu = ip6_rt_update_pmtu,
119 .entry_size = sizeof(struct rt6_info),
122 struct rt6_info ip6_null_entry = {
125 .__refcnt = ATOMIC_INIT(1),
127 .dev = &loopback_dev,
129 .error = -ENETUNREACH,
130 .metrics = { [RTAX_HOPLIMIT - 1] = 255, },
131 .input = ip6_pkt_discard,
132 .output = ip6_pkt_discard_out,
134 .path = (struct dst_entry*)&ip6_null_entry,
137 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP),
138 .rt6i_metric = ~(u32) 0,
139 .rt6i_ref = ATOMIC_INIT(1),
142 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
144 static int ip6_pkt_prohibit(struct sk_buff *skb);
145 static int ip6_pkt_prohibit_out(struct sk_buff *skb);
146 static int ip6_pkt_blk_hole(struct sk_buff *skb);
148 struct rt6_info ip6_prohibit_entry = {
151 .__refcnt = ATOMIC_INIT(1),
153 .dev = &loopback_dev,
156 .metrics = { [RTAX_HOPLIMIT - 1] = 255, },
157 .input = ip6_pkt_prohibit,
158 .output = ip6_pkt_prohibit_out,
160 .path = (struct dst_entry*)&ip6_prohibit_entry,
163 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP),
164 .rt6i_metric = ~(u32) 0,
165 .rt6i_ref = ATOMIC_INIT(1),
168 struct rt6_info ip6_blk_hole_entry = {
171 .__refcnt = ATOMIC_INIT(1),
173 .dev = &loopback_dev,
176 .metrics = { [RTAX_HOPLIMIT - 1] = 255, },
177 .input = ip6_pkt_blk_hole,
178 .output = ip6_pkt_blk_hole,
180 .path = (struct dst_entry*)&ip6_blk_hole_entry,
183 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP),
184 .rt6i_metric = ~(u32) 0,
185 .rt6i_ref = ATOMIC_INIT(1),
190 /* allocate dst with ip6_dst_ops */
191 static __inline__ struct rt6_info *ip6_dst_alloc(void)
193 return (struct rt6_info *)dst_alloc(&ip6_dst_ops);
196 static void ip6_dst_destroy(struct dst_entry *dst)
198 struct rt6_info *rt = (struct rt6_info *)dst;
199 struct inet6_dev *idev = rt->rt6i_idev;
202 rt->rt6i_idev = NULL;
207 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
210 struct rt6_info *rt = (struct rt6_info *)dst;
211 struct inet6_dev *idev = rt->rt6i_idev;
213 if (dev != &loopback_dev && idev != NULL && idev->dev == dev) {
214 struct inet6_dev *loopback_idev = in6_dev_get(&loopback_dev);
215 if (loopback_idev != NULL) {
216 rt->rt6i_idev = loopback_idev;
222 static __inline__ int rt6_check_expired(const struct rt6_info *rt)
224 return (rt->rt6i_flags & RTF_EXPIRES &&
225 time_after(jiffies, rt->rt6i_expires));
228 static inline int rt6_need_strict(struct in6_addr *daddr)
230 return (ipv6_addr_type(daddr) &
231 (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL));
235 * Route lookup. Any table->tb6_lock is implied.
238 static __inline__ struct rt6_info *rt6_device_match(struct rt6_info *rt,
242 struct rt6_info *local = NULL;
243 struct rt6_info *sprt;
246 for (sprt = rt; sprt; sprt = sprt->u.next) {
247 struct net_device *dev = sprt->rt6i_dev;
248 if (dev->ifindex == oif)
250 if (dev->flags & IFF_LOOPBACK) {
251 if (sprt->rt6i_idev == NULL ||
252 sprt->rt6i_idev->dev->ifindex != oif) {
255 if (local && (!oif ||
256 local->rt6i_idev->dev->ifindex == oif))
267 return &ip6_null_entry;
272 #ifdef CONFIG_IPV6_ROUTER_PREF
273 static void rt6_probe(struct rt6_info *rt)
275 struct neighbour *neigh = rt ? rt->rt6i_nexthop : NULL;
277 * Okay, this does not seem to be appropriate
278 * for now, however, we need to check if it
279 * is really so; aka Router Reachability Probing.
281 * Router Reachability Probe MUST be rate-limited
282 * to no more than one per minute.
284 if (!neigh || (neigh->nud_state & NUD_VALID))
286 read_lock_bh(&neigh->lock);
287 if (!(neigh->nud_state & NUD_VALID) &&
288 time_after(jiffies, neigh->updated + rt->rt6i_idev->cnf.rtr_probe_interval)) {
289 struct in6_addr mcaddr;
290 struct in6_addr *target;
292 neigh->updated = jiffies;
293 read_unlock_bh(&neigh->lock);
295 target = (struct in6_addr *)&neigh->primary_key;
296 addrconf_addr_solict_mult(target, &mcaddr);
297 ndisc_send_ns(rt->rt6i_dev, NULL, target, &mcaddr, NULL);
299 read_unlock_bh(&neigh->lock);
302 static inline void rt6_probe(struct rt6_info *rt)
309 * Default Router Selection (RFC 2461 6.3.6)
311 static int inline rt6_check_dev(struct rt6_info *rt, int oif)
313 struct net_device *dev = rt->rt6i_dev;
314 if (!oif || dev->ifindex == oif)
316 if ((dev->flags & IFF_LOOPBACK) &&
317 rt->rt6i_idev && rt->rt6i_idev->dev->ifindex == oif)
322 static int inline rt6_check_neigh(struct rt6_info *rt)
324 struct neighbour *neigh = rt->rt6i_nexthop;
326 if (rt->rt6i_flags & RTF_NONEXTHOP ||
327 !(rt->rt6i_flags & RTF_GATEWAY))
330 read_lock_bh(&neigh->lock);
331 if (neigh->nud_state & NUD_VALID)
333 read_unlock_bh(&neigh->lock);
338 static int rt6_score_route(struct rt6_info *rt, int oif,
343 m = rt6_check_dev(rt, oif);
344 if (!m && (strict & RT6_LOOKUP_F_IFACE))
346 #ifdef CONFIG_IPV6_ROUTER_PREF
347 m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(rt->rt6i_flags)) << 2;
349 n = rt6_check_neigh(rt);
352 else if (!n && strict & RT6_LOOKUP_F_REACHABLE)
357 static struct rt6_info *rt6_select(struct rt6_info **head, int oif,
360 struct rt6_info *match = NULL, *last = NULL;
361 struct rt6_info *rt, *rt0 = *head;
365 RT6_TRACE("%s(head=%p(*head=%p), oif=%d)\n",
366 __FUNCTION__, head, head ? *head : NULL, oif);
368 for (rt = rt0, metric = rt0->rt6i_metric;
369 rt && rt->rt6i_metric == metric && (!last || rt != rt0);
373 if (rt6_check_expired(rt))
378 m = rt6_score_route(rt, oif, strict);
392 (strict & RT6_LOOKUP_F_REACHABLE) &&
393 last && last != rt0) {
394 /* no entries matched; do round-robin */
395 static DEFINE_SPINLOCK(lock);
398 rt0->u.next = last->u.next;
403 RT6_TRACE("%s() => %p, score=%d\n",
404 __FUNCTION__, match, mpri);
406 return (match ? match : &ip6_null_entry);
409 #ifdef CONFIG_IPV6_ROUTE_INFO
410 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len,
411 struct in6_addr *gwaddr)
413 struct route_info *rinfo = (struct route_info *) opt;
414 struct in6_addr prefix_buf, *prefix;
419 if (len < sizeof(struct route_info)) {
423 /* Sanity check for prefix_len and length */
424 if (rinfo->length > 3) {
426 } else if (rinfo->prefix_len > 128) {
428 } else if (rinfo->prefix_len > 64) {
429 if (rinfo->length < 2) {
432 } else if (rinfo->prefix_len > 0) {
433 if (rinfo->length < 1) {
438 pref = rinfo->route_pref;
439 if (pref == ICMPV6_ROUTER_PREF_INVALID)
440 pref = ICMPV6_ROUTER_PREF_MEDIUM;
442 lifetime = htonl(rinfo->lifetime);
443 if (lifetime == 0xffffffff) {
445 } else if (lifetime > 0x7fffffff/HZ) {
446 /* Avoid arithmetic overflow */
447 lifetime = 0x7fffffff/HZ - 1;
450 if (rinfo->length == 3)
451 prefix = (struct in6_addr *)rinfo->prefix;
453 /* this function is safe */
454 ipv6_addr_prefix(&prefix_buf,
455 (struct in6_addr *)rinfo->prefix,
457 prefix = &prefix_buf;
460 rt = rt6_get_route_info(prefix, rinfo->prefix_len, gwaddr, dev->ifindex);
462 if (rt && !lifetime) {
468 rt = rt6_add_route_info(prefix, rinfo->prefix_len, gwaddr, dev->ifindex,
471 rt->rt6i_flags = RTF_ROUTEINFO |
472 (rt->rt6i_flags & ~RTF_PREF_MASK) | RTF_PREF(pref);
475 if (lifetime == 0xffffffff) {
476 rt->rt6i_flags &= ~RTF_EXPIRES;
478 rt->rt6i_expires = jiffies + HZ * lifetime;
479 rt->rt6i_flags |= RTF_EXPIRES;
481 dst_release(&rt->u.dst);
487 #define BACKTRACK(saddr) \
489 if (rt == &ip6_null_entry) { \
490 struct fib6_node *pn; \
492 if (fn->fn_flags & RTN_TL_ROOT) \
495 if (FIB6_SUBTREE(pn) && FIB6_SUBTREE(pn) != fn) \
496 fn = fib6_lookup(pn->subtree, NULL, saddr); \
499 if (fn->fn_flags & RTN_RTINFO) \
505 static struct rt6_info *ip6_pol_route_lookup(struct fib6_table *table,
506 struct flowi *fl, int flags)
508 struct fib6_node *fn;
511 read_lock_bh(&table->tb6_lock);
512 fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
515 rt = rt6_device_match(rt, fl->oif, flags);
516 BACKTRACK(&fl->fl6_src);
518 dst_hold(&rt->u.dst);
519 read_unlock_bh(&table->tb6_lock);
521 rt->u.dst.lastuse = jiffies;
528 struct rt6_info *rt6_lookup(struct in6_addr *daddr, struct in6_addr *saddr,
539 struct dst_entry *dst;
540 int flags = strict ? RT6_LOOKUP_F_IFACE : 0;
543 memcpy(&fl.fl6_src, saddr, sizeof(*saddr));
544 flags |= RT6_LOOKUP_F_HAS_SADDR;
547 dst = fib6_rule_lookup(&fl, flags, ip6_pol_route_lookup);
549 return (struct rt6_info *) dst;
556 /* ip6_ins_rt is called with FREE table->tb6_lock.
557 It takes new route entry, the addition fails by any reason the
558 route is freed. In any case, if caller does not hold it, it may
562 static int __ip6_ins_rt(struct rt6_info *rt, struct nl_info *info)
565 struct fib6_table *table;
567 table = rt->rt6i_table;
568 write_lock_bh(&table->tb6_lock);
569 err = fib6_add(&table->tb6_root, rt, info);
570 write_unlock_bh(&table->tb6_lock);
575 int ip6_ins_rt(struct rt6_info *rt)
577 return __ip6_ins_rt(rt, NULL);
580 static struct rt6_info *rt6_alloc_cow(struct rt6_info *ort, struct in6_addr *daddr,
581 struct in6_addr *saddr)
589 rt = ip6_rt_copy(ort);
592 if (!(rt->rt6i_flags&RTF_GATEWAY)) {
593 if (rt->rt6i_dst.plen != 128 &&
594 ipv6_addr_equal(&rt->rt6i_dst.addr, daddr))
595 rt->rt6i_flags |= RTF_ANYCAST;
596 ipv6_addr_copy(&rt->rt6i_gateway, daddr);
599 ipv6_addr_copy(&rt->rt6i_dst.addr, daddr);
600 rt->rt6i_dst.plen = 128;
601 rt->rt6i_flags |= RTF_CACHE;
602 rt->u.dst.flags |= DST_HOST;
604 #ifdef CONFIG_IPV6_SUBTREES
605 if (rt->rt6i_src.plen && saddr) {
606 ipv6_addr_copy(&rt->rt6i_src.addr, saddr);
607 rt->rt6i_src.plen = 128;
611 rt->rt6i_nexthop = ndisc_get_neigh(rt->rt6i_dev, &rt->rt6i_gateway);
618 static struct rt6_info *rt6_alloc_clone(struct rt6_info *ort, struct in6_addr *daddr)
620 struct rt6_info *rt = ip6_rt_copy(ort);
622 ipv6_addr_copy(&rt->rt6i_dst.addr, daddr);
623 rt->rt6i_dst.plen = 128;
624 rt->rt6i_flags |= RTF_CACHE;
625 rt->u.dst.flags |= DST_HOST;
626 rt->rt6i_nexthop = neigh_clone(ort->rt6i_nexthop);
631 static struct rt6_info *ip6_pol_route_input(struct fib6_table *table,
632 struct flowi *fl, int flags)
634 struct fib6_node *fn;
635 struct rt6_info *rt, *nrt;
639 int reachable = RT6_LOOKUP_F_REACHABLE;
641 strict |= flags & RT6_LOOKUP_F_IFACE;
644 read_lock_bh(&table->tb6_lock);
647 fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
650 rt = rt6_select(&fn->leaf, fl->iif, strict | reachable);
651 BACKTRACK(&fl->fl6_src);
652 if (rt == &ip6_null_entry ||
653 rt->rt6i_flags & RTF_CACHE)
656 dst_hold(&rt->u.dst);
657 read_unlock_bh(&table->tb6_lock);
659 if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
660 nrt = rt6_alloc_cow(rt, &fl->fl6_dst, &fl->fl6_src);
662 #if CLONE_OFFLINK_ROUTE
663 nrt = rt6_alloc_clone(rt, &fl->fl6_dst);
669 dst_release(&rt->u.dst);
670 rt = nrt ? : &ip6_null_entry;
672 dst_hold(&rt->u.dst);
674 err = ip6_ins_rt(nrt);
683 * Race condition! In the gap, when table->tb6_lock was
684 * released someone could insert this route. Relookup.
686 dst_release(&rt->u.dst);
694 dst_hold(&rt->u.dst);
695 read_unlock_bh(&table->tb6_lock);
697 rt->u.dst.lastuse = jiffies;
703 void ip6_route_input(struct sk_buff *skb)
705 struct ipv6hdr *iph = skb->nh.ipv6h;
706 int flags = RT6_LOOKUP_F_HAS_SADDR;
708 .iif = skb->dev->ifindex,
713 #ifdef CONFIG_IPV6_ROUTE_FWMARK
714 .fwmark = skb->nfmark,
716 .flowlabel = (* (u32 *) iph)&IPV6_FLOWINFO_MASK,
719 .proto = iph->nexthdr,
722 if (rt6_need_strict(&iph->daddr))
723 flags |= RT6_LOOKUP_F_IFACE;
725 skb->dst = fib6_rule_lookup(&fl, flags, ip6_pol_route_input);
728 static struct rt6_info *ip6_pol_route_output(struct fib6_table *table,
729 struct flowi *fl, int flags)
731 struct fib6_node *fn;
732 struct rt6_info *rt, *nrt;
736 int reachable = RT6_LOOKUP_F_REACHABLE;
738 strict |= flags & RT6_LOOKUP_F_IFACE;
741 read_lock_bh(&table->tb6_lock);
744 fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
747 rt = rt6_select(&fn->leaf, fl->oif, strict | reachable);
748 BACKTRACK(&fl->fl6_src);
749 if (rt == &ip6_null_entry ||
750 rt->rt6i_flags & RTF_CACHE)
753 dst_hold(&rt->u.dst);
754 read_unlock_bh(&table->tb6_lock);
756 if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
757 nrt = rt6_alloc_cow(rt, &fl->fl6_dst, &fl->fl6_src);
759 #if CLONE_OFFLINK_ROUTE
760 nrt = rt6_alloc_clone(rt, &fl->fl6_dst);
766 dst_release(&rt->u.dst);
767 rt = nrt ? : &ip6_null_entry;
769 dst_hold(&rt->u.dst);
771 err = ip6_ins_rt(nrt);
780 * Race condition! In the gap, when table->tb6_lock was
781 * released someone could insert this route. Relookup.
783 dst_release(&rt->u.dst);
791 dst_hold(&rt->u.dst);
792 read_unlock_bh(&table->tb6_lock);
794 rt->u.dst.lastuse = jiffies;
799 struct dst_entry * ip6_route_output(struct sock *sk, struct flowi *fl)
803 if (rt6_need_strict(&fl->fl6_dst))
804 flags |= RT6_LOOKUP_F_IFACE;
806 if (!ipv6_addr_any(&fl->fl6_src))
807 flags |= RT6_LOOKUP_F_HAS_SADDR;
809 return fib6_rule_lookup(fl, flags, ip6_pol_route_output);
814 * Destination cache support functions
817 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie)
821 rt = (struct rt6_info *) dst;
823 if (rt && rt->rt6i_node && (rt->rt6i_node->fn_sernum == cookie))
829 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst)
831 struct rt6_info *rt = (struct rt6_info *) dst;
834 if (rt->rt6i_flags & RTF_CACHE)
842 static void ip6_link_failure(struct sk_buff *skb)
846 icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0, skb->dev);
848 rt = (struct rt6_info *) skb->dst;
850 if (rt->rt6i_flags&RTF_CACHE) {
851 dst_set_expires(&rt->u.dst, 0);
852 rt->rt6i_flags |= RTF_EXPIRES;
853 } else if (rt->rt6i_node && (rt->rt6i_flags & RTF_DEFAULT))
854 rt->rt6i_node->fn_sernum = -1;
858 static void ip6_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
860 struct rt6_info *rt6 = (struct rt6_info*)dst;
862 if (mtu < dst_mtu(dst) && rt6->rt6i_dst.plen == 128) {
863 rt6->rt6i_flags |= RTF_MODIFIED;
864 if (mtu < IPV6_MIN_MTU) {
866 dst->metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
868 dst->metrics[RTAX_MTU-1] = mtu;
869 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
873 static int ipv6_get_mtu(struct net_device *dev);
875 static inline unsigned int ipv6_advmss(unsigned int mtu)
877 mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr);
879 if (mtu < ip6_rt_min_advmss)
880 mtu = ip6_rt_min_advmss;
883 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and
884 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size.
885 * IPV6_MAXPLEN is also valid and means: "any MSS,
886 * rely only on pmtu discovery"
888 if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr))
893 static struct dst_entry *ndisc_dst_gc_list;
894 static DEFINE_SPINLOCK(ndisc_lock);
896 struct dst_entry *ndisc_dst_alloc(struct net_device *dev,
897 struct neighbour *neigh,
898 struct in6_addr *addr,
899 int (*output)(struct sk_buff *))
902 struct inet6_dev *idev = in6_dev_get(dev);
904 if (unlikely(idev == NULL))
907 rt = ip6_dst_alloc();
908 if (unlikely(rt == NULL)) {
917 neigh = ndisc_get_neigh(dev, addr);
920 rt->rt6i_idev = idev;
921 rt->rt6i_nexthop = neigh;
922 atomic_set(&rt->u.dst.__refcnt, 1);
923 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = 255;
924 rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(rt->rt6i_dev);
925 rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
926 rt->u.dst.output = output;
928 #if 0 /* there's no chance to use these for ndisc */
929 rt->u.dst.flags = ipv6_addr_type(addr) & IPV6_ADDR_UNICAST
932 ipv6_addr_copy(&rt->rt6i_dst.addr, addr);
933 rt->rt6i_dst.plen = 128;
936 spin_lock_bh(&ndisc_lock);
937 rt->u.dst.next = ndisc_dst_gc_list;
938 ndisc_dst_gc_list = &rt->u.dst;
939 spin_unlock_bh(&ndisc_lock);
941 fib6_force_start_gc();
944 return (struct dst_entry *)rt;
947 int ndisc_dst_gc(int *more)
949 struct dst_entry *dst, *next, **pprev;
955 spin_lock_bh(&ndisc_lock);
956 pprev = &ndisc_dst_gc_list;
958 while ((dst = *pprev) != NULL) {
959 if (!atomic_read(&dst->__refcnt)) {
969 spin_unlock_bh(&ndisc_lock);
974 static int ip6_dst_gc(void)
976 static unsigned expire = 30*HZ;
977 static unsigned long last_gc;
978 unsigned long now = jiffies;
980 if (time_after(last_gc + ip6_rt_gc_min_interval, now) &&
981 atomic_read(&ip6_dst_ops.entries) <= ip6_rt_max_size)
987 if (atomic_read(&ip6_dst_ops.entries) < ip6_dst_ops.gc_thresh)
988 expire = ip6_rt_gc_timeout>>1;
991 expire -= expire>>ip6_rt_gc_elasticity;
992 return (atomic_read(&ip6_dst_ops.entries) > ip6_rt_max_size);
995 /* Clean host part of a prefix. Not necessary in radix tree,
996 but results in cleaner routing tables.
998 Remove it only when all the things will work!
1001 static int ipv6_get_mtu(struct net_device *dev)
1003 int mtu = IPV6_MIN_MTU;
1004 struct inet6_dev *idev;
1006 idev = in6_dev_get(dev);
1008 mtu = idev->cnf.mtu6;
1014 int ipv6_get_hoplimit(struct net_device *dev)
1016 int hoplimit = ipv6_devconf.hop_limit;
1017 struct inet6_dev *idev;
1019 idev = in6_dev_get(dev);
1021 hoplimit = idev->cnf.hop_limit;
1031 int ip6_route_add(struct fib6_config *cfg)
1034 struct rt6_info *rt = NULL;
1035 struct net_device *dev = NULL;
1036 struct inet6_dev *idev = NULL;
1037 struct fib6_table *table;
1040 if (cfg->fc_dst_len > 128 || cfg->fc_src_len > 128)
1042 #ifndef CONFIG_IPV6_SUBTREES
1043 if (cfg->fc_src_len)
1046 if (cfg->fc_ifindex) {
1048 dev = dev_get_by_index(cfg->fc_ifindex);
1051 idev = in6_dev_get(dev);
1056 if (cfg->fc_metric == 0)
1057 cfg->fc_metric = IP6_RT_PRIO_USER;
1059 table = fib6_new_table(cfg->fc_table);
1060 if (table == NULL) {
1065 rt = ip6_dst_alloc();
1072 rt->u.dst.obsolete = -1;
1073 rt->rt6i_expires = jiffies + clock_t_to_jiffies(cfg->fc_expires);
1075 if (cfg->fc_protocol == RTPROT_UNSPEC)
1076 cfg->fc_protocol = RTPROT_BOOT;
1077 rt->rt6i_protocol = cfg->fc_protocol;
1079 addr_type = ipv6_addr_type(&cfg->fc_dst);
1081 if (addr_type & IPV6_ADDR_MULTICAST)
1082 rt->u.dst.input = ip6_mc_input;
1084 rt->u.dst.input = ip6_forward;
1086 rt->u.dst.output = ip6_output;
1088 ipv6_addr_prefix(&rt->rt6i_dst.addr, &cfg->fc_dst, cfg->fc_dst_len);
1089 rt->rt6i_dst.plen = cfg->fc_dst_len;
1090 if (rt->rt6i_dst.plen == 128)
1091 rt->u.dst.flags = DST_HOST;
1093 #ifdef CONFIG_IPV6_SUBTREES
1094 ipv6_addr_prefix(&rt->rt6i_src.addr, &cfg->fc_src, cfg->fc_src_len);
1095 rt->rt6i_src.plen = cfg->fc_src_len;
1098 rt->rt6i_metric = cfg->fc_metric;
1100 /* We cannot add true routes via loopback here,
1101 they would result in kernel looping; promote them to reject routes
1103 if ((cfg->fc_flags & RTF_REJECT) ||
1104 (dev && (dev->flags&IFF_LOOPBACK) && !(addr_type&IPV6_ADDR_LOOPBACK))) {
1105 /* hold loopback dev/idev if we haven't done so. */
1106 if (dev != &loopback_dev) {
1111 dev = &loopback_dev;
1113 idev = in6_dev_get(dev);
1119 rt->u.dst.output = ip6_pkt_discard_out;
1120 rt->u.dst.input = ip6_pkt_discard;
1121 rt->u.dst.error = -ENETUNREACH;
1122 rt->rt6i_flags = RTF_REJECT|RTF_NONEXTHOP;
1126 if (cfg->fc_flags & RTF_GATEWAY) {
1127 struct in6_addr *gw_addr;
1130 gw_addr = &cfg->fc_gateway;
1131 ipv6_addr_copy(&rt->rt6i_gateway, gw_addr);
1132 gwa_type = ipv6_addr_type(gw_addr);
1134 if (gwa_type != (IPV6_ADDR_LINKLOCAL|IPV6_ADDR_UNICAST)) {
1135 struct rt6_info *grt;
1137 /* IPv6 strictly inhibits using not link-local
1138 addresses as nexthop address.
1139 Otherwise, router will not able to send redirects.
1140 It is very good, but in some (rare!) circumstances
1141 (SIT, PtP, NBMA NOARP links) it is handy to allow
1142 some exceptions. --ANK
1145 if (!(gwa_type&IPV6_ADDR_UNICAST))
1148 grt = rt6_lookup(gw_addr, NULL, cfg->fc_ifindex, 1);
1150 err = -EHOSTUNREACH;
1154 if (dev != grt->rt6i_dev) {
1155 dst_release(&grt->u.dst);
1159 dev = grt->rt6i_dev;
1160 idev = grt->rt6i_idev;
1162 in6_dev_hold(grt->rt6i_idev);
1164 if (!(grt->rt6i_flags&RTF_GATEWAY))
1166 dst_release(&grt->u.dst);
1172 if (dev == NULL || (dev->flags&IFF_LOOPBACK))
1180 if (cfg->fc_flags & (RTF_GATEWAY | RTF_NONEXTHOP)) {
1181 rt->rt6i_nexthop = __neigh_lookup_errno(&nd_tbl, &rt->rt6i_gateway, dev);
1182 if (IS_ERR(rt->rt6i_nexthop)) {
1183 err = PTR_ERR(rt->rt6i_nexthop);
1184 rt->rt6i_nexthop = NULL;
1189 rt->rt6i_flags = cfg->fc_flags;
1196 nla_for_each_attr(nla, cfg->fc_mx, cfg->fc_mx_len, remaining) {
1197 int type = nla->nla_type;
1200 if (type > RTAX_MAX) {
1205 rt->u.dst.metrics[type - 1] = nla_get_u32(nla);
1210 if (rt->u.dst.metrics[RTAX_HOPLIMIT-1] == 0)
1211 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = -1;
1212 if (!rt->u.dst.metrics[RTAX_MTU-1])
1213 rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(dev);
1214 if (!rt->u.dst.metrics[RTAX_ADVMSS-1])
1215 rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
1216 rt->u.dst.dev = dev;
1217 rt->rt6i_idev = idev;
1218 rt->rt6i_table = table;
1219 return __ip6_ins_rt(rt, &cfg->fc_nlinfo);
1227 dst_free((struct dst_entry *) rt);
1231 static int __ip6_del_rt(struct rt6_info *rt, struct nl_info *info)
1234 struct fib6_table *table;
1236 if (rt == &ip6_null_entry)
1239 table = rt->rt6i_table;
1240 write_lock_bh(&table->tb6_lock);
1242 err = fib6_del(rt, info);
1243 dst_release(&rt->u.dst);
1245 write_unlock_bh(&table->tb6_lock);
1250 int ip6_del_rt(struct rt6_info *rt)
1252 return __ip6_del_rt(rt, NULL);
1255 static int ip6_route_del(struct fib6_config *cfg)
1257 struct fib6_table *table;
1258 struct fib6_node *fn;
1259 struct rt6_info *rt;
1262 table = fib6_get_table(cfg->fc_table);
1266 read_lock_bh(&table->tb6_lock);
1268 fn = fib6_locate(&table->tb6_root,
1269 &cfg->fc_dst, cfg->fc_dst_len,
1270 &cfg->fc_src, cfg->fc_src_len);
1273 for (rt = fn->leaf; rt; rt = rt->u.next) {
1274 if (cfg->fc_ifindex &&
1275 (rt->rt6i_dev == NULL ||
1276 rt->rt6i_dev->ifindex != cfg->fc_ifindex))
1278 if (cfg->fc_flags & RTF_GATEWAY &&
1279 !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway))
1281 if (cfg->fc_metric && cfg->fc_metric != rt->rt6i_metric)
1283 dst_hold(&rt->u.dst);
1284 read_unlock_bh(&table->tb6_lock);
1286 return __ip6_del_rt(rt, &cfg->fc_nlinfo);
1289 read_unlock_bh(&table->tb6_lock);
1297 struct ip6rd_flowi {
1299 struct in6_addr gateway;
1302 static struct rt6_info *__ip6_route_redirect(struct fib6_table *table,
1306 struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl;
1307 struct rt6_info *rt;
1308 struct fib6_node *fn;
1311 * Get the "current" route for this destination and
1312 * check if the redirect has come from approriate router.
1314 * RFC 2461 specifies that redirects should only be
1315 * accepted if they come from the nexthop to the target.
1316 * Due to the way the routes are chosen, this notion
1317 * is a bit fuzzy and one might need to check all possible
1321 read_lock_bh(&table->tb6_lock);
1322 fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
1324 for (rt = fn->leaf; rt; rt = rt->u.next) {
1326 * Current route is on-link; redirect is always invalid.
1328 * Seems, previous statement is not true. It could
1329 * be node, which looks for us as on-link (f.e. proxy ndisc)
1330 * But then router serving it might decide, that we should
1331 * know truth 8)8) --ANK (980726).
1333 if (rt6_check_expired(rt))
1335 if (!(rt->rt6i_flags & RTF_GATEWAY))
1337 if (fl->oif != rt->rt6i_dev->ifindex)
1339 if (!ipv6_addr_equal(&rdfl->gateway, &rt->rt6i_gateway))
1345 rt = &ip6_null_entry;
1346 BACKTRACK(&fl->fl6_src);
1348 dst_hold(&rt->u.dst);
1350 read_unlock_bh(&table->tb6_lock);
1355 static struct rt6_info *ip6_route_redirect(struct in6_addr *dest,
1356 struct in6_addr *src,
1357 struct in6_addr *gateway,
1358 struct net_device *dev)
1360 int flags = RT6_LOOKUP_F_HAS_SADDR;
1361 struct ip6rd_flowi rdfl = {
1363 .oif = dev->ifindex,
1371 .gateway = *gateway,
1374 if (rt6_need_strict(dest))
1375 flags |= RT6_LOOKUP_F_IFACE;
1377 return (struct rt6_info *)fib6_rule_lookup((struct flowi *)&rdfl, flags, __ip6_route_redirect);
1380 void rt6_redirect(struct in6_addr *dest, struct in6_addr *src,
1381 struct in6_addr *saddr,
1382 struct neighbour *neigh, u8 *lladdr, int on_link)
1384 struct rt6_info *rt, *nrt = NULL;
1385 struct netevent_redirect netevent;
1387 rt = ip6_route_redirect(dest, src, saddr, neigh->dev);
1389 if (rt == &ip6_null_entry) {
1390 if (net_ratelimit())
1391 printk(KERN_DEBUG "rt6_redirect: source isn't a valid nexthop "
1392 "for redirect target\n");
1397 * We have finally decided to accept it.
1400 neigh_update(neigh, lladdr, NUD_STALE,
1401 NEIGH_UPDATE_F_WEAK_OVERRIDE|
1402 NEIGH_UPDATE_F_OVERRIDE|
1403 (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER|
1404 NEIGH_UPDATE_F_ISROUTER))
1408 * Redirect received -> path was valid.
1409 * Look, redirects are sent only in response to data packets,
1410 * so that this nexthop apparently is reachable. --ANK
1412 dst_confirm(&rt->u.dst);
1414 /* Duplicate redirect: silently ignore. */
1415 if (neigh == rt->u.dst.neighbour)
1418 nrt = ip6_rt_copy(rt);
1422 nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE;
1424 nrt->rt6i_flags &= ~RTF_GATEWAY;
1426 ipv6_addr_copy(&nrt->rt6i_dst.addr, dest);
1427 nrt->rt6i_dst.plen = 128;
1428 nrt->u.dst.flags |= DST_HOST;
1430 ipv6_addr_copy(&nrt->rt6i_gateway, (struct in6_addr*)neigh->primary_key);
1431 nrt->rt6i_nexthop = neigh_clone(neigh);
1432 /* Reset pmtu, it may be better */
1433 nrt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(neigh->dev);
1434 nrt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&nrt->u.dst));
1436 if (ip6_ins_rt(nrt))
1439 netevent.old = &rt->u.dst;
1440 netevent.new = &nrt->u.dst;
1441 call_netevent_notifiers(NETEVENT_REDIRECT, &netevent);
1443 if (rt->rt6i_flags&RTF_CACHE) {
1449 dst_release(&rt->u.dst);
1454 * Handle ICMP "packet too big" messages
1455 * i.e. Path MTU discovery
1458 void rt6_pmtu_discovery(struct in6_addr *daddr, struct in6_addr *saddr,
1459 struct net_device *dev, u32 pmtu)
1461 struct rt6_info *rt, *nrt;
1464 rt = rt6_lookup(daddr, saddr, dev->ifindex, 0);
1468 if (pmtu >= dst_mtu(&rt->u.dst))
1471 if (pmtu < IPV6_MIN_MTU) {
1473 * According to RFC2460, PMTU is set to the IPv6 Minimum Link
1474 * MTU (1280) and a fragment header should always be included
1475 * after a node receiving Too Big message reporting PMTU is
1476 * less than the IPv6 Minimum Link MTU.
1478 pmtu = IPV6_MIN_MTU;
1482 /* New mtu received -> path was valid.
1483 They are sent only in response to data packets,
1484 so that this nexthop apparently is reachable. --ANK
1486 dst_confirm(&rt->u.dst);
1488 /* Host route. If it is static, it would be better
1489 not to override it, but add new one, so that
1490 when cache entry will expire old pmtu
1491 would return automatically.
1493 if (rt->rt6i_flags & RTF_CACHE) {
1494 rt->u.dst.metrics[RTAX_MTU-1] = pmtu;
1496 rt->u.dst.metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
1497 dst_set_expires(&rt->u.dst, ip6_rt_mtu_expires);
1498 rt->rt6i_flags |= RTF_MODIFIED|RTF_EXPIRES;
1503 Two cases are possible:
1504 1. It is connected route. Action: COW
1505 2. It is gatewayed route or NONEXTHOP route. Action: clone it.
1507 if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
1508 nrt = rt6_alloc_cow(rt, daddr, saddr);
1510 nrt = rt6_alloc_clone(rt, daddr);
1513 nrt->u.dst.metrics[RTAX_MTU-1] = pmtu;
1515 nrt->u.dst.metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
1517 /* According to RFC 1981, detecting PMTU increase shouldn't be
1518 * happened within 5 mins, the recommended timer is 10 mins.
1519 * Here this route expiration time is set to ip6_rt_mtu_expires
1520 * which is 10 mins. After 10 mins the decreased pmtu is expired
1521 * and detecting PMTU increase will be automatically happened.
1523 dst_set_expires(&nrt->u.dst, ip6_rt_mtu_expires);
1524 nrt->rt6i_flags |= RTF_DYNAMIC|RTF_EXPIRES;
1529 dst_release(&rt->u.dst);
1533 * Misc support functions
1536 static struct rt6_info * ip6_rt_copy(struct rt6_info *ort)
1538 struct rt6_info *rt = ip6_dst_alloc();
1541 rt->u.dst.input = ort->u.dst.input;
1542 rt->u.dst.output = ort->u.dst.output;
1544 memcpy(rt->u.dst.metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
1545 rt->u.dst.error = ort->u.dst.error;
1546 rt->u.dst.dev = ort->u.dst.dev;
1548 dev_hold(rt->u.dst.dev);
1549 rt->rt6i_idev = ort->rt6i_idev;
1551 in6_dev_hold(rt->rt6i_idev);
1552 rt->u.dst.lastuse = jiffies;
1553 rt->rt6i_expires = 0;
1555 ipv6_addr_copy(&rt->rt6i_gateway, &ort->rt6i_gateway);
1556 rt->rt6i_flags = ort->rt6i_flags & ~RTF_EXPIRES;
1557 rt->rt6i_metric = 0;
1559 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key));
1560 #ifdef CONFIG_IPV6_SUBTREES
1561 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key));
1563 rt->rt6i_table = ort->rt6i_table;
1568 #ifdef CONFIG_IPV6_ROUTE_INFO
1569 static struct rt6_info *rt6_get_route_info(struct in6_addr *prefix, int prefixlen,
1570 struct in6_addr *gwaddr, int ifindex)
1572 struct fib6_node *fn;
1573 struct rt6_info *rt = NULL;
1574 struct fib6_table *table;
1576 table = fib6_get_table(RT6_TABLE_INFO);
1580 write_lock_bh(&table->tb6_lock);
1581 fn = fib6_locate(&table->tb6_root, prefix ,prefixlen, NULL, 0);
1585 for (rt = fn->leaf; rt; rt = rt->u.next) {
1586 if (rt->rt6i_dev->ifindex != ifindex)
1588 if ((rt->rt6i_flags & (RTF_ROUTEINFO|RTF_GATEWAY)) != (RTF_ROUTEINFO|RTF_GATEWAY))
1590 if (!ipv6_addr_equal(&rt->rt6i_gateway, gwaddr))
1592 dst_hold(&rt->u.dst);
1596 write_unlock_bh(&table->tb6_lock);
1600 static struct rt6_info *rt6_add_route_info(struct in6_addr *prefix, int prefixlen,
1601 struct in6_addr *gwaddr, int ifindex,
1604 struct fib6_config cfg = {
1605 .fc_table = RT6_TABLE_INFO,
1607 .fc_ifindex = ifindex,
1608 .fc_dst_len = prefixlen,
1609 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO |
1610 RTF_UP | RTF_PREF(pref),
1613 ipv6_addr_copy(&cfg.fc_dst, prefix);
1614 ipv6_addr_copy(&cfg.fc_gateway, gwaddr);
1616 /* We should treat it as a default route if prefix length is 0. */
1618 cfg.fc_flags |= RTF_DEFAULT;
1620 ip6_route_add(&cfg);
1622 return rt6_get_route_info(prefix, prefixlen, gwaddr, ifindex);
1626 struct rt6_info *rt6_get_dflt_router(struct in6_addr *addr, struct net_device *dev)
1628 struct rt6_info *rt;
1629 struct fib6_table *table;
1631 table = fib6_get_table(RT6_TABLE_DFLT);
1635 write_lock_bh(&table->tb6_lock);
1636 for (rt = table->tb6_root.leaf; rt; rt=rt->u.next) {
1637 if (dev == rt->rt6i_dev &&
1638 ((rt->rt6i_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) &&
1639 ipv6_addr_equal(&rt->rt6i_gateway, addr))
1643 dst_hold(&rt->u.dst);
1644 write_unlock_bh(&table->tb6_lock);
1648 struct rt6_info *rt6_add_dflt_router(struct in6_addr *gwaddr,
1649 struct net_device *dev,
1652 struct fib6_config cfg = {
1653 .fc_table = RT6_TABLE_DFLT,
1655 .fc_ifindex = dev->ifindex,
1656 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT |
1657 RTF_UP | RTF_EXPIRES | RTF_PREF(pref),
1660 ipv6_addr_copy(&cfg.fc_gateway, gwaddr);
1662 ip6_route_add(&cfg);
1664 return rt6_get_dflt_router(gwaddr, dev);
1667 void rt6_purge_dflt_routers(void)
1669 struct rt6_info *rt;
1670 struct fib6_table *table;
1672 /* NOTE: Keep consistent with rt6_get_dflt_router */
1673 table = fib6_get_table(RT6_TABLE_DFLT);
1678 read_lock_bh(&table->tb6_lock);
1679 for (rt = table->tb6_root.leaf; rt; rt = rt->u.next) {
1680 if (rt->rt6i_flags & (RTF_DEFAULT | RTF_ADDRCONF)) {
1681 dst_hold(&rt->u.dst);
1682 read_unlock_bh(&table->tb6_lock);
1687 read_unlock_bh(&table->tb6_lock);
1690 static void rtmsg_to_fib6_config(struct in6_rtmsg *rtmsg,
1691 struct fib6_config *cfg)
1693 memset(cfg, 0, sizeof(*cfg));
1695 cfg->fc_table = RT6_TABLE_MAIN;
1696 cfg->fc_ifindex = rtmsg->rtmsg_ifindex;
1697 cfg->fc_metric = rtmsg->rtmsg_metric;
1698 cfg->fc_expires = rtmsg->rtmsg_info;
1699 cfg->fc_dst_len = rtmsg->rtmsg_dst_len;
1700 cfg->fc_src_len = rtmsg->rtmsg_src_len;
1701 cfg->fc_flags = rtmsg->rtmsg_flags;
1703 ipv6_addr_copy(&cfg->fc_dst, &rtmsg->rtmsg_dst);
1704 ipv6_addr_copy(&cfg->fc_src, &rtmsg->rtmsg_src);
1705 ipv6_addr_copy(&cfg->fc_gateway, &rtmsg->rtmsg_gateway);
1708 int ipv6_route_ioctl(unsigned int cmd, void __user *arg)
1710 struct fib6_config cfg;
1711 struct in6_rtmsg rtmsg;
1715 case SIOCADDRT: /* Add a route */
1716 case SIOCDELRT: /* Delete a route */
1717 if (!capable(CAP_NET_ADMIN))
1719 err = copy_from_user(&rtmsg, arg,
1720 sizeof(struct in6_rtmsg));
1724 rtmsg_to_fib6_config(&rtmsg, &cfg);
1729 err = ip6_route_add(&cfg);
1732 err = ip6_route_del(&cfg);
1746 * Drop the packet on the floor
1749 static inline int ip6_pkt_drop(struct sk_buff *skb, int code)
1751 int type = ipv6_addr_type(&skb->nh.ipv6h->daddr);
1752 if (type == IPV6_ADDR_ANY || type == IPV6_ADDR_RESERVED)
1753 IP6_INC_STATS(IPSTATS_MIB_INADDRERRORS);
1755 IP6_INC_STATS(IPSTATS_MIB_OUTNOROUTES);
1756 icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0, skb->dev);
1761 static int ip6_pkt_discard(struct sk_buff *skb)
1763 return ip6_pkt_drop(skb, ICMPV6_NOROUTE);
1766 static int ip6_pkt_discard_out(struct sk_buff *skb)
1768 skb->dev = skb->dst->dev;
1769 return ip6_pkt_discard(skb);
1772 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1774 static int ip6_pkt_prohibit(struct sk_buff *skb)
1776 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED);
1779 static int ip6_pkt_prohibit_out(struct sk_buff *skb)
1781 skb->dev = skb->dst->dev;
1782 return ip6_pkt_prohibit(skb);
1785 static int ip6_pkt_blk_hole(struct sk_buff *skb)
1794 * Allocate a dst for local (unicast / anycast) address.
1797 struct rt6_info *addrconf_dst_alloc(struct inet6_dev *idev,
1798 const struct in6_addr *addr,
1801 struct rt6_info *rt = ip6_dst_alloc();
1804 return ERR_PTR(-ENOMEM);
1806 dev_hold(&loopback_dev);
1809 rt->u.dst.flags = DST_HOST;
1810 rt->u.dst.input = ip6_input;
1811 rt->u.dst.output = ip6_output;
1812 rt->rt6i_dev = &loopback_dev;
1813 rt->rt6i_idev = idev;
1814 rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(rt->rt6i_dev);
1815 rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
1816 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = -1;
1817 rt->u.dst.obsolete = -1;
1819 rt->rt6i_flags = RTF_UP | RTF_NONEXTHOP;
1821 rt->rt6i_flags |= RTF_ANYCAST;
1823 rt->rt6i_flags |= RTF_LOCAL;
1824 rt->rt6i_nexthop = ndisc_get_neigh(rt->rt6i_dev, &rt->rt6i_gateway);
1825 if (rt->rt6i_nexthop == NULL) {
1826 dst_free((struct dst_entry *) rt);
1827 return ERR_PTR(-ENOMEM);
1830 ipv6_addr_copy(&rt->rt6i_dst.addr, addr);
1831 rt->rt6i_dst.plen = 128;
1832 rt->rt6i_table = fib6_get_table(RT6_TABLE_LOCAL);
1834 atomic_set(&rt->u.dst.__refcnt, 1);
1839 static int fib6_ifdown(struct rt6_info *rt, void *arg)
1841 if (((void*)rt->rt6i_dev == arg || arg == NULL) &&
1842 rt != &ip6_null_entry) {
1843 RT6_TRACE("deleted by ifdown %p\n", rt);
1849 void rt6_ifdown(struct net_device *dev)
1851 fib6_clean_all(fib6_ifdown, 0, dev);
1854 struct rt6_mtu_change_arg
1856 struct net_device *dev;
1860 static int rt6_mtu_change_route(struct rt6_info *rt, void *p_arg)
1862 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg;
1863 struct inet6_dev *idev;
1865 /* In IPv6 pmtu discovery is not optional,
1866 so that RTAX_MTU lock cannot disable it.
1867 We still use this lock to block changes
1868 caused by addrconf/ndisc.
1871 idev = __in6_dev_get(arg->dev);
1875 /* For administrative MTU increase, there is no way to discover
1876 IPv6 PMTU increase, so PMTU increase should be updated here.
1877 Since RFC 1981 doesn't include administrative MTU increase
1878 update PMTU increase is a MUST. (i.e. jumbo frame)
1881 If new MTU is less than route PMTU, this new MTU will be the
1882 lowest MTU in the path, update the route PMTU to reflect PMTU
1883 decreases; if new MTU is greater than route PMTU, and the
1884 old MTU is the lowest MTU in the path, update the route PMTU
1885 to reflect the increase. In this case if the other nodes' MTU
1886 also have the lowest MTU, TOO BIG MESSAGE will be lead to
1889 if (rt->rt6i_dev == arg->dev &&
1890 !dst_metric_locked(&rt->u.dst, RTAX_MTU) &&
1891 (dst_mtu(&rt->u.dst) > arg->mtu ||
1892 (dst_mtu(&rt->u.dst) < arg->mtu &&
1893 dst_mtu(&rt->u.dst) == idev->cnf.mtu6)))
1894 rt->u.dst.metrics[RTAX_MTU-1] = arg->mtu;
1895 rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(arg->mtu);
1899 void rt6_mtu_change(struct net_device *dev, unsigned mtu)
1901 struct rt6_mtu_change_arg arg = {
1906 fib6_clean_all(rt6_mtu_change_route, 0, &arg);
1909 static struct nla_policy rtm_ipv6_policy[RTA_MAX+1] __read_mostly = {
1910 [RTA_GATEWAY] = { .len = sizeof(struct in6_addr) },
1911 [RTA_OIF] = { .type = NLA_U32 },
1912 [RTA_IIF] = { .type = NLA_U32 },
1913 [RTA_PRIORITY] = { .type = NLA_U32 },
1914 [RTA_METRICS] = { .type = NLA_NESTED },
1917 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh,
1918 struct fib6_config *cfg)
1921 struct nlattr *tb[RTA_MAX+1];
1924 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy);
1929 rtm = nlmsg_data(nlh);
1930 memset(cfg, 0, sizeof(*cfg));
1932 cfg->fc_table = rtm->rtm_table;
1933 cfg->fc_dst_len = rtm->rtm_dst_len;
1934 cfg->fc_src_len = rtm->rtm_src_len;
1935 cfg->fc_flags = RTF_UP;
1936 cfg->fc_protocol = rtm->rtm_protocol;
1938 if (rtm->rtm_type == RTN_UNREACHABLE)
1939 cfg->fc_flags |= RTF_REJECT;
1941 cfg->fc_nlinfo.pid = NETLINK_CB(skb).pid;
1942 cfg->fc_nlinfo.nlh = nlh;
1944 if (tb[RTA_GATEWAY]) {
1945 nla_memcpy(&cfg->fc_gateway, tb[RTA_GATEWAY], 16);
1946 cfg->fc_flags |= RTF_GATEWAY;
1950 int plen = (rtm->rtm_dst_len + 7) >> 3;
1952 if (nla_len(tb[RTA_DST]) < plen)
1955 nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen);
1959 int plen = (rtm->rtm_src_len + 7) >> 3;
1961 if (nla_len(tb[RTA_SRC]) < plen)
1964 nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen);
1968 cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]);
1970 if (tb[RTA_PRIORITY])
1971 cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]);
1973 if (tb[RTA_METRICS]) {
1974 cfg->fc_mx = nla_data(tb[RTA_METRICS]);
1975 cfg->fc_mx_len = nla_len(tb[RTA_METRICS]);
1979 cfg->fc_table = nla_get_u32(tb[RTA_TABLE]);
1986 int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
1988 struct fib6_config cfg;
1991 err = rtm_to_fib6_config(skb, nlh, &cfg);
1995 return ip6_route_del(&cfg);
1998 int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
2000 struct fib6_config cfg;
2003 err = rtm_to_fib6_config(skb, nlh, &cfg);
2007 return ip6_route_add(&cfg);
2010 static int rt6_fill_node(struct sk_buff *skb, struct rt6_info *rt,
2011 struct in6_addr *dst, struct in6_addr *src,
2012 int iif, int type, u32 pid, u32 seq,
2013 int prefix, unsigned int flags)
2016 struct nlmsghdr *nlh;
2017 struct rta_cacheinfo ci;
2020 if (prefix) { /* user wants prefix routes only */
2021 if (!(rt->rt6i_flags & RTF_PREFIX_RT)) {
2022 /* success since this is not a prefix route */
2027 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*rtm), flags);
2031 rtm = nlmsg_data(nlh);
2032 rtm->rtm_family = AF_INET6;
2033 rtm->rtm_dst_len = rt->rt6i_dst.plen;
2034 rtm->rtm_src_len = rt->rt6i_src.plen;
2037 table = rt->rt6i_table->tb6_id;
2039 table = RT6_TABLE_UNSPEC;
2040 rtm->rtm_table = table;
2041 NLA_PUT_U32(skb, RTA_TABLE, table);
2042 if (rt->rt6i_flags&RTF_REJECT)
2043 rtm->rtm_type = RTN_UNREACHABLE;
2044 else if (rt->rt6i_dev && (rt->rt6i_dev->flags&IFF_LOOPBACK))
2045 rtm->rtm_type = RTN_LOCAL;
2047 rtm->rtm_type = RTN_UNICAST;
2049 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2050 rtm->rtm_protocol = rt->rt6i_protocol;
2051 if (rt->rt6i_flags&RTF_DYNAMIC)
2052 rtm->rtm_protocol = RTPROT_REDIRECT;
2053 else if (rt->rt6i_flags & RTF_ADDRCONF)
2054 rtm->rtm_protocol = RTPROT_KERNEL;
2055 else if (rt->rt6i_flags&RTF_DEFAULT)
2056 rtm->rtm_protocol = RTPROT_RA;
2058 if (rt->rt6i_flags&RTF_CACHE)
2059 rtm->rtm_flags |= RTM_F_CLONED;
2062 NLA_PUT(skb, RTA_DST, 16, dst);
2063 rtm->rtm_dst_len = 128;
2064 } else if (rtm->rtm_dst_len)
2065 NLA_PUT(skb, RTA_DST, 16, &rt->rt6i_dst.addr);
2066 #ifdef CONFIG_IPV6_SUBTREES
2068 NLA_PUT(skb, RTA_SRC, 16, src);
2069 rtm->rtm_src_len = 128;
2070 } else if (rtm->rtm_src_len)
2071 NLA_PUT(skb, RTA_SRC, 16, &rt->rt6i_src.addr);
2074 NLA_PUT_U32(skb, RTA_IIF, iif);
2076 struct in6_addr saddr_buf;
2077 if (ipv6_get_saddr(&rt->u.dst, dst, &saddr_buf) == 0)
2078 NLA_PUT(skb, RTA_PREFSRC, 16, &saddr_buf);
2081 if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2082 goto nla_put_failure;
2084 if (rt->u.dst.neighbour)
2085 NLA_PUT(skb, RTA_GATEWAY, 16, &rt->u.dst.neighbour->primary_key);
2088 NLA_PUT_U32(skb, RTA_OIF, rt->rt6i_dev->ifindex);
2090 NLA_PUT_U32(skb, RTA_PRIORITY, rt->rt6i_metric);
2091 ci.rta_lastuse = jiffies_to_clock_t(jiffies - rt->u.dst.lastuse);
2092 if (rt->rt6i_expires)
2093 ci.rta_expires = jiffies_to_clock_t(rt->rt6i_expires - jiffies);
2096 ci.rta_used = rt->u.dst.__use;
2097 ci.rta_clntref = atomic_read(&rt->u.dst.__refcnt);
2098 ci.rta_error = rt->u.dst.error;
2102 NLA_PUT(skb, RTA_CACHEINFO, sizeof(ci), &ci);
2104 return nlmsg_end(skb, nlh);
2107 return nlmsg_cancel(skb, nlh);
2110 int rt6_dump_route(struct rt6_info *rt, void *p_arg)
2112 struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg;
2115 if (nlmsg_len(arg->cb->nlh) >= sizeof(struct rtmsg)) {
2116 struct rtmsg *rtm = nlmsg_data(arg->cb->nlh);
2117 prefix = (rtm->rtm_flags & RTM_F_PREFIX) != 0;
2121 return rt6_fill_node(arg->skb, rt, NULL, NULL, 0, RTM_NEWROUTE,
2122 NETLINK_CB(arg->cb->skb).pid, arg->cb->nlh->nlmsg_seq,
2123 prefix, NLM_F_MULTI);
2126 int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2128 struct nlattr *tb[RTA_MAX+1];
2129 struct rt6_info *rt;
2130 struct sk_buff *skb;
2135 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy);
2140 memset(&fl, 0, sizeof(fl));
2143 if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr))
2146 ipv6_addr_copy(&fl.fl6_src, nla_data(tb[RTA_SRC]));
2150 if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr))
2153 ipv6_addr_copy(&fl.fl6_dst, nla_data(tb[RTA_DST]));
2157 iif = nla_get_u32(tb[RTA_IIF]);
2160 fl.oif = nla_get_u32(tb[RTA_OIF]);
2163 struct net_device *dev;
2164 dev = __dev_get_by_index(iif);
2171 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2177 /* Reserve room for dummy headers, this skb can pass
2178 through good chunk of routing engine.
2180 skb->mac.raw = skb->data;
2181 skb_reserve(skb, MAX_HEADER + sizeof(struct ipv6hdr));
2183 rt = (struct rt6_info*) ip6_route_output(NULL, &fl);
2184 skb->dst = &rt->u.dst;
2186 err = rt6_fill_node(skb, rt, &fl.fl6_dst, &fl.fl6_src, iif,
2187 RTM_NEWROUTE, NETLINK_CB(in_skb).pid,
2188 nlh->nlmsg_seq, 0, 0);
2194 err = rtnl_unicast(skb, NETLINK_CB(in_skb).pid);
2199 void inet6_rt_notify(int event, struct rt6_info *rt, struct nl_info *info)
2201 struct sk_buff *skb;
2202 u32 pid = 0, seq = 0;
2203 struct nlmsghdr *nlh = NULL;
2204 int payload = sizeof(struct rtmsg) + 256;
2211 seq = nlh->nlmsg_seq;
2214 skb = nlmsg_new(nlmsg_total_size(payload), gfp_any());
2218 err = rt6_fill_node(skb, rt, NULL, NULL, 0, event, pid, seq, 0, 0);
2224 err = rtnl_notify(skb, pid, RTNLGRP_IPV6_ROUTE, nlh, gfp_any());
2227 rtnl_set_sk_err(RTNLGRP_IPV6_ROUTE, err);
2234 #ifdef CONFIG_PROC_FS
2236 #define RT6_INFO_LEN (32 + 4 + 32 + 4 + 32 + 40 + 5 + 1)
2247 static int rt6_info_route(struct rt6_info *rt, void *p_arg)
2249 struct rt6_proc_arg *arg = (struct rt6_proc_arg *) p_arg;
2252 if (arg->skip < arg->offset / RT6_INFO_LEN) {
2257 if (arg->len >= arg->length)
2260 for (i=0; i<16; i++) {
2261 sprintf(arg->buffer + arg->len, "%02x",
2262 rt->rt6i_dst.addr.s6_addr[i]);
2265 arg->len += sprintf(arg->buffer + arg->len, " %02x ",
2268 #ifdef CONFIG_IPV6_SUBTREES
2269 for (i=0; i<16; i++) {
2270 sprintf(arg->buffer + arg->len, "%02x",
2271 rt->rt6i_src.addr.s6_addr[i]);
2274 arg->len += sprintf(arg->buffer + arg->len, " %02x ",
2277 sprintf(arg->buffer + arg->len,
2278 "00000000000000000000000000000000 00 ");
2282 if (rt->rt6i_nexthop) {
2283 for (i=0; i<16; i++) {
2284 sprintf(arg->buffer + arg->len, "%02x",
2285 rt->rt6i_nexthop->primary_key[i]);
2289 sprintf(arg->buffer + arg->len,
2290 "00000000000000000000000000000000");
2293 arg->len += sprintf(arg->buffer + arg->len,
2294 " %08x %08x %08x %08x %8s\n",
2295 rt->rt6i_metric, atomic_read(&rt->u.dst.__refcnt),
2296 rt->u.dst.__use, rt->rt6i_flags,
2297 rt->rt6i_dev ? rt->rt6i_dev->name : "");
2301 static int rt6_proc_info(char *buffer, char **start, off_t offset, int length)
2303 struct rt6_proc_arg arg = {
2309 fib6_clean_all(rt6_info_route, 0, &arg);
2313 *start += offset % RT6_INFO_LEN;
2315 arg.len -= offset % RT6_INFO_LEN;
2317 if (arg.len > length)
2325 static int rt6_stats_seq_show(struct seq_file *seq, void *v)
2327 seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n",
2328 rt6_stats.fib_nodes, rt6_stats.fib_route_nodes,
2329 rt6_stats.fib_rt_alloc, rt6_stats.fib_rt_entries,
2330 rt6_stats.fib_rt_cache,
2331 atomic_read(&ip6_dst_ops.entries),
2332 rt6_stats.fib_discarded_routes);
2337 static int rt6_stats_seq_open(struct inode *inode, struct file *file)
2339 return single_open(file, rt6_stats_seq_show, NULL);
2342 static struct file_operations rt6_stats_seq_fops = {
2343 .owner = THIS_MODULE,
2344 .open = rt6_stats_seq_open,
2346 .llseek = seq_lseek,
2347 .release = single_release,
2349 #endif /* CONFIG_PROC_FS */
2351 #ifdef CONFIG_SYSCTL
2353 static int flush_delay;
2356 int ipv6_sysctl_rtcache_flush(ctl_table *ctl, int write, struct file * filp,
2357 void __user *buffer, size_t *lenp, loff_t *ppos)
2360 proc_dointvec(ctl, write, filp, buffer, lenp, ppos);
2361 fib6_run_gc(flush_delay <= 0 ? ~0UL : (unsigned long)flush_delay);
2367 ctl_table ipv6_route_table[] = {
2369 .ctl_name = NET_IPV6_ROUTE_FLUSH,
2370 .procname = "flush",
2371 .data = &flush_delay,
2372 .maxlen = sizeof(int),
2374 .proc_handler = &ipv6_sysctl_rtcache_flush
2377 .ctl_name = NET_IPV6_ROUTE_GC_THRESH,
2378 .procname = "gc_thresh",
2379 .data = &ip6_dst_ops.gc_thresh,
2380 .maxlen = sizeof(int),
2382 .proc_handler = &proc_dointvec,
2385 .ctl_name = NET_IPV6_ROUTE_MAX_SIZE,
2386 .procname = "max_size",
2387 .data = &ip6_rt_max_size,
2388 .maxlen = sizeof(int),
2390 .proc_handler = &proc_dointvec,
2393 .ctl_name = NET_IPV6_ROUTE_GC_MIN_INTERVAL,
2394 .procname = "gc_min_interval",
2395 .data = &ip6_rt_gc_min_interval,
2396 .maxlen = sizeof(int),
2398 .proc_handler = &proc_dointvec_jiffies,
2399 .strategy = &sysctl_jiffies,
2402 .ctl_name = NET_IPV6_ROUTE_GC_TIMEOUT,
2403 .procname = "gc_timeout",
2404 .data = &ip6_rt_gc_timeout,
2405 .maxlen = sizeof(int),
2407 .proc_handler = &proc_dointvec_jiffies,
2408 .strategy = &sysctl_jiffies,
2411 .ctl_name = NET_IPV6_ROUTE_GC_INTERVAL,
2412 .procname = "gc_interval",
2413 .data = &ip6_rt_gc_interval,
2414 .maxlen = sizeof(int),
2416 .proc_handler = &proc_dointvec_jiffies,
2417 .strategy = &sysctl_jiffies,
2420 .ctl_name = NET_IPV6_ROUTE_GC_ELASTICITY,
2421 .procname = "gc_elasticity",
2422 .data = &ip6_rt_gc_elasticity,
2423 .maxlen = sizeof(int),
2425 .proc_handler = &proc_dointvec_jiffies,
2426 .strategy = &sysctl_jiffies,
2429 .ctl_name = NET_IPV6_ROUTE_MTU_EXPIRES,
2430 .procname = "mtu_expires",
2431 .data = &ip6_rt_mtu_expires,
2432 .maxlen = sizeof(int),
2434 .proc_handler = &proc_dointvec_jiffies,
2435 .strategy = &sysctl_jiffies,
2438 .ctl_name = NET_IPV6_ROUTE_MIN_ADVMSS,
2439 .procname = "min_adv_mss",
2440 .data = &ip6_rt_min_advmss,
2441 .maxlen = sizeof(int),
2443 .proc_handler = &proc_dointvec_jiffies,
2444 .strategy = &sysctl_jiffies,
2447 .ctl_name = NET_IPV6_ROUTE_GC_MIN_INTERVAL_MS,
2448 .procname = "gc_min_interval_ms",
2449 .data = &ip6_rt_gc_min_interval,
2450 .maxlen = sizeof(int),
2452 .proc_handler = &proc_dointvec_ms_jiffies,
2453 .strategy = &sysctl_ms_jiffies,
2460 void __init ip6_route_init(void)
2462 struct proc_dir_entry *p;
2464 ip6_dst_ops.kmem_cachep =
2465 kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0,
2466 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
2468 #ifdef CONFIG_PROC_FS
2469 p = proc_net_create("ipv6_route", 0, rt6_proc_info);
2471 p->owner = THIS_MODULE;
2473 proc_net_fops_create("rt6_stats", S_IRUGO, &rt6_stats_seq_fops);
2478 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2483 void ip6_route_cleanup(void)
2485 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2486 fib6_rules_cleanup();
2488 #ifdef CONFIG_PROC_FS
2489 proc_net_remove("ipv6_route");
2490 proc_net_remove("rt6_stats");
2497 kmem_cache_destroy(ip6_dst_ops.kmem_cachep);