2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include "ecryptfs_kernel.h"
39 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
40 struct page *dst_page, int dst_offset,
41 struct page *src_page, int src_offset, int size,
44 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
45 struct page *dst_page, int dst_offset,
46 struct page *src_page, int src_offset, int size,
51 * @dst: Buffer to take hex character representation of contents of
52 * src; must be at least of size (src_size * 2)
53 * @src: Buffer to be converted to a hex string respresentation
54 * @src_size: number of bytes to convert
56 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
60 for (x = 0; x < src_size; x++)
61 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
66 * @dst: Buffer to take the bytes from src hex; must be at least of
68 * @src: Buffer to be converted from a hex string respresentation to raw value
69 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
71 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
76 for (x = 0; x < dst_size; x++) {
78 tmp[1] = src[x * 2 + 1];
79 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
84 * ecryptfs_calculate_md5 - calculates the md5 of @src
85 * @dst: Pointer to 16 bytes of allocated memory
86 * @crypt_stat: Pointer to crypt_stat struct for the current inode
87 * @src: Data to be md5'd
88 * @len: Length of @src
90 * Uses the allocated crypto context that crypt_stat references to
91 * generate the MD5 sum of the contents of src.
93 static int ecryptfs_calculate_md5(char *dst,
94 struct ecryptfs_crypt_stat *crypt_stat,
97 struct scatterlist sg;
98 struct hash_desc desc = {
99 .tfm = crypt_stat->hash_tfm,
100 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
104 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
105 sg_init_one(&sg, (u8 *)src, len);
107 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
109 if (IS_ERR(desc.tfm)) {
110 rc = PTR_ERR(desc.tfm);
111 ecryptfs_printk(KERN_ERR, "Error attempting to "
112 "allocate crypto context; rc = [%d]\n",
116 crypt_stat->hash_tfm = desc.tfm;
118 crypto_hash_init(&desc);
119 crypto_hash_update(&desc, &sg, len);
120 crypto_hash_final(&desc, dst);
121 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
126 int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
128 char *chaining_modifier)
130 int cipher_name_len = strlen(cipher_name);
131 int chaining_modifier_len = strlen(chaining_modifier);
132 int algified_name_len;
135 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
136 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
137 if (!(*algified_name)) {
141 snprintf((*algified_name), algified_name_len, "%s(%s)",
142 chaining_modifier, cipher_name);
150 * @iv: destination for the derived iv vale
151 * @crypt_stat: Pointer to crypt_stat struct for the current inode
152 * @offset: Offset of the page whose's iv we are to derive
154 * Generate the initialization vector from the given root IV and page
157 * Returns zero on success; non-zero on error.
159 static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
163 char dst[MD5_DIGEST_SIZE];
164 char src[ECRYPTFS_MAX_IV_BYTES + 16];
166 if (unlikely(ecryptfs_verbosity > 0)) {
167 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
168 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
170 /* TODO: It is probably secure to just cast the least
171 * significant bits of the root IV into an unsigned long and
172 * add the offset to that rather than go through all this
173 * hashing business. -Halcrow */
174 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
175 memset((src + crypt_stat->iv_bytes), 0, 16);
176 snprintf((src + crypt_stat->iv_bytes), 16, "%ld", offset);
177 if (unlikely(ecryptfs_verbosity > 0)) {
178 ecryptfs_printk(KERN_DEBUG, "source:\n");
179 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
181 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
182 (crypt_stat->iv_bytes + 16));
184 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
185 "MD5 while generating IV for a page\n");
188 memcpy(iv, dst, crypt_stat->iv_bytes);
189 if (unlikely(ecryptfs_verbosity > 0)) {
190 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
191 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
198 * ecryptfs_init_crypt_stat
199 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
201 * Initialize the crypt_stat structure.
204 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
206 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
207 INIT_LIST_HEAD(&crypt_stat->keysig_list);
208 mutex_init(&crypt_stat->keysig_list_mutex);
209 mutex_init(&crypt_stat->cs_mutex);
210 mutex_init(&crypt_stat->cs_tfm_mutex);
211 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
212 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
216 * ecryptfs_destruct_crypt_stat
217 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
219 * Releases all memory associated with a crypt_stat struct.
221 void ecryptfs_destruct_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
223 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
226 crypto_free_blkcipher(crypt_stat->tfm);
227 if (crypt_stat->hash_tfm)
228 crypto_free_hash(crypt_stat->hash_tfm);
229 mutex_lock(&crypt_stat->keysig_list_mutex);
230 list_for_each_entry_safe(key_sig, key_sig_tmp,
231 &crypt_stat->keysig_list, crypt_stat_list) {
232 list_del(&key_sig->crypt_stat_list);
233 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
235 mutex_unlock(&crypt_stat->keysig_list_mutex);
236 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
239 void ecryptfs_destruct_mount_crypt_stat(
240 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
242 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
244 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
246 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
247 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
248 &mount_crypt_stat->global_auth_tok_list,
249 mount_crypt_stat_list) {
250 list_del(&auth_tok->mount_crypt_stat_list);
251 mount_crypt_stat->num_global_auth_toks--;
252 if (auth_tok->global_auth_tok_key
253 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
254 key_put(auth_tok->global_auth_tok_key);
255 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
257 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
258 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
262 * virt_to_scatterlist
263 * @addr: Virtual address
264 * @size: Size of data; should be an even multiple of the block size
265 * @sg: Pointer to scatterlist array; set to NULL to obtain only
266 * the number of scatterlist structs required in array
267 * @sg_size: Max array size
269 * Fills in a scatterlist array with page references for a passed
272 * Returns the number of scatterlist structs in array used
274 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
280 int remainder_of_page;
282 while (size > 0 && i < sg_size) {
283 pg = virt_to_page(addr);
284 offset = offset_in_page(addr);
287 sg[i].offset = offset;
289 remainder_of_page = PAGE_CACHE_SIZE - offset;
290 if (size >= remainder_of_page) {
292 sg[i].length = remainder_of_page;
293 addr += remainder_of_page;
294 size -= remainder_of_page;
309 * encrypt_scatterlist
310 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
311 * @dest_sg: Destination of encrypted data
312 * @src_sg: Data to be encrypted
313 * @size: Length of data to be encrypted
314 * @iv: iv to use during encryption
316 * Returns the number of bytes encrypted; negative value on error
318 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
319 struct scatterlist *dest_sg,
320 struct scatterlist *src_sg, int size,
323 struct blkcipher_desc desc = {
324 .tfm = crypt_stat->tfm,
326 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
330 BUG_ON(!crypt_stat || !crypt_stat->tfm
331 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
332 if (unlikely(ecryptfs_verbosity > 0)) {
333 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
334 crypt_stat->key_size);
335 ecryptfs_dump_hex(crypt_stat->key,
336 crypt_stat->key_size);
338 /* Consider doing this once, when the file is opened */
339 mutex_lock(&crypt_stat->cs_tfm_mutex);
340 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
341 crypt_stat->key_size);
343 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
345 mutex_unlock(&crypt_stat->cs_tfm_mutex);
349 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
350 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
351 mutex_unlock(&crypt_stat->cs_tfm_mutex);
357 ecryptfs_extent_to_lwr_pg_idx_and_offset(unsigned long *lower_page_idx,
359 struct ecryptfs_crypt_stat *crypt_stat,
360 unsigned long extent_num)
362 unsigned long lower_extent_num;
363 int extents_occupied_by_headers_at_front;
364 int bytes_occupied_by_headers_at_front;
366 int extents_per_page;
368 bytes_occupied_by_headers_at_front =
369 ( crypt_stat->header_extent_size
370 * crypt_stat->num_header_extents_at_front );
371 extents_occupied_by_headers_at_front =
372 ( bytes_occupied_by_headers_at_front
373 / crypt_stat->extent_size );
374 lower_extent_num = extents_occupied_by_headers_at_front + extent_num;
375 extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
376 (*lower_page_idx) = lower_extent_num / extents_per_page;
377 extent_offset = lower_extent_num % extents_per_page;
378 (*byte_offset) = extent_offset * crypt_stat->extent_size;
379 ecryptfs_printk(KERN_DEBUG, " * crypt_stat->header_extent_size = "
380 "[%d]\n", crypt_stat->header_extent_size);
381 ecryptfs_printk(KERN_DEBUG, " * crypt_stat->"
382 "num_header_extents_at_front = [%d]\n",
383 crypt_stat->num_header_extents_at_front);
384 ecryptfs_printk(KERN_DEBUG, " * extents_occupied_by_headers_at_"
385 "front = [%d]\n", extents_occupied_by_headers_at_front);
386 ecryptfs_printk(KERN_DEBUG, " * lower_extent_num = [0x%.16x]\n",
388 ecryptfs_printk(KERN_DEBUG, " * extents_per_page = [%d]\n",
390 ecryptfs_printk(KERN_DEBUG, " * (*lower_page_idx) = [0x%.16x]\n",
392 ecryptfs_printk(KERN_DEBUG, " * extent_offset = [%d]\n",
394 ecryptfs_printk(KERN_DEBUG, " * (*byte_offset) = [%d]\n",
398 static int ecryptfs_write_out_page(struct ecryptfs_page_crypt_context *ctx,
399 struct page *lower_page,
400 struct inode *lower_inode,
401 int byte_offset_in_page, int bytes_to_write)
405 if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
406 rc = ecryptfs_commit_lower_page(lower_page, lower_inode,
407 ctx->param.lower_file,
411 ecryptfs_printk(KERN_ERR, "Error calling lower "
412 "commit; rc = [%d]\n", rc);
416 rc = ecryptfs_writepage_and_release_lower_page(lower_page,
420 ecryptfs_printk(KERN_ERR, "Error calling lower "
421 "writepage(); rc = [%d]\n", rc);
429 static int ecryptfs_read_in_page(struct ecryptfs_page_crypt_context *ctx,
430 struct page **lower_page,
431 struct inode *lower_inode,
432 unsigned long lower_page_idx,
433 int byte_offset_in_page)
437 if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
438 /* TODO: Limit this to only the data extents that are
440 rc = ecryptfs_get_lower_page(lower_page, lower_inode,
441 ctx->param.lower_file,
445 - byte_offset_in_page));
448 KERN_ERR, "Error attempting to grab, map, "
449 "and prepare_write lower page with index "
450 "[0x%.16x]; rc = [%d]\n", lower_page_idx, rc);
454 *lower_page = grab_cache_page(lower_inode->i_mapping,
456 if (!(*lower_page)) {
459 KERN_ERR, "Error attempting to grab and map "
460 "lower page with index [0x%.16x]; rc = [%d]\n",
470 * ecryptfs_encrypt_page
471 * @ctx: The context of the page
473 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
474 * that eCryptfs pages may straddle the lower pages -- for instance,
475 * if the file was created on a machine with an 8K page size
476 * (resulting in an 8K header), and then the file is copied onto a
477 * host with a 32K page size, then when reading page 0 of the eCryptfs
478 * file, 24K of page 0 of the lower file will be read and decrypted,
479 * and then 8K of page 1 of the lower file will be read and decrypted.
481 * The actual operations performed on each page depends on the
482 * contents of the ecryptfs_page_crypt_context struct.
484 * Returns zero on success; negative on error
486 int ecryptfs_encrypt_page(struct ecryptfs_page_crypt_context *ctx)
488 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
489 unsigned long base_extent;
490 unsigned long extent_offset = 0;
491 unsigned long lower_page_idx = 0;
492 unsigned long prior_lower_page_idx = 0;
493 struct page *lower_page;
494 struct inode *lower_inode;
495 struct ecryptfs_inode_info *inode_info;
496 struct ecryptfs_crypt_stat *crypt_stat;
498 int lower_byte_offset = 0;
499 int orig_byte_offset = 0;
500 int num_extents_per_page;
501 #define ECRYPTFS_PAGE_STATE_UNREAD 0
502 #define ECRYPTFS_PAGE_STATE_READ 1
503 #define ECRYPTFS_PAGE_STATE_MODIFIED 2
504 #define ECRYPTFS_PAGE_STATE_WRITTEN 3
507 lower_inode = ecryptfs_inode_to_lower(ctx->page->mapping->host);
508 inode_info = ecryptfs_inode_to_private(ctx->page->mapping->host);
509 crypt_stat = &inode_info->crypt_stat;
510 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
511 rc = ecryptfs_copy_page_to_lower(ctx->page, lower_inode,
512 ctx->param.lower_file);
514 ecryptfs_printk(KERN_ERR, "Error attempting to copy "
515 "page at index [0x%.16x]\n",
519 num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
520 base_extent = (ctx->page->index * num_extents_per_page);
521 page_state = ECRYPTFS_PAGE_STATE_UNREAD;
522 while (extent_offset < num_extents_per_page) {
523 ecryptfs_extent_to_lwr_pg_idx_and_offset(
524 &lower_page_idx, &lower_byte_offset, crypt_stat,
525 (base_extent + extent_offset));
526 if (prior_lower_page_idx != lower_page_idx
527 && page_state == ECRYPTFS_PAGE_STATE_MODIFIED) {
528 rc = ecryptfs_write_out_page(ctx, lower_page,
532 - orig_byte_offset));
534 ecryptfs_printk(KERN_ERR, "Error attempting "
535 "to write out page; rc = [%d]"
539 page_state = ECRYPTFS_PAGE_STATE_WRITTEN;
541 if (page_state == ECRYPTFS_PAGE_STATE_UNREAD
542 || page_state == ECRYPTFS_PAGE_STATE_WRITTEN) {
543 rc = ecryptfs_read_in_page(ctx, &lower_page,
544 lower_inode, lower_page_idx,
547 ecryptfs_printk(KERN_ERR, "Error attempting "
548 "to read in lower page with "
549 "index [0x%.16x]; rc = [%d]\n",
553 orig_byte_offset = lower_byte_offset;
554 prior_lower_page_idx = lower_page_idx;
555 page_state = ECRYPTFS_PAGE_STATE_READ;
557 BUG_ON(!(page_state == ECRYPTFS_PAGE_STATE_MODIFIED
558 || page_state == ECRYPTFS_PAGE_STATE_READ));
559 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
560 (base_extent + extent_offset));
562 ecryptfs_printk(KERN_ERR, "Error attempting to "
563 "derive IV for extent [0x%.16x]; "
565 (base_extent + extent_offset), rc);
568 if (unlikely(ecryptfs_verbosity > 0)) {
569 ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
571 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
572 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
574 ecryptfs_dump_hex((char *)
575 (page_address(ctx->page)
577 * crypt_stat->extent_size)), 8);
579 rc = ecryptfs_encrypt_page_offset(
580 crypt_stat, lower_page, lower_byte_offset, ctx->page,
581 (extent_offset * crypt_stat->extent_size),
582 crypt_stat->extent_size, extent_iv);
583 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
585 (base_extent + extent_offset), rc);
586 if (unlikely(ecryptfs_verbosity > 0)) {
587 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
589 ecryptfs_dump_hex((char *)(page_address(lower_page)
590 + lower_byte_offset), 8);
592 page_state = ECRYPTFS_PAGE_STATE_MODIFIED;
595 BUG_ON(orig_byte_offset != 0);
596 rc = ecryptfs_write_out_page(ctx, lower_page, lower_inode, 0,
598 + crypt_stat->extent_size));
600 ecryptfs_printk(KERN_ERR, "Error attempting to write out "
601 "page; rc = [%d]\n", rc);
609 * ecryptfs_decrypt_page
610 * @file: The ecryptfs file
611 * @page: The page in ecryptfs to decrypt
613 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
614 * that eCryptfs pages may straddle the lower pages -- for instance,
615 * if the file was created on a machine with an 8K page size
616 * (resulting in an 8K header), and then the file is copied onto a
617 * host with a 32K page size, then when reading page 0 of the eCryptfs
618 * file, 24K of page 0 of the lower file will be read and decrypted,
619 * and then 8K of page 1 of the lower file will be read and decrypted.
621 * Returns zero on success; negative on error
623 int ecryptfs_decrypt_page(struct file *file, struct page *page)
625 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
626 unsigned long base_extent;
627 unsigned long extent_offset = 0;
628 unsigned long lower_page_idx = 0;
629 unsigned long prior_lower_page_idx = 0;
630 struct page *lower_page;
631 char *lower_page_virt = NULL;
632 struct inode *lower_inode;
633 struct ecryptfs_crypt_stat *crypt_stat;
636 int num_extents_per_page;
639 crypt_stat = &(ecryptfs_inode_to_private(
640 page->mapping->host)->crypt_stat);
641 lower_inode = ecryptfs_inode_to_lower(page->mapping->host);
642 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
643 rc = ecryptfs_do_readpage(file, page, page->index);
645 ecryptfs_printk(KERN_ERR, "Error attempting to copy "
646 "page at index [0x%.16x]\n",
650 num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
651 base_extent = (page->index * num_extents_per_page);
652 lower_page_virt = kmem_cache_alloc(ecryptfs_lower_page_cache,
654 if (!lower_page_virt) {
656 ecryptfs_printk(KERN_ERR, "Error getting page for encrypted "
660 lower_page = virt_to_page(lower_page_virt);
661 page_state = ECRYPTFS_PAGE_STATE_UNREAD;
662 while (extent_offset < num_extents_per_page) {
663 ecryptfs_extent_to_lwr_pg_idx_and_offset(
664 &lower_page_idx, &byte_offset, crypt_stat,
665 (base_extent + extent_offset));
666 if (prior_lower_page_idx != lower_page_idx
667 || page_state == ECRYPTFS_PAGE_STATE_UNREAD) {
668 rc = ecryptfs_do_readpage(file, lower_page,
671 ecryptfs_printk(KERN_ERR, "Error reading "
672 "lower encrypted page; rc = "
676 prior_lower_page_idx = lower_page_idx;
677 page_state = ECRYPTFS_PAGE_STATE_READ;
679 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
680 (base_extent + extent_offset));
682 ecryptfs_printk(KERN_ERR, "Error attempting to "
683 "derive IV for extent [0x%.16x]; rc = "
685 (base_extent + extent_offset), rc);
688 if (unlikely(ecryptfs_verbosity > 0)) {
689 ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
691 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
692 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
694 ecryptfs_dump_hex((lower_page_virt + byte_offset), 8);
696 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
698 * crypt_stat->extent_size),
699 lower_page, byte_offset,
700 crypt_stat->extent_size,
702 if (rc != crypt_stat->extent_size) {
703 ecryptfs_printk(KERN_ERR, "Error attempting to "
704 "decrypt extent [0x%.16x]\n",
705 (base_extent + extent_offset));
709 if (unlikely(ecryptfs_verbosity > 0)) {
710 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
712 ecryptfs_dump_hex((char *)(page_address(page)
719 kmem_cache_free(ecryptfs_lower_page_cache, lower_page_virt);
724 * decrypt_scatterlist
726 * Returns the number of bytes decrypted; negative value on error
728 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
729 struct scatterlist *dest_sg,
730 struct scatterlist *src_sg, int size,
733 struct blkcipher_desc desc = {
734 .tfm = crypt_stat->tfm,
736 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
740 /* Consider doing this once, when the file is opened */
741 mutex_lock(&crypt_stat->cs_tfm_mutex);
742 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
743 crypt_stat->key_size);
745 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
747 mutex_unlock(&crypt_stat->cs_tfm_mutex);
751 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
752 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
753 mutex_unlock(&crypt_stat->cs_tfm_mutex);
755 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
765 * ecryptfs_encrypt_page_offset
767 * Returns the number of bytes encrypted
770 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
771 struct page *dst_page, int dst_offset,
772 struct page *src_page, int src_offset, int size,
775 struct scatterlist src_sg, dst_sg;
777 src_sg.page = src_page;
778 src_sg.offset = src_offset;
779 src_sg.length = size;
780 dst_sg.page = dst_page;
781 dst_sg.offset = dst_offset;
782 dst_sg.length = size;
783 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
787 * ecryptfs_decrypt_page_offset
789 * Returns the number of bytes decrypted
792 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
793 struct page *dst_page, int dst_offset,
794 struct page *src_page, int src_offset, int size,
797 struct scatterlist src_sg, dst_sg;
799 src_sg.page = src_page;
800 src_sg.offset = src_offset;
801 src_sg.length = size;
802 dst_sg.page = dst_page;
803 dst_sg.offset = dst_offset;
804 dst_sg.length = size;
805 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
808 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
811 * ecryptfs_init_crypt_ctx
812 * @crypt_stat: Uninitilized crypt stats structure
814 * Initialize the crypto context.
816 * TODO: Performance: Keep a cache of initialized cipher contexts;
817 * only init if needed
819 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
824 if (!crypt_stat->cipher) {
825 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
828 ecryptfs_printk(KERN_DEBUG,
829 "Initializing cipher [%s]; strlen = [%d]; "
830 "key_size_bits = [%d]\n",
831 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
832 crypt_stat->key_size << 3);
833 if (crypt_stat->tfm) {
837 mutex_lock(&crypt_stat->cs_tfm_mutex);
838 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
839 crypt_stat->cipher, "cbc");
842 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
844 kfree(full_alg_name);
845 if (IS_ERR(crypt_stat->tfm)) {
846 rc = PTR_ERR(crypt_stat->tfm);
847 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
848 "Error initializing cipher [%s]\n",
850 mutex_unlock(&crypt_stat->cs_tfm_mutex);
853 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
854 mutex_unlock(&crypt_stat->cs_tfm_mutex);
860 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
864 crypt_stat->extent_mask = 0xFFFFFFFF;
865 crypt_stat->extent_shift = 0;
866 if (crypt_stat->extent_size == 0)
868 extent_size_tmp = crypt_stat->extent_size;
869 while ((extent_size_tmp & 0x01) == 0) {
870 extent_size_tmp >>= 1;
871 crypt_stat->extent_mask <<= 1;
872 crypt_stat->extent_shift++;
876 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
878 /* Default values; may be overwritten as we are parsing the
880 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
881 set_extent_mask_and_shift(crypt_stat);
882 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
883 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) {
884 crypt_stat->header_extent_size =
885 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
887 crypt_stat->header_extent_size = PAGE_CACHE_SIZE;
888 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
889 crypt_stat->num_header_extents_at_front = 0;
891 crypt_stat->num_header_extents_at_front = 1;
895 * ecryptfs_compute_root_iv
898 * On error, sets the root IV to all 0's.
900 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
903 char dst[MD5_DIGEST_SIZE];
905 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
906 BUG_ON(crypt_stat->iv_bytes <= 0);
907 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
909 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
910 "cannot generate root IV\n");
913 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
914 crypt_stat->key_size);
916 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
917 "MD5 while generating root IV\n");
920 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
923 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
924 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
929 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
931 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
932 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
933 ecryptfs_compute_root_iv(crypt_stat);
934 if (unlikely(ecryptfs_verbosity > 0)) {
935 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
936 ecryptfs_dump_hex(crypt_stat->key,
937 crypt_stat->key_size);
942 * ecryptfs_copy_mount_wide_flags_to_inode_flags
944 * This function propagates the mount-wide flags to individual inode
947 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
948 struct ecryptfs_crypt_stat *crypt_stat,
949 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
951 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
952 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
953 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
954 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
957 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
958 struct ecryptfs_crypt_stat *crypt_stat,
959 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
961 struct ecryptfs_global_auth_tok *global_auth_tok;
964 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
965 list_for_each_entry(global_auth_tok,
966 &mount_crypt_stat->global_auth_tok_list,
967 mount_crypt_stat_list) {
968 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
970 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
972 &mount_crypt_stat->global_auth_tok_list_mutex);
976 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
982 * ecryptfs_set_default_crypt_stat_vals
985 * Default values in the event that policy does not override them.
987 static void ecryptfs_set_default_crypt_stat_vals(
988 struct ecryptfs_crypt_stat *crypt_stat,
989 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
991 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
993 ecryptfs_set_default_sizes(crypt_stat);
994 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
995 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
996 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
997 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
998 crypt_stat->mount_crypt_stat = mount_crypt_stat;
1002 * ecryptfs_new_file_context
1005 * If the crypto context for the file has not yet been established,
1006 * this is where we do that. Establishing a new crypto context
1007 * involves the following decisions:
1008 * - What cipher to use?
1009 * - What set of authentication tokens to use?
1010 * Here we just worry about getting enough information into the
1011 * authentication tokens so that we know that they are available.
1012 * We associate the available authentication tokens with the new file
1013 * via the set of signatures in the crypt_stat struct. Later, when
1014 * the headers are actually written out, we may again defer to
1015 * userspace to perform the encryption of the session key; for the
1016 * foreseeable future, this will be the case with public key packets.
1018 * Returns zero on success; non-zero otherwise
1020 /* Associate an authentication token(s) with the file */
1021 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
1023 struct ecryptfs_crypt_stat *crypt_stat =
1024 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1025 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1026 &ecryptfs_superblock_to_private(
1027 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1028 int cipher_name_len;
1031 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
1032 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
1033 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1035 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1038 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1039 "to the inode key sigs; rc = [%d]\n", rc);
1043 strlen(mount_crypt_stat->global_default_cipher_name);
1044 memcpy(crypt_stat->cipher,
1045 mount_crypt_stat->global_default_cipher_name,
1047 crypt_stat->cipher[cipher_name_len] = '\0';
1048 crypt_stat->key_size =
1049 mount_crypt_stat->global_default_cipher_key_size;
1050 ecryptfs_generate_new_key(crypt_stat);
1051 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1053 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1054 "context for cipher [%s]: rc = [%d]\n",
1055 crypt_stat->cipher, rc);
1061 * contains_ecryptfs_marker - check for the ecryptfs marker
1062 * @data: The data block in which to check
1064 * Returns one if marker found; zero if not found
1066 static int contains_ecryptfs_marker(char *data)
1070 memcpy(&m_1, data, 4);
1071 m_1 = be32_to_cpu(m_1);
1072 memcpy(&m_2, (data + 4), 4);
1073 m_2 = be32_to_cpu(m_2);
1074 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1076 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1077 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1078 MAGIC_ECRYPTFS_MARKER);
1079 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1080 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1084 struct ecryptfs_flag_map_elem {
1089 /* Add support for additional flags by adding elements here. */
1090 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1091 {0x00000001, ECRYPTFS_ENABLE_HMAC},
1092 {0x00000002, ECRYPTFS_ENCRYPTED},
1093 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}
1097 * ecryptfs_process_flags
1099 * @page_virt: Source data to be parsed
1100 * @bytes_read: Updated with the number of bytes read
1102 * Returns zero on success; non-zero if the flag set is invalid
1104 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1105 char *page_virt, int *bytes_read)
1111 memcpy(&flags, page_virt, 4);
1112 flags = be32_to_cpu(flags);
1113 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1114 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1115 if (flags & ecryptfs_flag_map[i].file_flag) {
1116 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1118 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1119 /* Version is in top 8 bits of the 32-bit flag vector */
1120 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1126 * write_ecryptfs_marker
1127 * @page_virt: The pointer to in a page to begin writing the marker
1128 * @written: Number of bytes written
1130 * Marker = 0x3c81b7f5
1132 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1136 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1137 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1138 m_1 = cpu_to_be32(m_1);
1139 memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1140 m_2 = cpu_to_be32(m_2);
1141 memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2,
1142 (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1143 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1147 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1153 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1154 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1155 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1156 flags |= ecryptfs_flag_map[i].file_flag;
1157 /* Version is in top 8 bits of the 32-bit flag vector */
1158 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1159 flags = cpu_to_be32(flags);
1160 memcpy(page_virt, &flags, 4);
1164 struct ecryptfs_cipher_code_str_map_elem {
1165 char cipher_str[16];
1169 /* Add support for additional ciphers by adding elements here. The
1170 * cipher_code is whatever OpenPGP applicatoins use to identify the
1171 * ciphers. List in order of probability. */
1172 static struct ecryptfs_cipher_code_str_map_elem
1173 ecryptfs_cipher_code_str_map[] = {
1174 {"aes",RFC2440_CIPHER_AES_128 },
1175 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1176 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1177 {"cast5", RFC2440_CIPHER_CAST_5},
1178 {"twofish", RFC2440_CIPHER_TWOFISH},
1179 {"cast6", RFC2440_CIPHER_CAST_6},
1180 {"aes", RFC2440_CIPHER_AES_192},
1181 {"aes", RFC2440_CIPHER_AES_256}
1185 * ecryptfs_code_for_cipher_string
1186 * @str: The string representing the cipher name
1188 * Returns zero on no match, or the cipher code on match
1190 u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
1194 struct ecryptfs_cipher_code_str_map_elem *map =
1195 ecryptfs_cipher_code_str_map;
1197 if (strcmp(crypt_stat->cipher, "aes") == 0) {
1198 switch (crypt_stat->key_size) {
1200 code = RFC2440_CIPHER_AES_128;
1203 code = RFC2440_CIPHER_AES_192;
1206 code = RFC2440_CIPHER_AES_256;
1209 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1210 if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
1211 code = map[i].cipher_code;
1219 * ecryptfs_cipher_code_to_string
1220 * @str: Destination to write out the cipher name
1221 * @cipher_code: The code to convert to cipher name string
1223 * Returns zero on success
1225 int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code)
1231 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1232 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1233 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1234 if (str[0] == '\0') {
1235 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1236 "[%d]\n", cipher_code);
1243 * ecryptfs_read_header_region
1248 * Returns zero on success; non-zero otherwise
1250 static int ecryptfs_read_header_region(char *data, struct dentry *dentry,
1251 struct vfsmount *mnt)
1253 struct file *lower_file;
1257 if ((rc = ecryptfs_open_lower_file(&lower_file, dentry, mnt,
1260 "Error opening lower_file to read header region\n");
1263 lower_file->f_pos = 0;
1266 rc = lower_file->f_op->read(lower_file, (char __user *)data,
1267 ECRYPTFS_DEFAULT_EXTENT_SIZE, &lower_file->f_pos);
1269 if ((rc = ecryptfs_close_lower_file(lower_file))) {
1270 printk(KERN_ERR "Error closing lower_file\n");
1278 int ecryptfs_read_and_validate_header_region(char *data, struct dentry *dentry,
1279 struct vfsmount *mnt)
1283 rc = ecryptfs_read_header_region(data, dentry, mnt);
1286 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES))
1294 ecryptfs_write_header_metadata(char *virt,
1295 struct ecryptfs_crypt_stat *crypt_stat,
1298 u32 header_extent_size;
1299 u16 num_header_extents_at_front;
1301 header_extent_size = (u32)crypt_stat->header_extent_size;
1302 num_header_extents_at_front =
1303 (u16)crypt_stat->num_header_extents_at_front;
1304 header_extent_size = cpu_to_be32(header_extent_size);
1305 memcpy(virt, &header_extent_size, 4);
1307 num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front);
1308 memcpy(virt, &num_header_extents_at_front, 2);
1312 struct kmem_cache *ecryptfs_header_cache_0;
1313 struct kmem_cache *ecryptfs_header_cache_1;
1314 struct kmem_cache *ecryptfs_header_cache_2;
1317 * ecryptfs_write_headers_virt
1325 * Octets 0-7: Unencrypted file size (big-endian)
1326 * Octets 8-15: eCryptfs special marker
1327 * Octets 16-19: Flags
1328 * Octet 16: File format version number (between 0 and 255)
1329 * Octets 17-18: Reserved
1330 * Octet 19: Bit 1 (lsb): Reserved
1332 * Bits 3-8: Reserved
1333 * Octets 20-23: Header extent size (big-endian)
1334 * Octets 24-25: Number of header extents at front of file
1336 * Octet 26: Begin RFC 2440 authentication token packet set
1338 * Lower data (CBC encrypted)
1340 * Lower data (CBC encrypted)
1343 * Returns zero on success
1345 static int ecryptfs_write_headers_virt(char *page_virt, size_t *size,
1346 struct ecryptfs_crypt_stat *crypt_stat,
1347 struct dentry *ecryptfs_dentry)
1353 offset = ECRYPTFS_FILE_SIZE_BYTES;
1354 write_ecryptfs_marker((page_virt + offset), &written);
1356 write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1358 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1361 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1362 ecryptfs_dentry, &written,
1363 PAGE_CACHE_SIZE - offset);
1365 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1366 "set; rc = [%d]\n", rc);
1374 static int ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat,
1375 struct file *lower_file,
1379 int current_header_page;
1384 lower_file->f_pos = 0;
1387 size = vfs_write(lower_file, (char __user *)page_virt, PAGE_CACHE_SIZE,
1388 &lower_file->f_pos);
1391 printk(KERN_ERR "Error attempting to write lower page; "
1396 header_pages = ((crypt_stat->header_extent_size
1397 * crypt_stat->num_header_extents_at_front)
1399 memset(page_virt, 0, PAGE_CACHE_SIZE);
1400 current_header_page = 1;
1401 while (current_header_page < header_pages) {
1402 size = vfs_write(lower_file, (char __user *)page_virt,
1403 PAGE_CACHE_SIZE, &lower_file->f_pos);
1406 printk(KERN_ERR "Error attempting to write lower page; "
1411 current_header_page++;
1418 static int ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1419 struct ecryptfs_crypt_stat *crypt_stat,
1420 char *page_virt, size_t size)
1424 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1430 * ecryptfs_write_metadata
1431 * @lower_file: The lower file struct, which was returned from dentry_open
1433 * Write the file headers out. This will likely involve a userspace
1434 * callout, in which the session key is encrypted with one or more
1435 * public keys and/or the passphrase necessary to do the encryption is
1436 * retrieved via a prompt. Exactly what happens at this point should
1437 * be policy-dependent.
1439 * Returns zero on success; non-zero on error
1441 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1442 struct file *lower_file)
1444 struct ecryptfs_crypt_stat *crypt_stat;
1449 crypt_stat = &ecryptfs_inode_to_private(
1450 ecryptfs_dentry->d_inode)->crypt_stat;
1451 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1452 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1453 ecryptfs_printk(KERN_DEBUG, "Key is "
1454 "invalid; bailing out\n");
1460 ecryptfs_printk(KERN_WARNING,
1461 "Called with crypt_stat->encrypted == 0\n");
1464 /* Released in this function */
1465 page_virt = kmem_cache_zalloc(ecryptfs_header_cache_0, GFP_USER);
1467 ecryptfs_printk(KERN_ERR, "Out of memory\n");
1471 rc = ecryptfs_write_headers_virt(page_virt, &size, crypt_stat,
1474 ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n");
1475 memset(page_virt, 0, PAGE_CACHE_SIZE);
1478 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1479 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry,
1480 crypt_stat, page_virt,
1483 rc = ecryptfs_write_metadata_to_contents(crypt_stat, lower_file,
1486 printk(KERN_ERR "Error writing metadata out to lower file; "
1491 kmem_cache_free(ecryptfs_header_cache_0, page_virt);
1496 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1497 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1498 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1499 char *virt, int *bytes_read,
1500 int validate_header_size)
1503 u32 header_extent_size;
1504 u16 num_header_extents_at_front;
1506 memcpy(&header_extent_size, virt, 4);
1507 header_extent_size = be32_to_cpu(header_extent_size);
1509 memcpy(&num_header_extents_at_front, virt, 2);
1510 num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front);
1511 crypt_stat->header_extent_size = (int)header_extent_size;
1512 crypt_stat->num_header_extents_at_front =
1513 (int)num_header_extents_at_front;
1515 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1516 && ((crypt_stat->header_extent_size
1517 * crypt_stat->num_header_extents_at_front)
1518 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1520 ecryptfs_printk(KERN_WARNING, "Invalid header extent size: "
1521 "[%d]\n", crypt_stat->header_extent_size);
1527 * set_default_header_data
1529 * For version 0 file format; this function is only for backwards
1530 * compatibility for files created with the prior versions of
1533 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1535 crypt_stat->header_extent_size = 4096;
1536 crypt_stat->num_header_extents_at_front = 1;
1540 * ecryptfs_read_headers_virt
1542 * Read/parse the header data. The header format is detailed in the
1543 * comment block for the ecryptfs_write_headers_virt() function.
1545 * Returns zero on success
1547 static int ecryptfs_read_headers_virt(char *page_virt,
1548 struct ecryptfs_crypt_stat *crypt_stat,
1549 struct dentry *ecryptfs_dentry,
1550 int validate_header_size)
1556 ecryptfs_set_default_sizes(crypt_stat);
1557 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1558 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1559 offset = ECRYPTFS_FILE_SIZE_BYTES;
1560 rc = contains_ecryptfs_marker(page_virt + offset);
1565 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1566 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1569 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1572 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1573 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1574 "file version [%d] is supported by this "
1575 "version of eCryptfs\n",
1576 crypt_stat->file_version,
1577 ECRYPTFS_SUPPORTED_FILE_VERSION);
1581 offset += bytes_read;
1582 if (crypt_stat->file_version >= 1) {
1583 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1584 &bytes_read, validate_header_size);
1586 ecryptfs_printk(KERN_WARNING, "Error reading header "
1587 "metadata; rc = [%d]\n", rc);
1589 offset += bytes_read;
1591 set_default_header_data(crypt_stat);
1592 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1599 * ecryptfs_read_xattr_region
1601 * Attempts to read the crypto metadata from the extended attribute
1602 * region of the lower file.
1604 int ecryptfs_read_xattr_region(char *page_virt, struct dentry *ecryptfs_dentry)
1609 size = ecryptfs_getxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME,
1610 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1612 printk(KERN_DEBUG "Error attempting to read the [%s] "
1613 "xattr from the lower file; return value = [%zd]\n",
1614 ECRYPTFS_XATTR_NAME, size);
1622 int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1623 struct dentry *ecryptfs_dentry)
1627 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry);
1630 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) {
1631 printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1632 "the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1640 * ecryptfs_read_metadata
1642 * Common entry point for reading file metadata. From here, we could
1643 * retrieve the header information from the header region of the file,
1644 * the xattr region of the file, or some other repostory that is
1645 * stored separately from the file itself. The current implementation
1646 * supports retrieving the metadata information from the file contents
1647 * and from the xattr region.
1649 * Returns zero if valid headers found and parsed; non-zero otherwise
1651 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry,
1652 struct file *lower_file)
1655 char *page_virt = NULL;
1658 struct ecryptfs_crypt_stat *crypt_stat =
1659 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1660 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1661 &ecryptfs_superblock_to_private(
1662 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1664 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1666 /* Read the first page from the underlying file */
1667 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1670 ecryptfs_printk(KERN_ERR, "Unable to allocate page_virt\n");
1673 lower_file->f_pos = 0;
1676 bytes_read = lower_file->f_op->read(lower_file,
1677 (char __user *)page_virt,
1678 ECRYPTFS_DEFAULT_EXTENT_SIZE,
1679 &lower_file->f_pos);
1681 if (bytes_read != ECRYPTFS_DEFAULT_EXTENT_SIZE) {
1685 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1687 ECRYPTFS_VALIDATE_HEADER_SIZE);
1689 rc = ecryptfs_read_xattr_region(page_virt,
1692 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1693 "file header region or xattr region\n");
1697 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1699 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1701 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1702 "file xattr region either\n");
1705 if (crypt_stat->mount_crypt_stat->flags
1706 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1707 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1709 printk(KERN_WARNING "Attempt to access file with "
1710 "crypto metadata only in the extended attribute "
1711 "region, but eCryptfs was mounted without "
1712 "xattr support enabled. eCryptfs will not treat "
1713 "this like an encrypted file.\n");
1719 memset(page_virt, 0, PAGE_CACHE_SIZE);
1720 kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1726 * ecryptfs_encode_filename - converts a plaintext file name to cipher text
1727 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1728 * @name: The plaintext name
1729 * @length: The length of the plaintext
1730 * @encoded_name: The encypted name
1732 * Encrypts and encodes a filename into something that constitutes a
1733 * valid filename for a filesystem, with printable characters.
1735 * We assume that we have a properly initialized crypto context,
1736 * pointed to by crypt_stat->tfm.
1738 * TODO: Implement filename decoding and decryption here, in place of
1739 * memcpy. We are keeping the framework around for now to (1)
1740 * facilitate testing of the components needed to implement filename
1741 * encryption and (2) to provide a code base from which other
1742 * developers in the community can easily implement this feature.
1744 * Returns the length of encoded filename; negative if error
1747 ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1748 const char *name, int length, char **encoded_name)
1752 (*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
1753 if (!(*encoded_name)) {
1757 /* TODO: Filename encryption is a scheduled feature for a
1758 * future version of eCryptfs. This function is here only for
1759 * the purpose of providing a framework for other developers
1760 * to easily implement filename encryption. Hint: Replace this
1761 * memcpy() with a call to encrypt and encode the
1762 * filename, the set the length accordingly. */
1763 memcpy((void *)(*encoded_name), (void *)name, length);
1764 (*encoded_name)[length] = '\0';
1771 * ecryptfs_decode_filename - converts the cipher text name to plaintext
1772 * @crypt_stat: The crypt_stat struct associated with the file
1773 * @name: The filename in cipher text
1774 * @length: The length of the cipher text name
1775 * @decrypted_name: The plaintext name
1777 * Decodes and decrypts the filename.
1779 * We assume that we have a properly initialized crypto context,
1780 * pointed to by crypt_stat->tfm.
1782 * TODO: Implement filename decoding and decryption here, in place of
1783 * memcpy. We are keeping the framework around for now to (1)
1784 * facilitate testing of the components needed to implement filename
1785 * encryption and (2) to provide a code base from which other
1786 * developers in the community can easily implement this feature.
1788 * Returns the length of decoded filename; negative if error
1791 ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1792 const char *name, int length, char **decrypted_name)
1796 (*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
1797 if (!(*decrypted_name)) {
1801 /* TODO: Filename encryption is a scheduled feature for a
1802 * future version of eCryptfs. This function is here only for
1803 * the purpose of providing a framework for other developers
1804 * to easily implement filename encryption. Hint: Replace this
1805 * memcpy() with a call to decode and decrypt the
1806 * filename, the set the length accordingly. */
1807 memcpy((void *)(*decrypted_name), (void *)name, length);
1808 (*decrypted_name)[length + 1] = '\0'; /* Only for convenience
1809 * in printing out the
1818 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1819 * @key_tfm: Crypto context for key material, set by this function
1820 * @cipher_name: Name of the cipher
1821 * @key_size: Size of the key in bytes
1823 * Returns zero on success. Any crypto_tfm structs allocated here
1824 * should be released by other functions, such as on a superblock put
1825 * event, regardless of whether this function succeeds for fails.
1828 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1829 char *cipher_name, size_t *key_size)
1831 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1832 char *full_alg_name;
1836 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1838 printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
1839 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1842 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1846 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1847 kfree(full_alg_name);
1848 if (IS_ERR(*key_tfm)) {
1849 rc = PTR_ERR(*key_tfm);
1850 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1851 "[%s]; rc = [%d]\n", cipher_name, rc);
1854 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1855 if (*key_size == 0) {
1856 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1858 *key_size = alg->max_keysize;
1860 get_random_bytes(dummy_key, *key_size);
1861 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1863 printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
1864 "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1872 struct kmem_cache *ecryptfs_key_tfm_cache;
1873 struct list_head key_tfm_list;
1874 struct mutex key_tfm_list_mutex;
1876 int ecryptfs_init_crypto(void)
1878 mutex_init(&key_tfm_list_mutex);
1879 INIT_LIST_HEAD(&key_tfm_list);
1883 int ecryptfs_destruct_crypto(void)
1885 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1887 mutex_lock(&key_tfm_list_mutex);
1888 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1890 list_del(&key_tfm->key_tfm_list);
1891 if (key_tfm->key_tfm)
1892 crypto_free_blkcipher(key_tfm->key_tfm);
1893 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1895 mutex_unlock(&key_tfm_list_mutex);
1900 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1903 struct ecryptfs_key_tfm *tmp_tfm;
1906 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1907 if (key_tfm != NULL)
1908 (*key_tfm) = tmp_tfm;
1911 printk(KERN_ERR "Error attempting to allocate from "
1912 "ecryptfs_key_tfm_cache\n");
1915 mutex_init(&tmp_tfm->key_tfm_mutex);
1916 strncpy(tmp_tfm->cipher_name, cipher_name,
1917 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1918 tmp_tfm->key_size = key_size;
1919 if ((rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1920 tmp_tfm->cipher_name,
1921 &tmp_tfm->key_size))) {
1922 printk(KERN_ERR "Error attempting to initialize key TFM "
1923 "cipher with name = [%s]; rc = [%d]\n",
1924 tmp_tfm->cipher_name, rc);
1925 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1926 if (key_tfm != NULL)
1930 mutex_lock(&key_tfm_list_mutex);
1931 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1932 mutex_unlock(&key_tfm_list_mutex);
1937 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1938 struct mutex **tfm_mutex,
1941 struct ecryptfs_key_tfm *key_tfm;
1945 (*tfm_mutex) = NULL;
1946 mutex_lock(&key_tfm_list_mutex);
1947 list_for_each_entry(key_tfm, &key_tfm_list, key_tfm_list) {
1948 if (strcmp(key_tfm->cipher_name, cipher_name) == 0) {
1949 (*tfm) = key_tfm->key_tfm;
1950 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1951 mutex_unlock(&key_tfm_list_mutex);
1955 mutex_unlock(&key_tfm_list_mutex);
1956 if ((rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0))) {
1957 printk(KERN_ERR "Error adding new key_tfm to list; rc = [%d]\n",
1961 (*tfm) = key_tfm->key_tfm;
1962 (*tfm_mutex) = &key_tfm->key_tfm_mutex;