sh: clkfwk: module_clk -> peripheral_clk rename.
[linux-2.6] / arch / sh / kernel / setup.c
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <linux/mmzone.h>
30 #include <linux/clk.h>
31 #include <linux/delay.h>
32 #include <linux/platform_device.h>
33 #include <asm/uaccess.h>
34 #include <asm/io.h>
35 #include <asm/page.h>
36 #include <asm/elf.h>
37 #include <asm/sections.h>
38 #include <asm/irq.h>
39 #include <asm/setup.h>
40 #include <asm/clock.h>
41 #include <asm/mmu_context.h>
42
43 /*
44  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
45  * This value will be used at the very early stage of serial setup.
46  * The bigger value means no problem.
47  */
48 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
49         [0] = {
50                 .type                   = CPU_SH_NONE,
51                 .loops_per_jiffy        = 10000000,
52         },
53 };
54 EXPORT_SYMBOL(cpu_data);
55
56 /*
57  * The machine vector. First entry in .machvec.init, or clobbered by
58  * sh_mv= on the command line, prior to .machvec.init teardown.
59  */
60 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
61 EXPORT_SYMBOL(sh_mv);
62
63 #ifdef CONFIG_VT
64 struct screen_info screen_info;
65 #endif
66
67 extern int root_mountflags;
68
69 #define RAMDISK_IMAGE_START_MASK        0x07FF
70 #define RAMDISK_PROMPT_FLAG             0x8000
71 #define RAMDISK_LOAD_FLAG               0x4000
72
73 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
74
75 static struct resource code_resource = {
76         .name = "Kernel code",
77         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
78 };
79
80 static struct resource data_resource = {
81         .name = "Kernel data",
82         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
83 };
84
85 static struct resource bss_resource = {
86         .name   = "Kernel bss",
87         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
88 };
89
90 unsigned long memory_start;
91 EXPORT_SYMBOL(memory_start);
92 unsigned long memory_end = 0;
93 EXPORT_SYMBOL(memory_end);
94
95 static struct resource mem_resources[MAX_NUMNODES];
96
97 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
98
99 static int __init early_parse_mem(char *p)
100 {
101         unsigned long size;
102
103         memory_start = (unsigned long)__va(__MEMORY_START);
104         size = memparse(p, &p);
105
106         if (size > __MEMORY_SIZE) {
107                 printk(KERN_ERR
108                         "Using mem= to increase the size of kernel memory "
109                         "is not allowed.\n"
110                         "  Recompile the kernel with the correct value for "
111                         "CONFIG_MEMORY_SIZE.\n");
112                 return 0;
113         }
114
115         memory_end = memory_start + size;
116
117         return 0;
118 }
119 early_param("mem", early_parse_mem);
120
121 /*
122  * Register fully available low RAM pages with the bootmem allocator.
123  */
124 static void __init register_bootmem_low_pages(void)
125 {
126         unsigned long curr_pfn, last_pfn, pages;
127
128         /*
129          * We are rounding up the start address of usable memory:
130          */
131         curr_pfn = PFN_UP(__MEMORY_START);
132
133         /*
134          * ... and at the end of the usable range downwards:
135          */
136         last_pfn = PFN_DOWN(__pa(memory_end));
137
138         if (last_pfn > max_low_pfn)
139                 last_pfn = max_low_pfn;
140
141         pages = last_pfn - curr_pfn;
142         free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
143 }
144
145 #ifdef CONFIG_KEXEC
146 static void __init reserve_crashkernel(void)
147 {
148         unsigned long long free_mem;
149         unsigned long long crash_size, crash_base;
150         void *vp;
151         int ret;
152
153         free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
154
155         ret = parse_crashkernel(boot_command_line, free_mem,
156                         &crash_size, &crash_base);
157         if (ret == 0 && crash_size) {
158                 if (crash_base <= 0) {
159                         vp = alloc_bootmem_nopanic(crash_size);
160                         if (!vp) {
161                                 printk(KERN_INFO "crashkernel allocation "
162                                        "failed\n");
163                                 return;
164                         }
165                         crash_base = __pa(vp);
166                 } else if (reserve_bootmem(crash_base, crash_size,
167                                         BOOTMEM_EXCLUSIVE) < 0) {
168                         printk(KERN_INFO "crashkernel reservation failed - "
169                                         "memory is in use\n");
170                         return;
171                 }
172
173                 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
174                                 "for crashkernel (System RAM: %ldMB)\n",
175                                 (unsigned long)(crash_size >> 20),
176                                 (unsigned long)(crash_base >> 20),
177                                 (unsigned long)(free_mem >> 20));
178                 crashk_res.start = crash_base;
179                 crashk_res.end   = crash_base + crash_size - 1;
180                 insert_resource(&iomem_resource, &crashk_res);
181         }
182 }
183 #else
184 static inline void __init reserve_crashkernel(void)
185 {}
186 #endif
187
188 void __cpuinit calibrate_delay(void)
189 {
190         struct clk *clk = clk_get(NULL, "cpu_clk");
191
192         if (IS_ERR(clk))
193                 panic("Need a sane CPU clock definition!");
194
195         loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
196
197         printk(KERN_INFO "Calibrating delay loop (skipped)... "
198                          "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
199                          loops_per_jiffy/(500000/HZ),
200                          (loops_per_jiffy/(5000/HZ)) % 100,
201                          loops_per_jiffy);
202 }
203
204 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
205                                                 unsigned long end_pfn)
206 {
207         struct resource *res = &mem_resources[nid];
208
209         WARN_ON(res->name); /* max one active range per node for now */
210
211         res->name = "System RAM";
212         res->start = start_pfn << PAGE_SHIFT;
213         res->end = (end_pfn << PAGE_SHIFT) - 1;
214         res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
215         if (request_resource(&iomem_resource, res)) {
216                 pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
217                        start_pfn, end_pfn);
218                 return;
219         }
220
221         /*
222          *  We don't know which RAM region contains kernel data,
223          *  so we try it repeatedly and let the resource manager
224          *  test it.
225          */
226         request_resource(res, &code_resource);
227         request_resource(res, &data_resource);
228         request_resource(res, &bss_resource);
229
230         add_active_range(nid, start_pfn, end_pfn);
231 }
232
233 void __init setup_bootmem_allocator(unsigned long free_pfn)
234 {
235         unsigned long bootmap_size;
236
237         /*
238          * Find a proper area for the bootmem bitmap. After this
239          * bootstrap step all allocations (until the page allocator
240          * is intact) must be done via bootmem_alloc().
241          */
242         bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
243                                          min_low_pfn, max_low_pfn);
244
245         __add_active_range(0, min_low_pfn, max_low_pfn);
246         register_bootmem_low_pages();
247
248         node_set_online(0);
249
250         /*
251          * Reserve the kernel text and
252          * Reserve the bootmem bitmap. We do this in two steps (first step
253          * was init_bootmem()), because this catches the (definitely buggy)
254          * case of us accidentally initializing the bootmem allocator with
255          * an invalid RAM area.
256          */
257         reserve_bootmem(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
258                         (PFN_PHYS(free_pfn) + bootmap_size + PAGE_SIZE - 1) -
259                         (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET),
260                         BOOTMEM_DEFAULT);
261
262         /*
263          * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET.
264          */
265         if (CONFIG_ZERO_PAGE_OFFSET != 0)
266                 reserve_bootmem(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET,
267                                 BOOTMEM_DEFAULT);
268
269         sparse_memory_present_with_active_regions(0);
270
271 #ifdef CONFIG_BLK_DEV_INITRD
272         ROOT_DEV = Root_RAM0;
273
274         if (LOADER_TYPE && INITRD_START) {
275                 unsigned long initrd_start_phys = INITRD_START + __MEMORY_START;
276
277                 if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) {
278                         reserve_bootmem(initrd_start_phys, INITRD_SIZE,
279                                         BOOTMEM_DEFAULT);
280                         initrd_start = (unsigned long)__va(initrd_start_phys);
281                         initrd_end = initrd_start + INITRD_SIZE;
282                 } else {
283                         printk("initrd extends beyond end of memory "
284                                "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
285                                initrd_start_phys + INITRD_SIZE,
286                                (unsigned long)PFN_PHYS(max_low_pfn));
287                         initrd_start = 0;
288                 }
289         }
290 #endif
291
292         reserve_crashkernel();
293 }
294
295 #ifndef CONFIG_NEED_MULTIPLE_NODES
296 static void __init setup_memory(void)
297 {
298         unsigned long start_pfn;
299
300         /*
301          * Partially used pages are not usable - thus
302          * we are rounding upwards:
303          */
304         start_pfn = PFN_UP(__pa(_end));
305         setup_bootmem_allocator(start_pfn);
306 }
307 #else
308 extern void __init setup_memory(void);
309 #endif
310
311 /*
312  * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
313  * is_kdump_kernel() to determine if we are booting after a panic. Hence
314  * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
315  */
316 #ifdef CONFIG_CRASH_DUMP
317 /* elfcorehdr= specifies the location of elf core header
318  * stored by the crashed kernel.
319  */
320 static int __init parse_elfcorehdr(char *arg)
321 {
322         if (!arg)
323                 return -EINVAL;
324         elfcorehdr_addr = memparse(arg, &arg);
325         return 0;
326 }
327 early_param("elfcorehdr", parse_elfcorehdr);
328 #endif
329
330 void __init __attribute__ ((weak)) plat_early_device_setup(void)
331 {
332 }
333
334 void __init setup_arch(char **cmdline_p)
335 {
336         enable_mmu();
337
338         ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
339
340         printk(KERN_NOTICE "Boot params:\n"
341                            "... MOUNT_ROOT_RDONLY - %08lx\n"
342                            "... RAMDISK_FLAGS     - %08lx\n"
343                            "... ORIG_ROOT_DEV     - %08lx\n"
344                            "... LOADER_TYPE       - %08lx\n"
345                            "... INITRD_START      - %08lx\n"
346                            "... INITRD_SIZE       - %08lx\n",
347                            MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
348                            ORIG_ROOT_DEV, LOADER_TYPE,
349                            INITRD_START, INITRD_SIZE);
350
351 #ifdef CONFIG_BLK_DEV_RAM
352         rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
353         rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
354         rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
355 #endif
356
357         if (!MOUNT_ROOT_RDONLY)
358                 root_mountflags &= ~MS_RDONLY;
359         init_mm.start_code = (unsigned long) _text;
360         init_mm.end_code = (unsigned long) _etext;
361         init_mm.end_data = (unsigned long) _edata;
362         init_mm.brk = (unsigned long) _end;
363
364         code_resource.start = virt_to_phys(_text);
365         code_resource.end = virt_to_phys(_etext)-1;
366         data_resource.start = virt_to_phys(_etext);
367         data_resource.end = virt_to_phys(_edata)-1;
368         bss_resource.start = virt_to_phys(__bss_start);
369         bss_resource.end = virt_to_phys(_ebss)-1;
370
371         memory_start = (unsigned long)__va(__MEMORY_START);
372         if (!memory_end)
373                 memory_end = memory_start + __MEMORY_SIZE;
374
375 #ifdef CONFIG_CMDLINE_BOOL
376         strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
377 #else
378         strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
379 #endif
380
381         /* Save unparsed command line copy for /proc/cmdline */
382         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
383         *cmdline_p = command_line;
384
385         parse_early_param();
386
387         plat_early_device_setup();
388
389         sh_mv_setup();
390
391         /*
392          * Find the highest page frame number we have available
393          */
394         max_pfn = PFN_DOWN(__pa(memory_end));
395
396         /*
397          * Determine low and high memory ranges:
398          */
399         max_low_pfn = max_pfn;
400         min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
401
402         nodes_clear(node_online_map);
403
404         /* Setup bootmem with available RAM */
405         setup_memory();
406         sparse_init();
407
408 #ifdef CONFIG_DUMMY_CONSOLE
409         conswitchp = &dummy_con;
410 #endif
411
412         /* Perform the machine specific initialisation */
413         if (likely(sh_mv.mv_setup))
414                 sh_mv.mv_setup(cmdline_p);
415
416         paging_init();
417
418 #ifdef CONFIG_SMP
419         plat_smp_setup();
420 #endif
421 }
422
423 static const char *cpu_name[] = {
424         [CPU_SH7201]    = "SH7201",
425         [CPU_SH7203]    = "SH7203",     [CPU_SH7263]    = "SH7263",
426         [CPU_SH7206]    = "SH7206",     [CPU_SH7619]    = "SH7619",
427         [CPU_SH7705]    = "SH7705",     [CPU_SH7706]    = "SH7706",
428         [CPU_SH7707]    = "SH7707",     [CPU_SH7708]    = "SH7708",
429         [CPU_SH7709]    = "SH7709",     [CPU_SH7710]    = "SH7710",
430         [CPU_SH7712]    = "SH7712",     [CPU_SH7720]    = "SH7720",
431         [CPU_SH7721]    = "SH7721",     [CPU_SH7729]    = "SH7729",
432         [CPU_SH7750]    = "SH7750",     [CPU_SH7750S]   = "SH7750S",
433         [CPU_SH7750R]   = "SH7750R",    [CPU_SH7751]    = "SH7751",
434         [CPU_SH7751R]   = "SH7751R",    [CPU_SH7760]    = "SH7760",
435         [CPU_SH4_202]   = "SH4-202",    [CPU_SH4_501]   = "SH4-501",
436         [CPU_SH7763]    = "SH7763",     [CPU_SH7770]    = "SH7770",
437         [CPU_SH7780]    = "SH7780",     [CPU_SH7781]    = "SH7781",
438         [CPU_SH7343]    = "SH7343",     [CPU_SH7785]    = "SH7785",
439         [CPU_SH7786]    = "SH7786",
440         [CPU_SH7722]    = "SH7722",     [CPU_SHX3]      = "SH-X3",
441         [CPU_SH5_101]   = "SH5-101",    [CPU_SH5_103]   = "SH5-103",
442         [CPU_MXG]       = "MX-G",       [CPU_SH7723]    = "SH7723",
443         [CPU_SH7366]    = "SH7366",     [CPU_SH7724]    = "SH7724",
444         [CPU_SH_NONE]   = "Unknown"
445 };
446
447 const char *get_cpu_subtype(struct sh_cpuinfo *c)
448 {
449         return cpu_name[c->type];
450 }
451 EXPORT_SYMBOL(get_cpu_subtype);
452
453 #ifdef CONFIG_PROC_FS
454 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
455 static const char *cpu_flags[] = {
456         "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
457         "ptea", "llsc", "l2", "op32", "pteaex", NULL
458 };
459
460 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
461 {
462         unsigned long i;
463
464         seq_printf(m, "cpu flags\t:");
465
466         if (!c->flags) {
467                 seq_printf(m, " %s\n", cpu_flags[0]);
468                 return;
469         }
470
471         for (i = 0; cpu_flags[i]; i++)
472                 if ((c->flags & (1 << i)))
473                         seq_printf(m, " %s", cpu_flags[i+1]);
474
475         seq_printf(m, "\n");
476 }
477
478 static void show_cacheinfo(struct seq_file *m, const char *type,
479                            struct cache_info info)
480 {
481         unsigned int cache_size;
482
483         cache_size = info.ways * info.sets * info.linesz;
484
485         seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
486                    type, cache_size >> 10, info.ways);
487 }
488
489 /*
490  *      Get CPU information for use by the procfs.
491  */
492 static int show_cpuinfo(struct seq_file *m, void *v)
493 {
494         struct sh_cpuinfo *c = v;
495         unsigned int cpu = c - cpu_data;
496
497         if (!cpu_online(cpu))
498                 return 0;
499
500         if (cpu == 0)
501                 seq_printf(m, "machine\t\t: %s\n", get_system_type());
502
503         seq_printf(m, "processor\t: %d\n", cpu);
504         seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
505         seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
506         if (c->cut_major == -1)
507                 seq_printf(m, "cut\t\t: unknown\n");
508         else if (c->cut_minor == -1)
509                 seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
510         else
511                 seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
512
513         show_cpuflags(m, c);
514
515         seq_printf(m, "cache type\t: ");
516
517         /*
518          * Check for what type of cache we have, we support both the
519          * unified cache on the SH-2 and SH-3, as well as the harvard
520          * style cache on the SH-4.
521          */
522         if (c->icache.flags & SH_CACHE_COMBINED) {
523                 seq_printf(m, "unified\n");
524                 show_cacheinfo(m, "cache", c->icache);
525         } else {
526                 seq_printf(m, "split (harvard)\n");
527                 show_cacheinfo(m, "icache", c->icache);
528                 show_cacheinfo(m, "dcache", c->dcache);
529         }
530
531         /* Optional secondary cache */
532         if (c->flags & CPU_HAS_L2_CACHE)
533                 show_cacheinfo(m, "scache", c->scache);
534
535         seq_printf(m, "bogomips\t: %lu.%02lu\n",
536                      c->loops_per_jiffy/(500000/HZ),
537                      (c->loops_per_jiffy/(5000/HZ)) % 100);
538
539         return 0;
540 }
541
542 static void *c_start(struct seq_file *m, loff_t *pos)
543 {
544         return *pos < NR_CPUS ? cpu_data + *pos : NULL;
545 }
546 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
547 {
548         ++*pos;
549         return c_start(m, pos);
550 }
551 static void c_stop(struct seq_file *m, void *v)
552 {
553 }
554 const struct seq_operations cpuinfo_op = {
555         .start  = c_start,
556         .next   = c_next,
557         .stop   = c_stop,
558         .show   = show_cpuinfo,
559 };
560 #endif /* CONFIG_PROC_FS */
561
562 struct dentry *sh_debugfs_root;
563
564 static int __init sh_debugfs_init(void)
565 {
566         sh_debugfs_root = debugfs_create_dir("sh", NULL);
567         if (!sh_debugfs_root)
568                 return -ENOMEM;
569         if (IS_ERR(sh_debugfs_root))
570                 return PTR_ERR(sh_debugfs_root);
571
572         return 0;
573 }
574 arch_initcall(sh_debugfs_init);