2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
28 * Set enviroment defines for rt2x00.h
30 #define DRV_NAME "rt61pci"
32 #include <linux/delay.h>
33 #include <linux/etherdevice.h>
34 #include <linux/init.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/eeprom_93cx6.h>
41 #include "rt2x00pci.h"
46 * BBP and RF register require indirect register access,
47 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
48 * These indirect registers work with busy bits,
49 * and we will try maximal REGISTER_BUSY_COUNT times to access
50 * the register while taking a REGISTER_BUSY_DELAY us delay
51 * between each attampt. When the busy bit is still set at that time,
52 * the access attempt is considered to have failed,
53 * and we will print an error.
55 static u32 rt61pci_bbp_check(struct rt2x00_dev *rt2x00dev)
60 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
61 rt2x00pci_register_read(rt2x00dev, PHY_CSR3, ®);
62 if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
64 udelay(REGISTER_BUSY_DELAY);
70 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
71 const unsigned int word, const u8 value)
76 * Wait until the BBP becomes ready.
78 reg = rt61pci_bbp_check(rt2x00dev);
79 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
80 ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
85 * Write the data into the BBP.
88 rt2x00_set_field32(®, PHY_CSR3_VALUE, value);
89 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
90 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
91 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0);
93 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
96 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
97 const unsigned int word, u8 *value)
102 * Wait until the BBP becomes ready.
104 reg = rt61pci_bbp_check(rt2x00dev);
105 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
106 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
111 * Write the request into the BBP.
114 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
115 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
116 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1);
118 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
121 * Wait until the BBP becomes ready.
123 reg = rt61pci_bbp_check(rt2x00dev);
124 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
125 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
130 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
133 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
134 const unsigned int word, const u32 value)
142 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
143 rt2x00pci_register_read(rt2x00dev, PHY_CSR4, ®);
144 if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
146 udelay(REGISTER_BUSY_DELAY);
149 ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
154 rt2x00_set_field32(®, PHY_CSR4_VALUE, value);
155 rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, 21);
156 rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0);
157 rt2x00_set_field32(®, PHY_CSR4_BUSY, 1);
159 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
160 rt2x00_rf_write(rt2x00dev, word, value);
163 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
164 const u8 command, const u8 token,
165 const u8 arg0, const u8 arg1)
169 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, ®);
171 if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
172 ERROR(rt2x00dev, "mcu request error. "
173 "Request 0x%02x failed for token 0x%02x.\n",
178 rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1);
179 rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token);
180 rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0);
181 rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1);
182 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
184 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, ®);
185 rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command);
186 rt2x00_set_field32(®, HOST_CMD_CSR_INTERRUPT_MCU, 1);
187 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
190 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
192 struct rt2x00_dev *rt2x00dev = eeprom->data;
195 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®);
197 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
198 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
199 eeprom->reg_data_clock =
200 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
201 eeprom->reg_chip_select =
202 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
205 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
207 struct rt2x00_dev *rt2x00dev = eeprom->data;
210 rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
211 rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
212 rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK,
213 !!eeprom->reg_data_clock);
214 rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT,
215 !!eeprom->reg_chip_select);
217 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
220 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
221 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
223 static void rt61pci_read_csr(struct rt2x00_dev *rt2x00dev,
224 const unsigned int word, u32 *data)
226 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
229 static void rt61pci_write_csr(struct rt2x00_dev *rt2x00dev,
230 const unsigned int word, u32 data)
232 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
235 static const struct rt2x00debug rt61pci_rt2x00debug = {
236 .owner = THIS_MODULE,
238 .read = rt61pci_read_csr,
239 .write = rt61pci_write_csr,
240 .word_size = sizeof(u32),
241 .word_count = CSR_REG_SIZE / sizeof(u32),
244 .read = rt2x00_eeprom_read,
245 .write = rt2x00_eeprom_write,
246 .word_size = sizeof(u16),
247 .word_count = EEPROM_SIZE / sizeof(u16),
250 .read = rt61pci_bbp_read,
251 .write = rt61pci_bbp_write,
252 .word_size = sizeof(u8),
253 .word_count = BBP_SIZE / sizeof(u8),
256 .read = rt2x00_rf_read,
257 .write = rt61pci_rf_write,
258 .word_size = sizeof(u32),
259 .word_count = RF_SIZE / sizeof(u32),
262 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
264 #ifdef CONFIG_RT61PCI_RFKILL
265 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
269 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, ®);
270 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);;
273 #define rt61pci_rfkill_poll NULL
274 #endif /* CONFIG_RT61PCI_RFKILL */
277 * Configuration handlers.
279 static void rt61pci_config_mac_addr(struct rt2x00_dev *rt2x00dev, __le32 *mac)
283 tmp = le32_to_cpu(mac[1]);
284 rt2x00_set_field32(&tmp, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
285 mac[1] = cpu_to_le32(tmp);
287 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2, mac,
288 (2 * sizeof(__le32)));
291 static void rt61pci_config_bssid(struct rt2x00_dev *rt2x00dev, __le32 *bssid)
295 tmp = le32_to_cpu(bssid[1]);
296 rt2x00_set_field32(&tmp, MAC_CSR5_BSS_ID_MASK, 3);
297 bssid[1] = cpu_to_le32(tmp);
299 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4, bssid,
300 (2 * sizeof(__le32)));
303 static void rt61pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
309 * Clear current synchronisation setup.
310 * For the Beacon base registers we only need to clear
311 * the first byte since that byte contains the VALID and OWNER
312 * bits which (when set to 0) will invalidate the entire beacon.
314 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
315 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
316 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
317 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
318 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
321 * Enable synchronisation.
323 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
324 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1);
325 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1);
326 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
327 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, tsf_sync);
328 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
331 static void rt61pci_config_preamble(struct rt2x00_dev *rt2x00dev,
332 const int short_preamble,
333 const int ack_timeout,
334 const int ack_consume_time)
338 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
339 rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, ack_timeout);
340 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
342 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®);
343 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE,
345 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
348 static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev,
349 const int basic_rate_mask)
351 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, basic_rate_mask);
354 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
355 struct rf_channel *rf, const int txpower)
361 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
362 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
364 smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
365 rt2x00_rf(&rt2x00dev->chip, RF2527));
367 rt61pci_bbp_read(rt2x00dev, 3, &r3);
368 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
369 rt61pci_bbp_write(rt2x00dev, 3, r3);
372 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
373 r94 += txpower - MAX_TXPOWER;
374 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
376 rt61pci_bbp_write(rt2x00dev, 94, r94);
378 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
379 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
380 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
381 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
385 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
386 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
387 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
388 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
392 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
393 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
394 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
395 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
400 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
403 struct rf_channel rf;
405 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
406 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
407 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
408 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
410 rt61pci_config_channel(rt2x00dev, &rf, txpower);
413 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
414 struct antenna_setup *ant)
420 rt61pci_bbp_read(rt2x00dev, 3, &r3);
421 rt61pci_bbp_read(rt2x00dev, 4, &r4);
422 rt61pci_bbp_read(rt2x00dev, 77, &r77);
424 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
425 rt2x00_rf(&rt2x00dev->chip, RF5325));
428 * Configure the RX antenna.
431 case ANTENNA_HW_DIVERSITY:
432 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
433 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
434 (rt2x00dev->curr_hwmode != HWMODE_A));
437 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
438 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
439 if (rt2x00dev->curr_hwmode == HWMODE_A)
440 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
442 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
444 case ANTENNA_SW_DIVERSITY:
446 * NOTE: We should never come here because rt2x00lib is
447 * supposed to catch this and send us the correct antenna
448 * explicitely. However we are nog going to bug about this.
449 * Instead, just default to antenna B.
452 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
453 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
454 if (rt2x00dev->curr_hwmode == HWMODE_A)
455 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
457 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
461 rt61pci_bbp_write(rt2x00dev, 77, r77);
462 rt61pci_bbp_write(rt2x00dev, 3, r3);
463 rt61pci_bbp_write(rt2x00dev, 4, r4);
466 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
467 struct antenna_setup *ant)
473 rt61pci_bbp_read(rt2x00dev, 3, &r3);
474 rt61pci_bbp_read(rt2x00dev, 4, &r4);
475 rt61pci_bbp_read(rt2x00dev, 77, &r77);
477 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
478 rt2x00_rf(&rt2x00dev->chip, RF2529));
479 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
480 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
483 * Configure the RX antenna.
486 case ANTENNA_HW_DIVERSITY:
487 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
490 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
491 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
493 case ANTENNA_SW_DIVERSITY:
495 * NOTE: We should never come here because rt2x00lib is
496 * supposed to catch this and send us the correct antenna
497 * explicitely. However we are nog going to bug about this.
498 * Instead, just default to antenna B.
501 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
502 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
506 rt61pci_bbp_write(rt2x00dev, 77, r77);
507 rt61pci_bbp_write(rt2x00dev, 3, r3);
508 rt61pci_bbp_write(rt2x00dev, 4, r4);
511 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
512 const int p1, const int p2)
516 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, ®);
518 rt2x00_set_field32(®, MAC_CSR13_BIT4, p1);
519 rt2x00_set_field32(®, MAC_CSR13_BIT12, 0);
521 rt2x00_set_field32(®, MAC_CSR13_BIT3, !p2);
522 rt2x00_set_field32(®, MAC_CSR13_BIT11, 0);
524 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
527 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
528 struct antenna_setup *ant)
534 rt61pci_bbp_read(rt2x00dev, 3, &r3);
535 rt61pci_bbp_read(rt2x00dev, 4, &r4);
536 rt61pci_bbp_read(rt2x00dev, 77, &r77);
538 /* FIXME: Antenna selection for the rf 2529 is very confusing in the
539 * legacy driver. The code below should be ok for non-diversity setups.
543 * Configure the RX antenna.
547 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
548 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
549 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
551 case ANTENNA_SW_DIVERSITY:
552 case ANTENNA_HW_DIVERSITY:
554 * NOTE: We should never come here because rt2x00lib is
555 * supposed to catch this and send us the correct antenna
556 * explicitely. However we are nog going to bug about this.
557 * Instead, just default to antenna B.
560 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
561 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
562 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
566 rt61pci_bbp_write(rt2x00dev, 77, r77);
567 rt61pci_bbp_write(rt2x00dev, 3, r3);
568 rt61pci_bbp_write(rt2x00dev, 4, r4);
574 * value[0] -> non-LNA
580 static const struct antenna_sel antenna_sel_a[] = {
581 { 96, { 0x58, 0x78 } },
582 { 104, { 0x38, 0x48 } },
583 { 75, { 0xfe, 0x80 } },
584 { 86, { 0xfe, 0x80 } },
585 { 88, { 0xfe, 0x80 } },
586 { 35, { 0x60, 0x60 } },
587 { 97, { 0x58, 0x58 } },
588 { 98, { 0x58, 0x58 } },
591 static const struct antenna_sel antenna_sel_bg[] = {
592 { 96, { 0x48, 0x68 } },
593 { 104, { 0x2c, 0x3c } },
594 { 75, { 0xfe, 0x80 } },
595 { 86, { 0xfe, 0x80 } },
596 { 88, { 0xfe, 0x80 } },
597 { 35, { 0x50, 0x50 } },
598 { 97, { 0x48, 0x48 } },
599 { 98, { 0x48, 0x48 } },
602 static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev,
603 struct antenna_setup *ant)
605 const struct antenna_sel *sel;
610 if (rt2x00dev->curr_hwmode == HWMODE_A) {
612 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
614 sel = antenna_sel_bg;
615 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
618 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
619 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
621 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, ®);
623 rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG,
624 (rt2x00dev->curr_hwmode == HWMODE_B ||
625 rt2x00dev->curr_hwmode == HWMODE_G));
626 rt2x00_set_field32(®, PHY_CSR0_PA_PE_A,
627 (rt2x00dev->curr_hwmode == HWMODE_A));
629 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
631 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
632 rt2x00_rf(&rt2x00dev->chip, RF5325))
633 rt61pci_config_antenna_5x(rt2x00dev, ant);
634 else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
635 rt61pci_config_antenna_2x(rt2x00dev, ant);
636 else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
637 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
638 rt61pci_config_antenna_2x(rt2x00dev, ant);
640 rt61pci_config_antenna_2529(rt2x00dev, ant);
644 static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
645 struct rt2x00lib_conf *libconf)
649 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, ®);
650 rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, libconf->slot_time);
651 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
653 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, ®);
654 rt2x00_set_field32(®, MAC_CSR8_SIFS, libconf->sifs);
655 rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
656 rt2x00_set_field32(®, MAC_CSR8_EIFS, libconf->eifs);
657 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
659 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
660 rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
661 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
663 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®);
664 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
665 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
667 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
668 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL,
669 libconf->conf->beacon_int * 16);
670 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
673 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
674 const unsigned int flags,
675 struct rt2x00lib_conf *libconf)
677 if (flags & CONFIG_UPDATE_PHYMODE)
678 rt61pci_config_phymode(rt2x00dev, libconf->basic_rates);
679 if (flags & CONFIG_UPDATE_CHANNEL)
680 rt61pci_config_channel(rt2x00dev, &libconf->rf,
681 libconf->conf->power_level);
682 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
683 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
684 if (flags & CONFIG_UPDATE_ANTENNA)
685 rt61pci_config_antenna(rt2x00dev, &libconf->ant);
686 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
687 rt61pci_config_duration(rt2x00dev, libconf);
693 static void rt61pci_enable_led(struct rt2x00_dev *rt2x00dev)
699 rt2x00pci_register_read(rt2x00dev, MAC_CSR14, ®);
700 rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, 70);
701 rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, 30);
702 rt2x00pci_register_write(rt2x00dev, MAC_CSR14, reg);
704 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_RADIO_STATUS, 1);
705 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_LINK_A_STATUS,
706 (rt2x00dev->rx_status.phymode == MODE_IEEE80211A));
707 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_LINK_BG_STATUS,
708 (rt2x00dev->rx_status.phymode != MODE_IEEE80211A));
710 arg0 = rt2x00dev->led_reg & 0xff;
711 arg1 = (rt2x00dev->led_reg >> 8) & 0xff;
713 rt61pci_mcu_request(rt2x00dev, MCU_LED, 0xff, arg0, arg1);
716 static void rt61pci_disable_led(struct rt2x00_dev *rt2x00dev)
722 led_reg = rt2x00dev->led_reg;
723 rt2x00_set_field16(&led_reg, MCU_LEDCS_RADIO_STATUS, 0);
724 rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_BG_STATUS, 0);
725 rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_A_STATUS, 0);
727 arg0 = led_reg & 0xff;
728 arg1 = (led_reg >> 8) & 0xff;
730 rt61pci_mcu_request(rt2x00dev, MCU_LED, 0xff, arg0, arg1);
733 static void rt61pci_activity_led(struct rt2x00_dev *rt2x00dev, int rssi)
737 if (rt2x00dev->led_mode != LED_MODE_SIGNAL_STRENGTH)
741 * Led handling requires a positive value for the rssi,
742 * to do that correctly we need to add the correction.
744 rssi += rt2x00dev->rssi_offset;
759 rt61pci_mcu_request(rt2x00dev, MCU_LED_STRENGTH, 0xff, led, 0);
765 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
766 struct link_qual *qual)
771 * Update FCS error count from register.
773 rt2x00pci_register_read(rt2x00dev, STA_CSR0, ®);
774 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
777 * Update False CCA count from register.
779 rt2x00pci_register_read(rt2x00dev, STA_CSR1, ®);
780 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
783 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
785 rt61pci_bbp_write(rt2x00dev, 17, 0x20);
786 rt2x00dev->link.vgc_level = 0x20;
789 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
791 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
797 * Update Led strength
799 rt61pci_activity_led(rt2x00dev, rssi);
801 rt61pci_bbp_read(rt2x00dev, 17, &r17);
804 * Determine r17 bounds.
806 if (rt2x00dev->rx_status.phymode == MODE_IEEE80211A) {
809 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
816 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
823 * Special big-R17 for very short distance
827 rt61pci_bbp_write(rt2x00dev, 17, 0x60);
832 * Special big-R17 for short distance
836 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
841 * Special big-R17 for middle-short distance
845 if (r17 != low_bound)
846 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
851 * Special mid-R17 for middle distance
855 if (r17 != low_bound)
856 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
861 * Special case: Change up_bound based on the rssi.
862 * Lower up_bound when rssi is weaker then -74 dBm.
864 up_bound -= 2 * (-74 - rssi);
865 if (low_bound > up_bound)
866 up_bound = low_bound;
868 if (r17 > up_bound) {
869 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
874 * r17 does not yet exceed upper limit, continue and base
875 * the r17 tuning on the false CCA count.
877 if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
878 if (++r17 > up_bound)
880 rt61pci_bbp_write(rt2x00dev, 17, r17);
881 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
882 if (--r17 < low_bound)
884 rt61pci_bbp_write(rt2x00dev, 17, r17);
889 * Firmware name function.
891 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
895 switch (rt2x00dev->chip.rt) {
897 fw_name = FIRMWARE_RT2561;
900 fw_name = FIRMWARE_RT2561s;
903 fw_name = FIRMWARE_RT2661;
914 * Initialization functions.
916 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, void *data,
923 * Wait for stable hardware.
925 for (i = 0; i < 100; i++) {
926 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, ®);
933 ERROR(rt2x00dev, "Unstable hardware.\n");
938 * Prepare MCU and mailbox for firmware loading.
941 rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1);
942 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
943 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
944 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
945 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
948 * Write firmware to device.
951 rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1);
952 rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 1);
953 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
955 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
958 rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 0);
959 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
961 rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 0);
962 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
964 for (i = 0; i < 100; i++) {
965 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, ®);
966 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
972 ERROR(rt2x00dev, "MCU Control register not ready.\n");
977 * Reset MAC and BBP registers.
980 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1);
981 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1);
982 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
984 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
985 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0);
986 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0);
987 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
989 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
990 rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1);
991 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
996 static void rt61pci_init_rxring(struct rt2x00_dev *rt2x00dev)
998 struct data_ring *ring = rt2x00dev->rx;
1003 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
1005 for (i = 0; i < ring->stats.limit; i++) {
1006 rxd = ring->entry[i].priv;
1008 rt2x00_desc_read(rxd, 5, &word);
1009 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1010 ring->entry[i].data_dma);
1011 rt2x00_desc_write(rxd, 5, word);
1013 rt2x00_desc_read(rxd, 0, &word);
1014 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1015 rt2x00_desc_write(rxd, 0, word);
1018 rt2x00_ring_index_clear(rt2x00dev->rx);
1021 static void rt61pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
1023 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1028 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
1030 for (i = 0; i < ring->stats.limit; i++) {
1031 txd = ring->entry[i].priv;
1033 rt2x00_desc_read(txd, 1, &word);
1034 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1035 rt2x00_desc_write(txd, 1, word);
1037 rt2x00_desc_read(txd, 5, &word);
1038 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, queue);
1039 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, i);
1040 rt2x00_desc_write(txd, 5, word);
1042 rt2x00_desc_read(txd, 6, &word);
1043 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1044 ring->entry[i].data_dma);
1045 rt2x00_desc_write(txd, 6, word);
1047 rt2x00_desc_read(txd, 0, &word);
1048 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1049 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1050 rt2x00_desc_write(txd, 0, word);
1053 rt2x00_ring_index_clear(ring);
1056 static int rt61pci_init_rings(struct rt2x00_dev *rt2x00dev)
1063 rt61pci_init_rxring(rt2x00dev);
1064 rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1065 rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1066 rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA2);
1067 rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA3);
1068 rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA4);
1071 * Initialize registers.
1073 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, ®);
1074 rt2x00_set_field32(®, TX_RING_CSR0_AC0_RING_SIZE,
1075 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
1076 rt2x00_set_field32(®, TX_RING_CSR0_AC1_RING_SIZE,
1077 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
1078 rt2x00_set_field32(®, TX_RING_CSR0_AC2_RING_SIZE,
1079 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA2].stats.limit);
1080 rt2x00_set_field32(®, TX_RING_CSR0_AC3_RING_SIZE,
1081 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA3].stats.limit);
1082 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1084 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, ®);
1085 rt2x00_set_field32(®, TX_RING_CSR1_MGMT_RING_SIZE,
1086 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA4].stats.limit);
1087 rt2x00_set_field32(®, TX_RING_CSR1_TXD_SIZE,
1088 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size /
1090 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1092 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, ®);
1093 rt2x00_set_field32(®, AC0_BASE_CSR_RING_REGISTER,
1094 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
1095 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1097 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, ®);
1098 rt2x00_set_field32(®, AC1_BASE_CSR_RING_REGISTER,
1099 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
1100 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1102 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, ®);
1103 rt2x00_set_field32(®, AC2_BASE_CSR_RING_REGISTER,
1104 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA2].data_dma);
1105 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1107 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, ®);
1108 rt2x00_set_field32(®, AC3_BASE_CSR_RING_REGISTER,
1109 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA3].data_dma);
1110 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1112 rt2x00pci_register_read(rt2x00dev, MGMT_BASE_CSR, ®);
1113 rt2x00_set_field32(®, MGMT_BASE_CSR_RING_REGISTER,
1114 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA4].data_dma);
1115 rt2x00pci_register_write(rt2x00dev, MGMT_BASE_CSR, reg);
1117 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, ®);
1118 rt2x00_set_field32(®, RX_RING_CSR_RING_SIZE,
1119 rt2x00dev->rx->stats.limit);
1120 rt2x00_set_field32(®, RX_RING_CSR_RXD_SIZE,
1121 rt2x00dev->rx->desc_size / 4);
1122 rt2x00_set_field32(®, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1123 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1125 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, ®);
1126 rt2x00_set_field32(®, RX_BASE_CSR_RING_REGISTER,
1127 rt2x00dev->rx->data_dma);
1128 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1130 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, ®);
1131 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC0, 2);
1132 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC1, 2);
1133 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC2, 2);
1134 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC3, 2);
1135 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_MGMT, 0);
1136 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1138 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, ®);
1139 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1140 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1141 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1142 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1143 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_MGMT, 1);
1144 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1146 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, ®);
1147 rt2x00_set_field32(®, RX_CNTL_CSR_LOAD_RXD, 1);
1148 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1153 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1157 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
1158 rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1);
1159 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0);
1160 rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1161 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1163 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, ®);
1164 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1165 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1);
1166 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1167 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1);
1168 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1169 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1);
1170 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1171 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1);
1172 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1175 * CCK TXD BBP registers
1177 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, ®);
1178 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13);
1179 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1);
1180 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12);
1181 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1);
1182 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11);
1183 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1);
1184 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10);
1185 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1);
1186 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1189 * OFDM TXD BBP registers
1191 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, ®);
1192 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7);
1193 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1);
1194 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6);
1195 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1);
1196 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5);
1197 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1);
1198 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1200 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, ®);
1201 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59);
1202 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53);
1203 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49);
1204 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46);
1205 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1207 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, ®);
1208 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44);
1209 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42);
1210 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42);
1211 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42);
1212 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1214 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1216 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1218 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, ®);
1219 rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0);
1220 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1222 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1224 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1227 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1230 * Invalidate all Shared Keys (SEC_CSR0),
1231 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1233 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1234 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1235 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1237 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1238 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1239 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1240 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1242 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1244 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1246 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1248 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, ®);
1249 rt2x00_set_field32(®, AC_TXOP_CSR0_AC0_TX_OP, 0);
1250 rt2x00_set_field32(®, AC_TXOP_CSR0_AC1_TX_OP, 0);
1251 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
1253 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, ®);
1254 rt2x00_set_field32(®, AC_TXOP_CSR1_AC2_TX_OP, 192);
1255 rt2x00_set_field32(®, AC_TXOP_CSR1_AC3_TX_OP, 48);
1256 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
1259 * We must clear the error counters.
1260 * These registers are cleared on read,
1261 * so we may pass a useless variable to store the value.
1263 rt2x00pci_register_read(rt2x00dev, STA_CSR0, ®);
1264 rt2x00pci_register_read(rt2x00dev, STA_CSR1, ®);
1265 rt2x00pci_register_read(rt2x00dev, STA_CSR2, ®);
1268 * Reset MAC and BBP registers.
1270 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
1271 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1);
1272 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1);
1273 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1275 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
1276 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0);
1277 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0);
1278 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1280 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
1281 rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1);
1282 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1287 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1294 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1295 rt61pci_bbp_read(rt2x00dev, 0, &value);
1296 if ((value != 0xff) && (value != 0x00))
1297 goto continue_csr_init;
1298 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
1299 udelay(REGISTER_BUSY_DELAY);
1302 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1306 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1307 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1308 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1309 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1310 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1311 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1312 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1313 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1314 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1315 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1316 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1317 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1318 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1319 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1320 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1321 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1322 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1323 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1324 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1325 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1326 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1327 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1328 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1329 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1331 DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
1332 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1333 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1335 if (eeprom != 0xffff && eeprom != 0x0000) {
1336 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1337 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1338 DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
1340 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1343 DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
1349 * Device state switch handlers.
1351 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1352 enum dev_state state)
1356 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
1357 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX,
1358 state == STATE_RADIO_RX_OFF);
1359 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1362 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1363 enum dev_state state)
1365 int mask = (state == STATE_RADIO_IRQ_OFF);
1369 * When interrupts are being enabled, the interrupt registers
1370 * should clear the register to assure a clean state.
1372 if (state == STATE_RADIO_IRQ_ON) {
1373 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®);
1374 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1376 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®);
1377 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1381 * Only toggle the interrupts bits we are going to use.
1382 * Non-checked interrupt bits are disabled by default.
1384 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, ®);
1385 rt2x00_set_field32(®, INT_MASK_CSR_TXDONE, mask);
1386 rt2x00_set_field32(®, INT_MASK_CSR_RXDONE, mask);
1387 rt2x00_set_field32(®, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1388 rt2x00_set_field32(®, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1389 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1391 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, ®);
1392 rt2x00_set_field32(®, MCU_INT_MASK_CSR_0, mask);
1393 rt2x00_set_field32(®, MCU_INT_MASK_CSR_1, mask);
1394 rt2x00_set_field32(®, MCU_INT_MASK_CSR_2, mask);
1395 rt2x00_set_field32(®, MCU_INT_MASK_CSR_3, mask);
1396 rt2x00_set_field32(®, MCU_INT_MASK_CSR_4, mask);
1397 rt2x00_set_field32(®, MCU_INT_MASK_CSR_5, mask);
1398 rt2x00_set_field32(®, MCU_INT_MASK_CSR_6, mask);
1399 rt2x00_set_field32(®, MCU_INT_MASK_CSR_7, mask);
1400 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1403 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1408 * Initialize all registers.
1410 if (rt61pci_init_rings(rt2x00dev) ||
1411 rt61pci_init_registers(rt2x00dev) ||
1412 rt61pci_init_bbp(rt2x00dev)) {
1413 ERROR(rt2x00dev, "Register initialization failed.\n");
1418 * Enable interrupts.
1420 rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1425 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, ®);
1426 rt2x00_set_field32(®, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1427 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1432 rt61pci_enable_led(rt2x00dev);
1437 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1444 rt61pci_disable_led(rt2x00dev);
1446 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1449 * Disable synchronisation.
1451 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1456 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®);
1457 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1458 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1459 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1460 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1461 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_MGMT, 1);
1462 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1465 * Disable interrupts.
1467 rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1470 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1477 put_to_sleep = (state != STATE_AWAKE);
1479 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, ®);
1480 rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1481 rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1482 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1485 * Device is not guaranteed to be in the requested state yet.
1486 * We must wait until the register indicates that the
1487 * device has entered the correct state.
1489 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1490 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, ®);
1492 rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1493 if (current_state == !put_to_sleep)
1498 NOTICE(rt2x00dev, "Device failed to enter state %d, "
1499 "current device state %d.\n", !put_to_sleep, current_state);
1504 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1505 enum dev_state state)
1510 case STATE_RADIO_ON:
1511 retval = rt61pci_enable_radio(rt2x00dev);
1513 case STATE_RADIO_OFF:
1514 rt61pci_disable_radio(rt2x00dev);
1516 case STATE_RADIO_RX_ON:
1517 case STATE_RADIO_RX_OFF:
1518 rt61pci_toggle_rx(rt2x00dev, state);
1520 case STATE_DEEP_SLEEP:
1524 retval = rt61pci_set_state(rt2x00dev, state);
1535 * TX descriptor initialization
1537 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1539 struct txdata_entry_desc *desc,
1540 struct ieee80211_hdr *ieee80211hdr,
1541 unsigned int length,
1542 struct ieee80211_tx_control *control)
1547 * Start writing the descriptor words.
1549 rt2x00_desc_read(txd, 1, &word);
1550 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, desc->queue);
1551 rt2x00_set_field32(&word, TXD_W1_AIFSN, desc->aifs);
1552 rt2x00_set_field32(&word, TXD_W1_CWMIN, desc->cw_min);
1553 rt2x00_set_field32(&word, TXD_W1_CWMAX, desc->cw_max);
1554 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1555 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1);
1556 rt2x00_desc_write(txd, 1, word);
1558 rt2x00_desc_read(txd, 2, &word);
1559 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, desc->signal);
1560 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, desc->service);
1561 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, desc->length_low);
1562 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, desc->length_high);
1563 rt2x00_desc_write(txd, 2, word);
1565 rt2x00_desc_read(txd, 5, &word);
1566 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1567 TXPOWER_TO_DEV(control->power_level));
1568 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1569 rt2x00_desc_write(txd, 5, word);
1571 rt2x00_desc_read(txd, 11, &word);
1572 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, length);
1573 rt2x00_desc_write(txd, 11, word);
1575 rt2x00_desc_read(txd, 0, &word);
1576 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1577 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1578 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1579 test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1580 rt2x00_set_field32(&word, TXD_W0_ACK,
1581 test_bit(ENTRY_TXD_ACK, &desc->flags));
1582 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1583 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1584 rt2x00_set_field32(&word, TXD_W0_OFDM,
1585 test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
1586 rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1587 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1589 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1590 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 0);
1591 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
1592 rt2x00_set_field32(&word, TXD_W0_BURST,
1593 test_bit(ENTRY_TXD_BURST, &desc->flags));
1594 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1595 rt2x00_desc_write(txd, 0, word);
1599 * TX data initialization
1601 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1606 if (queue == IEEE80211_TX_QUEUE_BEACON) {
1608 * For Wi-Fi faily generated beacons between participating
1609 * stations. Set TBTT phase adaptive adjustment step to 8us.
1611 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1613 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
1614 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1615 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1);
1616 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1621 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®);
1622 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC0,
1623 (queue == IEEE80211_TX_QUEUE_DATA0));
1624 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC1,
1625 (queue == IEEE80211_TX_QUEUE_DATA1));
1626 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC2,
1627 (queue == IEEE80211_TX_QUEUE_DATA2));
1628 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC3,
1629 (queue == IEEE80211_TX_QUEUE_DATA3));
1630 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_MGMT,
1631 (queue == IEEE80211_TX_QUEUE_DATA4));
1632 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1636 * RX control handlers
1638 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1644 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1659 if (rt2x00dev->rx_status.phymode == MODE_IEEE80211A) {
1660 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
1663 if (lna == 3 || lna == 2)
1666 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
1667 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
1669 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
1672 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
1673 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
1676 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1679 static void rt61pci_fill_rxdone(struct data_entry *entry,
1680 struct rxdata_entry_desc *desc)
1682 __le32 *rxd = entry->priv;
1686 rt2x00_desc_read(rxd, 0, &word0);
1687 rt2x00_desc_read(rxd, 1, &word1);
1690 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1691 desc->flags |= RX_FLAG_FAILED_FCS_CRC;
1694 * Obtain the status about this packet.
1696 desc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1697 desc->rssi = rt61pci_agc_to_rssi(entry->ring->rt2x00dev, word1);
1698 desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1699 desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1705 * Interrupt functions.
1707 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
1709 struct data_ring *ring;
1710 struct data_entry *entry;
1711 struct data_entry *entry_done;
1722 * During each loop we will compare the freshly read
1723 * STA_CSR4 register value with the value read from
1724 * the previous loop. If the 2 values are equal then
1725 * we should stop processing because the chance it
1726 * quite big that the device has been unplugged and
1727 * we risk going into an endless loop.
1732 rt2x00pci_register_read(rt2x00dev, STA_CSR4, ®);
1733 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
1741 * Skip this entry when it contains an invalid
1742 * ring identication number.
1744 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
1745 ring = rt2x00lib_get_ring(rt2x00dev, type);
1746 if (unlikely(!ring))
1750 * Skip this entry when it contains an invalid
1753 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
1754 if (unlikely(index >= ring->stats.limit))
1757 entry = &ring->entry[index];
1759 rt2x00_desc_read(txd, 0, &word);
1761 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1762 !rt2x00_get_field32(word, TXD_W0_VALID))
1765 entry_done = rt2x00_get_data_entry_done(ring);
1766 while (entry != entry_done) {
1767 /* Catch up. Just report any entries we missed as
1770 "TX status report missed for entry %p\n",
1772 rt2x00lib_txdone(entry_done, TX_FAIL_OTHER, 0);
1773 entry_done = rt2x00_get_data_entry_done(ring);
1777 * Obtain the status about this packet.
1779 tx_status = rt2x00_get_field32(reg, STA_CSR4_TX_RESULT);
1780 retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
1782 rt2x00lib_txdone(entry, tx_status, retry);
1785 * Make this entry available for reuse.
1788 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1789 rt2x00_desc_write(txd, 0, word);
1790 rt2x00_ring_index_done_inc(entry->ring);
1793 * If the data ring was full before the txdone handler
1794 * we must make sure the packet queue in the mac80211 stack
1795 * is reenabled when the txdone handler has finished.
1797 if (!rt2x00_ring_full(ring))
1798 ieee80211_wake_queue(rt2x00dev->hw,
1799 entry->tx_status.control.queue);
1803 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
1805 struct rt2x00_dev *rt2x00dev = dev_instance;
1810 * Get the interrupt sources & saved to local variable.
1811 * Write register value back to clear pending interrupts.
1813 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®_mcu);
1814 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
1816 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®);
1817 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1819 if (!reg && !reg_mcu)
1822 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1826 * Handle interrupts, walk through all bits
1827 * and run the tasks, the bits are checked in order of
1832 * 1 - Rx ring done interrupt.
1834 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
1835 rt2x00pci_rxdone(rt2x00dev);
1838 * 2 - Tx ring done interrupt.
1840 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
1841 rt61pci_txdone(rt2x00dev);
1844 * 3 - Handle MCU command done.
1847 rt2x00pci_register_write(rt2x00dev,
1848 M2H_CMD_DONE_CSR, 0xffffffff);
1854 * Device probe functions.
1856 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1858 struct eeprom_93cx6 eeprom;
1864 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®);
1866 eeprom.data = rt2x00dev;
1867 eeprom.register_read = rt61pci_eepromregister_read;
1868 eeprom.register_write = rt61pci_eepromregister_write;
1869 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
1870 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1871 eeprom.reg_data_in = 0;
1872 eeprom.reg_data_out = 0;
1873 eeprom.reg_data_clock = 0;
1874 eeprom.reg_chip_select = 0;
1876 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1877 EEPROM_SIZE / sizeof(u16));
1880 * Start validation of the data that has been read.
1882 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1883 if (!is_valid_ether_addr(mac)) {
1884 DECLARE_MAC_BUF(macbuf);
1886 random_ether_addr(mac);
1887 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1890 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1891 if (word == 0xffff) {
1892 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1893 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1895 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1897 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1898 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1899 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1900 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
1901 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1902 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1905 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1906 if (word == 0xffff) {
1907 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
1908 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
1909 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
1910 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
1911 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1912 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
1913 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1914 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1917 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1918 if (word == 0xffff) {
1919 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1921 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1922 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1925 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1926 if (word == 0xffff) {
1927 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1928 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1929 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1930 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1933 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1934 if (word == 0xffff) {
1935 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1936 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1937 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1938 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1940 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1941 if (value < -10 || value > 10)
1942 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1943 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1944 if (value < -10 || value > 10)
1945 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1946 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1949 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1950 if (word == 0xffff) {
1951 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1952 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1953 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1954 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1956 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1957 if (value < -10 || value > 10)
1958 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1959 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1960 if (value < -10 || value > 10)
1961 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1962 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1968 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1976 * Read EEPROM word for configuration.
1978 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1981 * Identify RF chipset.
1982 * To determine the RT chip we have to read the
1983 * PCI header of the device.
1985 pci_read_config_word(rt2x00dev_pci(rt2x00dev),
1986 PCI_CONFIG_HEADER_DEVICE, &device);
1987 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1988 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, ®);
1989 rt2x00_set_chip(rt2x00dev, device, value, reg);
1991 if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
1992 !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
1993 !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
1994 !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
1995 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2000 * Determine number of antenna's.
2002 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2003 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2006 * Identify default antenna configuration.
2008 rt2x00dev->default_ant.tx =
2009 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2010 rt2x00dev->default_ant.rx =
2011 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2014 * Read the Frame type.
2016 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2017 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2020 * Detect if this device has an hardware controlled radio.
2022 #ifdef CONFIG_RT61PCI_RFKILL
2023 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2024 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2025 #endif /* CONFIG_RT61PCI_RFKILL */
2028 * Read frequency offset and RF programming sequence.
2030 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2031 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2032 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2034 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2037 * Read external LNA informations.
2039 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2041 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2042 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2043 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2044 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2047 * When working with a RF2529 chip without double antenna
2048 * the antenna settings should be gathered from the NIC
2051 if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2052 !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2053 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
2055 rt2x00dev->default_ant.tx = ANTENNA_B;
2056 rt2x00dev->default_ant.rx = ANTENNA_A;
2059 rt2x00dev->default_ant.tx = ANTENNA_B;
2060 rt2x00dev->default_ant.rx = ANTENNA_B;
2063 rt2x00dev->default_ant.tx = ANTENNA_A;
2064 rt2x00dev->default_ant.rx = ANTENNA_A;
2067 rt2x00dev->default_ant.tx = ANTENNA_A;
2068 rt2x00dev->default_ant.rx = ANTENNA_B;
2072 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2073 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2074 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2075 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2079 * Store led settings, for correct led behaviour.
2080 * If the eeprom value is invalid,
2081 * switch to default led mode.
2083 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2085 rt2x00dev->led_mode = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2087 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_LED_MODE,
2088 rt2x00dev->led_mode);
2089 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_0,
2090 rt2x00_get_field16(eeprom,
2091 EEPROM_LED_POLARITY_GPIO_0));
2092 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_1,
2093 rt2x00_get_field16(eeprom,
2094 EEPROM_LED_POLARITY_GPIO_1));
2095 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_2,
2096 rt2x00_get_field16(eeprom,
2097 EEPROM_LED_POLARITY_GPIO_2));
2098 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_3,
2099 rt2x00_get_field16(eeprom,
2100 EEPROM_LED_POLARITY_GPIO_3));
2101 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_4,
2102 rt2x00_get_field16(eeprom,
2103 EEPROM_LED_POLARITY_GPIO_4));
2104 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_ACT,
2105 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2106 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_READY_BG,
2107 rt2x00_get_field16(eeprom,
2108 EEPROM_LED_POLARITY_RDY_G));
2109 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_READY_A,
2110 rt2x00_get_field16(eeprom,
2111 EEPROM_LED_POLARITY_RDY_A));
2117 * RF value list for RF5225 & RF5325
2118 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2120 static const struct rf_channel rf_vals_noseq[] = {
2121 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2122 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2123 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2124 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2125 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2126 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2127 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2128 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2129 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2130 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2131 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2132 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2133 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2134 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2136 /* 802.11 UNI / HyperLan 2 */
2137 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2138 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2139 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2140 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2141 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2142 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2143 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2144 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2146 /* 802.11 HyperLan 2 */
2147 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2148 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2149 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2150 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2151 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2152 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2153 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2154 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2155 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2156 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2159 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2160 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2161 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2162 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2163 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2164 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2166 /* MMAC(Japan)J52 ch 34,38,42,46 */
2167 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2168 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2169 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2170 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2174 * RF value list for RF5225 & RF5325
2175 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2177 static const struct rf_channel rf_vals_seq[] = {
2178 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2179 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2180 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2181 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2182 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2183 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2184 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2185 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2186 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2187 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2188 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2189 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2190 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2191 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2193 /* 802.11 UNI / HyperLan 2 */
2194 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2195 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2196 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2197 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2198 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2199 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2200 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2201 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2203 /* 802.11 HyperLan 2 */
2204 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2205 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2206 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2207 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2208 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2209 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2210 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2211 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2212 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2213 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2216 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2217 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2218 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2219 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2220 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2221 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2223 /* MMAC(Japan)J52 ch 34,38,42,46 */
2224 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2225 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2226 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2227 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2230 static void rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2232 struct hw_mode_spec *spec = &rt2x00dev->spec;
2237 * Initialize all hw fields.
2239 rt2x00dev->hw->flags =
2240 IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
2241 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
2242 rt2x00dev->hw->extra_tx_headroom = 0;
2243 rt2x00dev->hw->max_signal = MAX_SIGNAL;
2244 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
2245 rt2x00dev->hw->queues = 5;
2247 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
2248 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2249 rt2x00_eeprom_addr(rt2x00dev,
2250 EEPROM_MAC_ADDR_0));
2253 * Convert tx_power array in eeprom.
2255 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2256 for (i = 0; i < 14; i++)
2257 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2260 * Initialize hw_mode information.
2262 spec->num_modes = 2;
2263 spec->num_rates = 12;
2264 spec->tx_power_a = NULL;
2265 spec->tx_power_bg = txpower;
2266 spec->tx_power_default = DEFAULT_TXPOWER;
2268 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2269 spec->num_channels = 14;
2270 spec->channels = rf_vals_noseq;
2272 spec->num_channels = 14;
2273 spec->channels = rf_vals_seq;
2276 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2277 rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2278 spec->num_modes = 3;
2279 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2281 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2282 for (i = 0; i < 14; i++)
2283 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2285 spec->tx_power_a = txpower;
2289 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2294 * Allocate eeprom data.
2296 retval = rt61pci_validate_eeprom(rt2x00dev);
2300 retval = rt61pci_init_eeprom(rt2x00dev);
2305 * Initialize hw specifications.
2307 rt61pci_probe_hw_mode(rt2x00dev);
2310 * This device requires firmware
2312 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2315 * Set the rssi offset.
2317 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2323 * IEEE80211 stack callback functions.
2325 static void rt61pci_configure_filter(struct ieee80211_hw *hw,
2326 unsigned int changed_flags,
2327 unsigned int *total_flags,
2329 struct dev_addr_list *mc_list)
2331 struct rt2x00_dev *rt2x00dev = hw->priv;
2332 struct interface *intf = &rt2x00dev->interface;
2336 * Mask off any flags we are going to ignore from
2337 * the total_flags field.
2348 * Apply some rules to the filters:
2349 * - Some filters imply different filters to be set.
2350 * - Some things we can't filter out at all.
2351 * - Some filters are set based on interface type.
2354 *total_flags |= FIF_ALLMULTI;
2355 if (*total_flags & FIF_OTHER_BSS ||
2356 *total_flags & FIF_PROMISC_IN_BSS)
2357 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
2358 if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
2359 *total_flags |= FIF_PROMISC_IN_BSS;
2362 * Check if there is any work left for us.
2364 if (intf->filter == *total_flags)
2366 intf->filter = *total_flags;
2369 * Start configuration steps.
2370 * Note that the version error will always be dropped
2371 * and broadcast frames will always be accepted since
2372 * there is no filter for it at this time.
2374 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
2375 rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC,
2376 !(*total_flags & FIF_FCSFAIL));
2377 rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL,
2378 !(*total_flags & FIF_PLCPFAIL));
2379 rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL,
2380 !(*total_flags & FIF_CONTROL));
2381 rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME,
2382 !(*total_flags & FIF_PROMISC_IN_BSS));
2383 rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS,
2384 !(*total_flags & FIF_PROMISC_IN_BSS));
2385 rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1);
2386 rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST,
2387 !(*total_flags & FIF_ALLMULTI));
2388 rt2x00_set_field32(®, TXRX_CSR0_DROP_BORADCAST, 0);
2389 rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS, 1);
2390 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
2393 static int rt61pci_set_retry_limit(struct ieee80211_hw *hw,
2394 u32 short_retry, u32 long_retry)
2396 struct rt2x00_dev *rt2x00dev = hw->priv;
2399 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®);
2400 rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
2401 rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
2402 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
2407 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2409 struct rt2x00_dev *rt2x00dev = hw->priv;
2413 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, ®);
2414 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2415 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, ®);
2416 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2421 static void rt61pci_reset_tsf(struct ieee80211_hw *hw)
2423 struct rt2x00_dev *rt2x00dev = hw->priv;
2425 rt2x00pci_register_write(rt2x00dev, TXRX_CSR12, 0);
2426 rt2x00pci_register_write(rt2x00dev, TXRX_CSR13, 0);
2429 static int rt61pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
2430 struct ieee80211_tx_control *control)
2432 struct rt2x00_dev *rt2x00dev = hw->priv;
2435 * Just in case the ieee80211 doesn't set this,
2436 * but we need this queue set for the descriptor
2439 control->queue = IEEE80211_TX_QUEUE_BEACON;
2442 * We need to append the descriptor in front of the
2445 if (skb_headroom(skb) < TXD_DESC_SIZE) {
2446 if (pskb_expand_head(skb, TXD_DESC_SIZE, 0, GFP_ATOMIC)) {
2453 * First we create the beacon.
2455 skb_push(skb, TXD_DESC_SIZE);
2456 memset(skb->data, 0, TXD_DESC_SIZE);
2458 rt2x00lib_write_tx_desc(rt2x00dev, (__le32 *)skb->data,
2459 (struct ieee80211_hdr *)(skb->data +
2461 skb->len - TXD_DESC_SIZE, control);
2464 * Write entire beacon with descriptor to register,
2465 * and kick the beacon generator.
2467 rt2x00pci_register_multiwrite(rt2x00dev, HW_BEACON_BASE0,
2468 skb->data, skb->len);
2469 rt61pci_kick_tx_queue(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
2474 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2476 .start = rt2x00mac_start,
2477 .stop = rt2x00mac_stop,
2478 .add_interface = rt2x00mac_add_interface,
2479 .remove_interface = rt2x00mac_remove_interface,
2480 .config = rt2x00mac_config,
2481 .config_interface = rt2x00mac_config_interface,
2482 .configure_filter = rt61pci_configure_filter,
2483 .get_stats = rt2x00mac_get_stats,
2484 .set_retry_limit = rt61pci_set_retry_limit,
2485 .erp_ie_changed = rt2x00mac_erp_ie_changed,
2486 .conf_tx = rt2x00mac_conf_tx,
2487 .get_tx_stats = rt2x00mac_get_tx_stats,
2488 .get_tsf = rt61pci_get_tsf,
2489 .reset_tsf = rt61pci_reset_tsf,
2490 .beacon_update = rt61pci_beacon_update,
2493 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2494 .irq_handler = rt61pci_interrupt,
2495 .probe_hw = rt61pci_probe_hw,
2496 .get_firmware_name = rt61pci_get_firmware_name,
2497 .load_firmware = rt61pci_load_firmware,
2498 .initialize = rt2x00pci_initialize,
2499 .uninitialize = rt2x00pci_uninitialize,
2500 .set_device_state = rt61pci_set_device_state,
2501 .rfkill_poll = rt61pci_rfkill_poll,
2502 .link_stats = rt61pci_link_stats,
2503 .reset_tuner = rt61pci_reset_tuner,
2504 .link_tuner = rt61pci_link_tuner,
2505 .write_tx_desc = rt61pci_write_tx_desc,
2506 .write_tx_data = rt2x00pci_write_tx_data,
2507 .kick_tx_queue = rt61pci_kick_tx_queue,
2508 .fill_rxdone = rt61pci_fill_rxdone,
2509 .config_mac_addr = rt61pci_config_mac_addr,
2510 .config_bssid = rt61pci_config_bssid,
2511 .config_type = rt61pci_config_type,
2512 .config_preamble = rt61pci_config_preamble,
2513 .config = rt61pci_config,
2516 static const struct rt2x00_ops rt61pci_ops = {
2518 .rxd_size = RXD_DESC_SIZE,
2519 .txd_size = TXD_DESC_SIZE,
2520 .eeprom_size = EEPROM_SIZE,
2522 .lib = &rt61pci_rt2x00_ops,
2523 .hw = &rt61pci_mac80211_ops,
2524 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2525 .debugfs = &rt61pci_rt2x00debug,
2526 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2530 * RT61pci module information.
2532 static struct pci_device_id rt61pci_device_table[] = {
2534 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2536 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2538 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2542 MODULE_AUTHOR(DRV_PROJECT);
2543 MODULE_VERSION(DRV_VERSION);
2544 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2545 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2546 "PCI & PCMCIA chipset based cards");
2547 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2548 MODULE_FIRMWARE(FIRMWARE_RT2561);
2549 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2550 MODULE_FIRMWARE(FIRMWARE_RT2661);
2551 MODULE_LICENSE("GPL");
2553 static struct pci_driver rt61pci_driver = {
2555 .id_table = rt61pci_device_table,
2556 .probe = rt2x00pci_probe,
2557 .remove = __devexit_p(rt2x00pci_remove),
2558 .suspend = rt2x00pci_suspend,
2559 .resume = rt2x00pci_resume,
2562 static int __init rt61pci_init(void)
2564 return pci_register_driver(&rt61pci_driver);
2567 static void __exit rt61pci_exit(void)
2569 pci_unregister_driver(&rt61pci_driver);
2572 module_init(rt61pci_init);
2573 module_exit(rt61pci_exit);