2 * linux/arch/arm/mach-versatile/core.c
4 * Copyright (C) 1999 - 2003 ARM Limited
5 * Copyright (C) 2000 Deep Blue Solutions Ltd
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #include <linux/init.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/platform_device.h>
25 #include <linux/sysdev.h>
26 #include <linux/interrupt.h>
27 #include <linux/amba/bus.h>
28 #include <linux/amba/clcd.h>
29 #include <linux/clocksource.h>
30 #include <linux/clockchips.h>
32 #include <asm/cnt32_to_63.h>
33 #include <asm/system.h>
34 #include <mach/hardware.h>
38 #include <asm/hardware/arm_timer.h>
39 #include <asm/hardware/icst307.h>
40 #include <asm/hardware/vic.h>
41 #include <asm/mach-types.h>
43 #include <asm/mach/arch.h>
44 #include <asm/mach/flash.h>
45 #include <asm/mach/irq.h>
46 #include <asm/mach/time.h>
47 #include <asm/mach/map.h>
48 #include <asm/mach/mmc.h>
54 * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
57 * Setup a VA for the Versatile Vectored Interrupt Controller.
59 #define __io_address(n) __io(IO_ADDRESS(n))
60 #define VA_VIC_BASE __io_address(VERSATILE_VIC_BASE)
61 #define VA_SIC_BASE __io_address(VERSATILE_SIC_BASE)
63 static void sic_mask_irq(unsigned int irq)
66 writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
69 static void sic_unmask_irq(unsigned int irq)
72 writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
75 static struct irq_chip sic_chip = {
79 .unmask = sic_unmask_irq,
83 sic_handle_irq(unsigned int irq, struct irq_desc *desc)
85 unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
88 do_bad_IRQ(irq, desc);
93 irq = ffs(status) - 1;
94 status &= ~(1 << irq);
98 desc = irq_desc + irq;
99 desc_handle_irq(irq, desc);
104 #define IRQ_MMCI0A IRQ_VICSOURCE22
105 #define IRQ_AACI IRQ_VICSOURCE24
106 #define IRQ_ETH IRQ_VICSOURCE25
107 #define PIC_MASK 0xFFD00000
109 #define IRQ_MMCI0A IRQ_SIC_MMCI0A
110 #define IRQ_AACI IRQ_SIC_AACI
111 #define IRQ_ETH IRQ_SIC_ETH
115 void __init versatile_init_irq(void)
119 vic_init(VA_VIC_BASE, IRQ_VIC_START, ~0);
121 set_irq_chained_handler(IRQ_VICSOURCE31, sic_handle_irq);
123 /* Do second interrupt controller */
124 writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
126 for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
127 if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
128 set_irq_chip(i, &sic_chip);
129 set_irq_handler(i, handle_level_irq);
130 set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
135 * Interrupts on secondary controller from 0 to 8 are routed to
137 * Interrupts from 21 to 31 are routed directly to the VIC on
138 * the corresponding number on primary controller. This is controlled
139 * by setting PIC_ENABLEx.
141 writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
144 static struct map_desc versatile_io_desc[] __initdata = {
146 .virtual = IO_ADDRESS(VERSATILE_SYS_BASE),
147 .pfn = __phys_to_pfn(VERSATILE_SYS_BASE),
151 .virtual = IO_ADDRESS(VERSATILE_SIC_BASE),
152 .pfn = __phys_to_pfn(VERSATILE_SIC_BASE),
156 .virtual = IO_ADDRESS(VERSATILE_VIC_BASE),
157 .pfn = __phys_to_pfn(VERSATILE_VIC_BASE),
161 .virtual = IO_ADDRESS(VERSATILE_SCTL_BASE),
162 .pfn = __phys_to_pfn(VERSATILE_SCTL_BASE),
166 #ifdef CONFIG_MACH_VERSATILE_AB
168 .virtual = IO_ADDRESS(VERSATILE_GPIO0_BASE),
169 .pfn = __phys_to_pfn(VERSATILE_GPIO0_BASE),
173 .virtual = IO_ADDRESS(VERSATILE_IB2_BASE),
174 .pfn = __phys_to_pfn(VERSATILE_IB2_BASE),
179 #ifdef CONFIG_DEBUG_LL
181 .virtual = IO_ADDRESS(VERSATILE_UART0_BASE),
182 .pfn = __phys_to_pfn(VERSATILE_UART0_BASE),
189 .virtual = IO_ADDRESS(VERSATILE_PCI_CORE_BASE),
190 .pfn = __phys_to_pfn(VERSATILE_PCI_CORE_BASE),
194 .virtual = (unsigned long)VERSATILE_PCI_VIRT_BASE,
195 .pfn = __phys_to_pfn(VERSATILE_PCI_BASE),
196 .length = VERSATILE_PCI_BASE_SIZE,
199 .virtual = (unsigned long)VERSATILE_PCI_CFG_VIRT_BASE,
200 .pfn = __phys_to_pfn(VERSATILE_PCI_CFG_BASE),
201 .length = VERSATILE_PCI_CFG_BASE_SIZE,
206 .virtual = VERSATILE_PCI_VIRT_MEM_BASE0,
207 .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE0),
211 .virtual = VERSATILE_PCI_VIRT_MEM_BASE1,
212 .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE1),
216 .virtual = VERSATILE_PCI_VIRT_MEM_BASE2,
217 .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE2),
225 void __init versatile_map_io(void)
227 iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
230 #define VERSATILE_REFCOUNTER (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
233 * This is the Versatile sched_clock implementation. This has
234 * a resolution of 41.7ns, and a maximum value of about 35583 days.
236 * The return value is guaranteed to be monotonic in that range as
237 * long as there is always less than 89 seconds between successive
238 * calls to this function.
240 unsigned long long sched_clock(void)
242 unsigned long long v = cnt32_to_63(readl(VERSATILE_REFCOUNTER));
244 /* the <<1 gets rid of the cnt_32_to_63 top bit saving on a bic insn */
252 #define VERSATILE_FLASHCTRL (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
254 static int versatile_flash_init(void)
258 val = __raw_readl(VERSATILE_FLASHCTRL);
259 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
260 __raw_writel(val, VERSATILE_FLASHCTRL);
265 static void versatile_flash_exit(void)
269 val = __raw_readl(VERSATILE_FLASHCTRL);
270 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
271 __raw_writel(val, VERSATILE_FLASHCTRL);
274 static void versatile_flash_set_vpp(int on)
278 val = __raw_readl(VERSATILE_FLASHCTRL);
280 val |= VERSATILE_FLASHPROG_FLVPPEN;
282 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
283 __raw_writel(val, VERSATILE_FLASHCTRL);
286 static struct flash_platform_data versatile_flash_data = {
287 .map_name = "cfi_probe",
289 .init = versatile_flash_init,
290 .exit = versatile_flash_exit,
291 .set_vpp = versatile_flash_set_vpp,
294 static struct resource versatile_flash_resource = {
295 .start = VERSATILE_FLASH_BASE,
296 .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE - 1,
297 .flags = IORESOURCE_MEM,
300 static struct platform_device versatile_flash_device = {
304 .platform_data = &versatile_flash_data,
307 .resource = &versatile_flash_resource,
310 static struct resource smc91x_resources[] = {
312 .start = VERSATILE_ETH_BASE,
313 .end = VERSATILE_ETH_BASE + SZ_64K - 1,
314 .flags = IORESOURCE_MEM,
319 .flags = IORESOURCE_IRQ,
323 static struct platform_device smc91x_device = {
326 .num_resources = ARRAY_SIZE(smc91x_resources),
327 .resource = smc91x_resources,
330 static struct resource versatile_i2c_resource = {
331 .start = VERSATILE_I2C_BASE,
332 .end = VERSATILE_I2C_BASE + SZ_4K - 1,
333 .flags = IORESOURCE_MEM,
336 static struct platform_device versatile_i2c_device = {
337 .name = "versatile-i2c",
340 .resource = &versatile_i2c_resource,
343 #define VERSATILE_SYSMCI (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
345 unsigned int mmc_status(struct device *dev)
347 struct amba_device *adev = container_of(dev, struct amba_device, dev);
350 if (adev->res.start == VERSATILE_MMCI0_BASE)
355 return readl(VERSATILE_SYSMCI) & mask;
358 static struct mmc_platform_data mmc0_plat_data = {
359 .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
360 .status = mmc_status,
366 static const struct icst307_params versatile_oscvco_params = {
375 static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
377 void __iomem *sys_lock = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LOCK_OFFSET;
378 void __iomem *sys_osc = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSCCLCD_OFFSET;
381 val = readl(sys_osc) & ~0x7ffff;
382 val |= vco.v | (vco.r << 9) | (vco.s << 16);
384 writel(0xa05f, sys_lock);
385 writel(val, sys_osc);
389 static struct clk versatile_clcd_clk = {
391 .params = &versatile_oscvco_params,
392 .setvco = versatile_oscvco_set,
398 #define SYS_CLCD_MODE_MASK (3 << 0)
399 #define SYS_CLCD_MODE_888 (0 << 0)
400 #define SYS_CLCD_MODE_5551 (1 << 0)
401 #define SYS_CLCD_MODE_565_RLSB (2 << 0)
402 #define SYS_CLCD_MODE_565_BLSB (3 << 0)
403 #define SYS_CLCD_NLCDIOON (1 << 2)
404 #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
405 #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
406 #define SYS_CLCD_ID_MASK (0x1f << 8)
407 #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
408 #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
409 #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
410 #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
411 #define SYS_CLCD_ID_VGA (0x1f << 8)
413 static struct clcd_panel vga = {
427 .vmode = FB_VMODE_NONINTERLACED,
431 .tim2 = TIM2_BCD | TIM2_IPC,
432 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
436 static struct clcd_panel sanyo_3_8_in = {
438 .name = "Sanyo QVGA",
450 .vmode = FB_VMODE_NONINTERLACED,
455 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
459 static struct clcd_panel sanyo_2_5_in = {
461 .name = "Sanyo QVGA Portrait",
472 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
473 .vmode = FB_VMODE_NONINTERLACED,
477 .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
478 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
482 static struct clcd_panel epson_2_2_in = {
484 .name = "Epson QCIF",
496 .vmode = FB_VMODE_NONINTERLACED,
500 .tim2 = TIM2_BCD | TIM2_IPC,
501 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
506 * Detect which LCD panel is connected, and return the appropriate
507 * clcd_panel structure. Note: we do not have any information on
508 * the required timings for the 8.4in panel, so we presently assume
511 static struct clcd_panel *versatile_clcd_panel(void)
513 void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
514 struct clcd_panel *panel = &vga;
517 val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
518 if (val == SYS_CLCD_ID_SANYO_3_8)
519 panel = &sanyo_3_8_in;
520 else if (val == SYS_CLCD_ID_SANYO_2_5)
521 panel = &sanyo_2_5_in;
522 else if (val == SYS_CLCD_ID_EPSON_2_2)
523 panel = &epson_2_2_in;
524 else if (val == SYS_CLCD_ID_VGA)
527 printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
536 * Disable all display connectors on the interface module.
538 static void versatile_clcd_disable(struct clcd_fb *fb)
540 void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
543 val = readl(sys_clcd);
544 val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
545 writel(val, sys_clcd);
547 #ifdef CONFIG_MACH_VERSATILE_AB
549 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
551 if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
552 void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
555 ctrl = readl(versatile_ib2_ctrl);
557 writel(ctrl, versatile_ib2_ctrl);
563 * Enable the relevant connector on the interface module.
565 static void versatile_clcd_enable(struct clcd_fb *fb)
567 void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
570 val = readl(sys_clcd);
571 val &= ~SYS_CLCD_MODE_MASK;
573 switch (fb->fb.var.green.length) {
575 val |= SYS_CLCD_MODE_5551;
578 val |= SYS_CLCD_MODE_565_RLSB;
581 val |= SYS_CLCD_MODE_888;
588 writel(val, sys_clcd);
591 * And now enable the PSUs
593 val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
594 writel(val, sys_clcd);
596 #ifdef CONFIG_MACH_VERSATILE_AB
598 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
600 if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
601 void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
604 ctrl = readl(versatile_ib2_ctrl);
606 writel(ctrl, versatile_ib2_ctrl);
611 static unsigned long framesize = SZ_1M;
613 static int versatile_clcd_setup(struct clcd_fb *fb)
617 fb->panel = versatile_clcd_panel();
619 fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
621 if (!fb->fb.screen_base) {
622 printk(KERN_ERR "CLCD: unable to map framebuffer\n");
626 fb->fb.fix.smem_start = dma;
627 fb->fb.fix.smem_len = framesize;
632 static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
634 return dma_mmap_writecombine(&fb->dev->dev, vma,
636 fb->fb.fix.smem_start,
637 fb->fb.fix.smem_len);
640 static void versatile_clcd_remove(struct clcd_fb *fb)
642 dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
643 fb->fb.screen_base, fb->fb.fix.smem_start);
646 static struct clcd_board clcd_plat_data = {
648 .check = clcdfb_check,
649 .decode = clcdfb_decode,
650 .disable = versatile_clcd_disable,
651 .enable = versatile_clcd_enable,
652 .setup = versatile_clcd_setup,
653 .mmap = versatile_clcd_mmap,
654 .remove = versatile_clcd_remove,
657 #define AACI_IRQ { IRQ_AACI, NO_IRQ }
658 #define AACI_DMA { 0x80, 0x81 }
659 #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
660 #define MMCI0_DMA { 0x84, 0 }
661 #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
662 #define KMI0_DMA { 0, 0 }
663 #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
664 #define KMI1_DMA { 0, 0 }
667 * These devices are connected directly to the multi-layer AHB switch
669 #define SMC_IRQ { NO_IRQ, NO_IRQ }
670 #define SMC_DMA { 0, 0 }
671 #define MPMC_IRQ { NO_IRQ, NO_IRQ }
672 #define MPMC_DMA { 0, 0 }
673 #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
674 #define CLCD_DMA { 0, 0 }
675 #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
676 #define DMAC_DMA { 0, 0 }
679 * These devices are connected via the core APB bridge
681 #define SCTL_IRQ { NO_IRQ, NO_IRQ }
682 #define SCTL_DMA { 0, 0 }
683 #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
684 #define WATCHDOG_DMA { 0, 0 }
685 #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
686 #define GPIO0_DMA { 0, 0 }
687 #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
688 #define GPIO1_DMA { 0, 0 }
689 #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
690 #define RTC_DMA { 0, 0 }
693 * These devices are connected via the DMA APB bridge
695 #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
696 #define SCI_DMA { 7, 6 }
697 #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
698 #define UART0_DMA { 15, 14 }
699 #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
700 #define UART1_DMA { 13, 12 }
701 #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
702 #define UART2_DMA { 11, 10 }
703 #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
704 #define SSP_DMA { 9, 8 }
706 /* FPGA Primecells */
707 AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
708 AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
709 AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
710 AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
712 /* DevChip Primecells */
713 AMBA_DEVICE(smc, "dev:00", SMC, NULL);
714 AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
715 AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
716 AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
717 AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
718 AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
719 AMBA_DEVICE(gpio0, "dev:e4", GPIO0, NULL);
720 AMBA_DEVICE(gpio1, "dev:e5", GPIO1, NULL);
721 AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
722 AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
723 AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
724 AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
725 AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
726 AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
728 static struct amba_device *amba_devs[] __initdata = {
750 #define VA_LEDS_BASE (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
752 static void versatile_leds_event(led_event_t ledevt)
757 local_irq_save(flags);
758 val = readl(VA_LEDS_BASE);
762 val = val & ~VERSATILE_SYS_LED0;
766 val = val | VERSATILE_SYS_LED0;
770 val = val ^ VERSATILE_SYS_LED1;
781 writel(val, VA_LEDS_BASE);
782 local_irq_restore(flags);
784 #endif /* CONFIG_LEDS */
786 void __init versatile_init(void)
790 clk_register(&versatile_clcd_clk);
792 platform_device_register(&versatile_flash_device);
793 platform_device_register(&versatile_i2c_device);
794 platform_device_register(&smc91x_device);
796 for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
797 struct amba_device *d = amba_devs[i];
798 amba_device_register(d, &iomem_resource);
802 leds_event = versatile_leds_event;
807 * Where is the timer (VA)?
809 #define TIMER0_VA_BASE __io_address(VERSATILE_TIMER0_1_BASE)
810 #define TIMER1_VA_BASE (__io_address(VERSATILE_TIMER0_1_BASE) + 0x20)
811 #define TIMER2_VA_BASE __io_address(VERSATILE_TIMER2_3_BASE)
812 #define TIMER3_VA_BASE (__io_address(VERSATILE_TIMER2_3_BASE) + 0x20)
813 #define VA_IC_BASE __io_address(VERSATILE_VIC_BASE)
816 * How long is the timer interval?
818 #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
819 #if TIMER_INTERVAL >= 0x100000
820 #define TIMER_RELOAD (TIMER_INTERVAL >> 8)
821 #define TIMER_DIVISOR (TIMER_CTRL_DIV256)
822 #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
823 #elif TIMER_INTERVAL >= 0x10000
824 #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
825 #define TIMER_DIVISOR (TIMER_CTRL_DIV16)
826 #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
828 #define TIMER_RELOAD (TIMER_INTERVAL)
829 #define TIMER_DIVISOR (TIMER_CTRL_DIV1)
830 #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
833 static void timer_set_mode(enum clock_event_mode mode,
834 struct clock_event_device *clk)
839 case CLOCK_EVT_MODE_PERIODIC:
840 writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_LOAD);
842 ctrl = TIMER_CTRL_PERIODIC;
843 ctrl |= TIMER_CTRL_32BIT | TIMER_CTRL_IE | TIMER_CTRL_ENABLE;
845 case CLOCK_EVT_MODE_ONESHOT:
846 /* period set, and timer enabled in 'next_event' hook */
847 ctrl = TIMER_CTRL_ONESHOT;
848 ctrl |= TIMER_CTRL_32BIT | TIMER_CTRL_IE;
850 case CLOCK_EVT_MODE_UNUSED:
851 case CLOCK_EVT_MODE_SHUTDOWN:
856 writel(ctrl, TIMER0_VA_BASE + TIMER_CTRL);
859 static int timer_set_next_event(unsigned long evt,
860 struct clock_event_device *unused)
862 unsigned long ctrl = readl(TIMER0_VA_BASE + TIMER_CTRL);
864 writel(evt, TIMER0_VA_BASE + TIMER_LOAD);
865 writel(ctrl | TIMER_CTRL_ENABLE, TIMER0_VA_BASE + TIMER_CTRL);
870 static struct clock_event_device timer0_clockevent = {
873 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
874 .set_mode = timer_set_mode,
875 .set_next_event = timer_set_next_event,
879 * IRQ handler for the timer
881 static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id)
883 struct clock_event_device *evt = &timer0_clockevent;
885 writel(1, TIMER0_VA_BASE + TIMER_INTCLR);
887 evt->event_handler(evt);
892 static struct irqaction versatile_timer_irq = {
893 .name = "Versatile Timer Tick",
894 .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
895 .handler = versatile_timer_interrupt,
898 static cycle_t versatile_get_cycles(void)
900 return ~readl(TIMER3_VA_BASE + TIMER_VALUE);
903 static struct clocksource clocksource_versatile = {
906 .read = versatile_get_cycles,
907 .mask = CLOCKSOURCE_MASK(32),
909 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
912 static int __init versatile_clocksource_init(void)
914 /* setup timer3 as free-running clocksource */
915 writel(0, TIMER3_VA_BASE + TIMER_CTRL);
916 writel(0xffffffff, TIMER3_VA_BASE + TIMER_LOAD);
917 writel(0xffffffff, TIMER3_VA_BASE + TIMER_VALUE);
918 writel(TIMER_CTRL_32BIT | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC,
919 TIMER3_VA_BASE + TIMER_CTRL);
921 clocksource_versatile.mult =
922 clocksource_khz2mult(1000, clocksource_versatile.shift);
923 clocksource_register(&clocksource_versatile);
929 * Set up timer interrupt, and return the current time in seconds.
931 static void __init versatile_timer_init(void)
936 * set clock frequency:
937 * VERSATILE_REFCLK is 32KHz
938 * VERSATILE_TIMCLK is 1MHz
940 val = readl(__io_address(VERSATILE_SCTL_BASE));
941 writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
942 (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
943 (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
944 (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
945 __io_address(VERSATILE_SCTL_BASE));
948 * Initialise to a known state (all timers off)
950 writel(0, TIMER0_VA_BASE + TIMER_CTRL);
951 writel(0, TIMER1_VA_BASE + TIMER_CTRL);
952 writel(0, TIMER2_VA_BASE + TIMER_CTRL);
953 writel(0, TIMER3_VA_BASE + TIMER_CTRL);
956 * Make irqs happen for the system timer
958 setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
960 versatile_clocksource_init();
962 timer0_clockevent.mult =
963 div_sc(1000000, NSEC_PER_SEC, timer0_clockevent.shift);
964 timer0_clockevent.max_delta_ns =
965 clockevent_delta2ns(0xffffffff, &timer0_clockevent);
966 timer0_clockevent.min_delta_ns =
967 clockevent_delta2ns(0xf, &timer0_clockevent);
969 timer0_clockevent.cpumask = cpumask_of_cpu(0);
970 clockevents_register_device(&timer0_clockevent);
973 struct sys_timer versatile_timer = {
974 .init = versatile_timer_init,