Merge git://git.linux-nfs.org/pub/linux/nfs-2.6
[linux-2.6] / drivers / net / rrunner.c
1 /*
2  * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
3  *
4  * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
5  *
6  * Thanks to Essential Communication for providing us with hardware
7  * and very comprehensive documentation without which I would not have
8  * been able to write this driver. A special thank you to John Gibbon
9  * for sorting out the legal issues, with the NDA, allowing the code to
10  * be released under the GPL.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18  * stupid bugs in my code.
19  *
20  * Softnet support and various other patches from Val Henson of
21  * ODS/Essential.
22  *
23  * PCI DMA mapping code partly based on work by Francois Romieu.
24  */
25
26
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
42 #include <linux/mm.h>
43 #include <net/sock.h>
44
45 #include <asm/system.h>
46 #include <asm/cache.h>
47 #include <asm/byteorder.h>
48 #include <asm/io.h>
49 #include <asm/irq.h>
50 #include <asm/uaccess.h>
51
52 #define rr_if_busy(dev)     netif_queue_stopped(dev)
53 #define rr_if_running(dev)  netif_running(dev)
54
55 #include "rrunner.h"
56
57 #define RUN_AT(x) (jiffies + (x))
58
59
60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62 MODULE_LICENSE("GPL");
63
64 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
65
66 /*
67  * Implementation notes:
68  *
69  * The DMA engine only allows for DMA within physical 64KB chunks of
70  * memory. The current approach of the driver (and stack) is to use
71  * linear blocks of memory for the skbuffs. However, as the data block
72  * is always the first part of the skb and skbs are 2^n aligned so we
73  * are guarantted to get the whole block within one 64KB align 64KB
74  * chunk.
75  *
76  * On the long term, relying on being able to allocate 64KB linear
77  * chunks of memory is not feasible and the skb handling code and the
78  * stack will need to know about I/O vectors or something similar.
79  */
80
81 /*
82  * These are checked at init time to see if they are at least 256KB
83  * and increased to 256KB if they are not. This is done to avoid ending
84  * up with socket buffers smaller than the MTU size,
85  */
86 extern __u32 sysctl_wmem_max;
87 extern __u32 sysctl_rmem_max;
88
89 static int __devinit rr_init_one(struct pci_dev *pdev,
90         const struct pci_device_id *ent)
91 {
92         struct net_device *dev;
93         static int version_disp;
94         u8 pci_latency;
95         struct rr_private *rrpriv;
96         void *tmpptr;
97         dma_addr_t ring_dma;
98         int ret = -ENOMEM;
99
100         dev = alloc_hippi_dev(sizeof(struct rr_private));
101         if (!dev)
102                 goto out3;
103
104         ret = pci_enable_device(pdev);
105         if (ret) {
106                 ret = -ENODEV;
107                 goto out2;
108         }
109
110         rrpriv = netdev_priv(dev);
111
112         SET_NETDEV_DEV(dev, &pdev->dev);
113
114         if (pci_request_regions(pdev, "rrunner")) {
115                 ret = -EIO;
116                 goto out;
117         }
118
119         pci_set_drvdata(pdev, dev);
120
121         rrpriv->pci_dev = pdev;
122
123         spin_lock_init(&rrpriv->lock);
124
125         dev->irq = pdev->irq;
126         dev->open = &rr_open;
127         dev->hard_start_xmit = &rr_start_xmit;
128         dev->stop = &rr_close;
129         dev->do_ioctl = &rr_ioctl;
130
131         dev->base_addr = pci_resource_start(pdev, 0);
132
133         /* display version info if adapter is found */
134         if (!version_disp) {
135                 /* set display flag to TRUE so that */
136                 /* we only display this string ONCE */
137                 version_disp = 1;
138                 printk(version);
139         }
140
141         pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
142         if (pci_latency <= 0x58){
143                 pci_latency = 0x58;
144                 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
145         }
146
147         pci_set_master(pdev);
148
149         printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
150                "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
151                dev->base_addr, dev->irq, pci_latency);
152
153         /*
154          * Remap the regs into kernel space.
155          */
156
157         rrpriv->regs = ioremap(dev->base_addr, 0x1000);
158
159         if (!rrpriv->regs){
160                 printk(KERN_ERR "%s:  Unable to map I/O register, "
161                         "RoadRunner will be disabled.\n", dev->name);
162                 ret = -EIO;
163                 goto out;
164         }
165
166         tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
167         rrpriv->tx_ring = tmpptr;
168         rrpriv->tx_ring_dma = ring_dma;
169
170         if (!tmpptr) {
171                 ret = -ENOMEM;
172                 goto out;
173         }
174
175         tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
176         rrpriv->rx_ring = tmpptr;
177         rrpriv->rx_ring_dma = ring_dma;
178
179         if (!tmpptr) {
180                 ret = -ENOMEM;
181                 goto out;
182         }
183
184         tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
185         rrpriv->evt_ring = tmpptr;
186         rrpriv->evt_ring_dma = ring_dma;
187
188         if (!tmpptr) {
189                 ret = -ENOMEM;
190                 goto out;
191         }
192
193         /*
194          * Don't access any register before this point!
195          */
196 #ifdef __BIG_ENDIAN
197         writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
198                 &rrpriv->regs->HostCtrl);
199 #endif
200         /*
201          * Need to add a case for little-endian 64-bit hosts here.
202          */
203
204         rr_init(dev);
205
206         dev->base_addr = 0;
207
208         ret = register_netdev(dev);
209         if (ret)
210                 goto out;
211         return 0;
212
213  out:
214         if (rrpriv->rx_ring)
215                 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
216                                     rrpriv->rx_ring_dma);
217         if (rrpriv->tx_ring)
218                 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
219                                     rrpriv->tx_ring_dma);
220         if (rrpriv->regs)
221                 iounmap(rrpriv->regs);
222         if (pdev) {
223                 pci_release_regions(pdev);
224                 pci_set_drvdata(pdev, NULL);
225         }
226  out2:
227         free_netdev(dev);
228  out3:
229         return ret;
230 }
231
232 static void __devexit rr_remove_one (struct pci_dev *pdev)
233 {
234         struct net_device *dev = pci_get_drvdata(pdev);
235
236         if (dev) {
237                 struct rr_private *rr = netdev_priv(dev);
238
239                 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
240                         printk(KERN_ERR "%s: trying to unload running NIC\n",
241                                dev->name);
242                         writel(HALT_NIC, &rr->regs->HostCtrl);
243                 }
244
245                 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
246                                     rr->evt_ring_dma);
247                 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
248                                     rr->rx_ring_dma);
249                 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
250                                     rr->tx_ring_dma);
251                 unregister_netdev(dev);
252                 iounmap(rr->regs);
253                 free_netdev(dev);
254                 pci_release_regions(pdev);
255                 pci_disable_device(pdev);
256                 pci_set_drvdata(pdev, NULL);
257         }
258 }
259
260
261 /*
262  * Commands are considered to be slow, thus there is no reason to
263  * inline this.
264  */
265 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
266 {
267         struct rr_regs __iomem *regs;
268         u32 idx;
269
270         regs = rrpriv->regs;
271         /*
272          * This is temporary - it will go away in the final version.
273          * We probably also want to make this function inline.
274          */
275         if (readl(&regs->HostCtrl) & NIC_HALTED){
276                 printk("issuing command for halted NIC, code 0x%x, "
277                        "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
278                 if (readl(&regs->Mode) & FATAL_ERR)
279                         printk("error codes Fail1 %02x, Fail2 %02x\n",
280                                readl(&regs->Fail1), readl(&regs->Fail2));
281         }
282
283         idx = rrpriv->info->cmd_ctrl.pi;
284
285         writel(*(u32*)(cmd), &regs->CmdRing[idx]);
286         wmb();
287
288         idx = (idx - 1) % CMD_RING_ENTRIES;
289         rrpriv->info->cmd_ctrl.pi = idx;
290         wmb();
291
292         if (readl(&regs->Mode) & FATAL_ERR)
293                 printk("error code %02x\n", readl(&regs->Fail1));
294 }
295
296
297 /*
298  * Reset the board in a sensible manner. The NIC is already halted
299  * when we get here and a spin-lock is held.
300  */
301 static int rr_reset(struct net_device *dev)
302 {
303         struct rr_private *rrpriv;
304         struct rr_regs __iomem *regs;
305         struct eeprom *hw = NULL;
306         u32 start_pc;
307         int i;
308
309         rrpriv = netdev_priv(dev);
310         regs = rrpriv->regs;
311
312         rr_load_firmware(dev);
313
314         writel(0x01000000, &regs->TX_state);
315         writel(0xff800000, &regs->RX_state);
316         writel(0, &regs->AssistState);
317         writel(CLEAR_INTA, &regs->LocalCtrl);
318         writel(0x01, &regs->BrkPt);
319         writel(0, &regs->Timer);
320         writel(0, &regs->TimerRef);
321         writel(RESET_DMA, &regs->DmaReadState);
322         writel(RESET_DMA, &regs->DmaWriteState);
323         writel(0, &regs->DmaWriteHostHi);
324         writel(0, &regs->DmaWriteHostLo);
325         writel(0, &regs->DmaReadHostHi);
326         writel(0, &regs->DmaReadHostLo);
327         writel(0, &regs->DmaReadLen);
328         writel(0, &regs->DmaWriteLen);
329         writel(0, &regs->DmaWriteLcl);
330         writel(0, &regs->DmaWriteIPchecksum);
331         writel(0, &regs->DmaReadLcl);
332         writel(0, &regs->DmaReadIPchecksum);
333         writel(0, &regs->PciState);
334 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
335         writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
336 #elif (BITS_PER_LONG == 64)
337         writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
338 #else
339         writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
340 #endif
341
342 #if 0
343         /*
344          * Don't worry, this is just black magic.
345          */
346         writel(0xdf000, &regs->RxBase);
347         writel(0xdf000, &regs->RxPrd);
348         writel(0xdf000, &regs->RxCon);
349         writel(0xce000, &regs->TxBase);
350         writel(0xce000, &regs->TxPrd);
351         writel(0xce000, &regs->TxCon);
352         writel(0, &regs->RxIndPro);
353         writel(0, &regs->RxIndCon);
354         writel(0, &regs->RxIndRef);
355         writel(0, &regs->TxIndPro);
356         writel(0, &regs->TxIndCon);
357         writel(0, &regs->TxIndRef);
358         writel(0xcc000, &regs->pad10[0]);
359         writel(0, &regs->DrCmndPro);
360         writel(0, &regs->DrCmndCon);
361         writel(0, &regs->DwCmndPro);
362         writel(0, &regs->DwCmndCon);
363         writel(0, &regs->DwCmndRef);
364         writel(0, &regs->DrDataPro);
365         writel(0, &regs->DrDataCon);
366         writel(0, &regs->DrDataRef);
367         writel(0, &regs->DwDataPro);
368         writel(0, &regs->DwDataCon);
369         writel(0, &regs->DwDataRef);
370 #endif
371
372         writel(0xffffffff, &regs->MbEvent);
373         writel(0, &regs->Event);
374
375         writel(0, &regs->TxPi);
376         writel(0, &regs->IpRxPi);
377
378         writel(0, &regs->EvtCon);
379         writel(0, &regs->EvtPrd);
380
381         rrpriv->info->evt_ctrl.pi = 0;
382
383         for (i = 0; i < CMD_RING_ENTRIES; i++)
384                 writel(0, &regs->CmdRing[i]);
385
386 /*
387  * Why 32 ? is this not cache line size dependent?
388  */
389         writel(RBURST_64|WBURST_64, &regs->PciState);
390         wmb();
391
392         start_pc = rr_read_eeprom_word(rrpriv, &hw->rncd_info.FwStart);
393
394 #if (DEBUG > 1)
395         printk("%s: Executing firmware at address 0x%06x\n",
396                dev->name, start_pc);
397 #endif
398
399         writel(start_pc + 0x800, &regs->Pc);
400         wmb();
401         udelay(5);
402
403         writel(start_pc, &regs->Pc);
404         wmb();
405
406         return 0;
407 }
408
409
410 /*
411  * Read a string from the EEPROM.
412  */
413 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
414                                 unsigned long offset,
415                                 unsigned char *buf,
416                                 unsigned long length)
417 {
418         struct rr_regs __iomem *regs = rrpriv->regs;
419         u32 misc, io, host, i;
420
421         io = readl(&regs->ExtIo);
422         writel(0, &regs->ExtIo);
423         misc = readl(&regs->LocalCtrl);
424         writel(0, &regs->LocalCtrl);
425         host = readl(&regs->HostCtrl);
426         writel(host | HALT_NIC, &regs->HostCtrl);
427         mb();
428
429         for (i = 0; i < length; i++){
430                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
431                 mb();
432                 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
433                 mb();
434         }
435
436         writel(host, &regs->HostCtrl);
437         writel(misc, &regs->LocalCtrl);
438         writel(io, &regs->ExtIo);
439         mb();
440         return i;
441 }
442
443
444 /*
445  * Shortcut to read one word (4 bytes) out of the EEPROM and convert
446  * it to our CPU byte-order.
447  */
448 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
449                             void * offset)
450 {
451         u32 word;
452
453         if ((rr_read_eeprom(rrpriv, (unsigned long)offset,
454                             (char *)&word, 4) == 4))
455                 return be32_to_cpu(word);
456         return 0;
457 }
458
459
460 /*
461  * Write a string to the EEPROM.
462  *
463  * This is only called when the firmware is not running.
464  */
465 static unsigned int write_eeprom(struct rr_private *rrpriv,
466                                  unsigned long offset,
467                                  unsigned char *buf,
468                                  unsigned long length)
469 {
470         struct rr_regs __iomem *regs = rrpriv->regs;
471         u32 misc, io, data, i, j, ready, error = 0;
472
473         io = readl(&regs->ExtIo);
474         writel(0, &regs->ExtIo);
475         misc = readl(&regs->LocalCtrl);
476         writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
477         mb();
478
479         for (i = 0; i < length; i++){
480                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
481                 mb();
482                 data = buf[i] << 24;
483                 /*
484                  * Only try to write the data if it is not the same
485                  * value already.
486                  */
487                 if ((readl(&regs->WinData) & 0xff000000) != data){
488                         writel(data, &regs->WinData);
489                         ready = 0;
490                         j = 0;
491                         mb();
492                         while(!ready){
493                                 udelay(20);
494                                 if ((readl(&regs->WinData) & 0xff000000) ==
495                                     data)
496                                         ready = 1;
497                                 mb();
498                                 if (j++ > 5000){
499                                         printk("data mismatch: %08x, "
500                                                "WinData %08x\n", data,
501                                                readl(&regs->WinData));
502                                         ready = 1;
503                                         error = 1;
504                                 }
505                         }
506                 }
507         }
508
509         writel(misc, &regs->LocalCtrl);
510         writel(io, &regs->ExtIo);
511         mb();
512
513         return error;
514 }
515
516
517 static int __devinit rr_init(struct net_device *dev)
518 {
519         struct rr_private *rrpriv;
520         struct rr_regs __iomem *regs;
521         struct eeprom *hw = NULL;
522         u32 sram_size, rev;
523         DECLARE_MAC_BUF(mac);
524
525         rrpriv = netdev_priv(dev);
526         regs = rrpriv->regs;
527
528         rev = readl(&regs->FwRev);
529         rrpriv->fw_rev = rev;
530         if (rev > 0x00020024)
531                 printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
532                        ((rev >> 8) & 0xff), (rev & 0xff));
533         else if (rev >= 0x00020000) {
534                 printk("  Firmware revision: %i.%i.%i (2.0.37 or "
535                        "later is recommended)\n", (rev >> 16),
536                        ((rev >> 8) & 0xff), (rev & 0xff));
537         }else{
538                 printk("  Firmware revision too old: %i.%i.%i, please "
539                        "upgrade to 2.0.37 or later.\n",
540                        (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
541         }
542
543 #if (DEBUG > 2)
544         printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
545 #endif
546
547         /*
548          * Read the hardware address from the eeprom.  The HW address
549          * is not really necessary for HIPPI but awfully convenient.
550          * The pointer arithmetic to put it in dev_addr is ugly, but
551          * Donald Becker does it this way for the GigE version of this
552          * card and it's shorter and more portable than any
553          * other method I've seen.  -VAL
554          */
555
556         *(u16 *)(dev->dev_addr) =
557           htons(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA));
558         *(u32 *)(dev->dev_addr+2) =
559           htonl(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA[4]));
560
561         printk("  MAC: %s\n", print_mac(mac, dev->dev_addr));
562
563         sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
564         printk("  SRAM size 0x%06x\n", sram_size);
565
566         if (sysctl_rmem_max < 262144){
567                 printk("  Receive socket buffer limit too low (%i), "
568                        "setting to 262144\n", sysctl_rmem_max);
569                 sysctl_rmem_max = 262144;
570         }
571
572         if (sysctl_wmem_max < 262144){
573                 printk("  Transmit socket buffer limit too low (%i), "
574                        "setting to 262144\n", sysctl_wmem_max);
575                 sysctl_wmem_max = 262144;
576         }
577
578         return 0;
579 }
580
581
582 static int rr_init1(struct net_device *dev)
583 {
584         struct rr_private *rrpriv;
585         struct rr_regs __iomem *regs;
586         unsigned long myjif, flags;
587         struct cmd cmd;
588         u32 hostctrl;
589         int ecode = 0;
590         short i;
591
592         rrpriv = netdev_priv(dev);
593         regs = rrpriv->regs;
594
595         spin_lock_irqsave(&rrpriv->lock, flags);
596
597         hostctrl = readl(&regs->HostCtrl);
598         writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
599         wmb();
600
601         if (hostctrl & PARITY_ERR){
602                 printk("%s: Parity error halting NIC - this is serious!\n",
603                        dev->name);
604                 spin_unlock_irqrestore(&rrpriv->lock, flags);
605                 ecode = -EFAULT;
606                 goto error;
607         }
608
609         set_rxaddr(regs, rrpriv->rx_ctrl_dma);
610         set_infoaddr(regs, rrpriv->info_dma);
611
612         rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
613         rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
614         rrpriv->info->evt_ctrl.mode = 0;
615         rrpriv->info->evt_ctrl.pi = 0;
616         set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
617
618         rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
619         rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
620         rrpriv->info->cmd_ctrl.mode = 0;
621         rrpriv->info->cmd_ctrl.pi = 15;
622
623         for (i = 0; i < CMD_RING_ENTRIES; i++) {
624                 writel(0, &regs->CmdRing[i]);
625         }
626
627         for (i = 0; i < TX_RING_ENTRIES; i++) {
628                 rrpriv->tx_ring[i].size = 0;
629                 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
630                 rrpriv->tx_skbuff[i] = NULL;
631         }
632         rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
633         rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
634         rrpriv->info->tx_ctrl.mode = 0;
635         rrpriv->info->tx_ctrl.pi = 0;
636         set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
637
638         /*
639          * Set dirty_tx before we start receiving interrupts, otherwise
640          * the interrupt handler might think it is supposed to process
641          * tx ints before we are up and running, which may cause a null
642          * pointer access in the int handler.
643          */
644         rrpriv->tx_full = 0;
645         rrpriv->cur_rx = 0;
646         rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
647
648         rr_reset(dev);
649
650         /* Tuning values */
651         writel(0x5000, &regs->ConRetry);
652         writel(0x100, &regs->ConRetryTmr);
653         writel(0x500000, &regs->ConTmout);
654         writel(0x60, &regs->IntrTmr);
655         writel(0x500000, &regs->TxDataMvTimeout);
656         writel(0x200000, &regs->RxDataMvTimeout);
657         writel(0x80, &regs->WriteDmaThresh);
658         writel(0x80, &regs->ReadDmaThresh);
659
660         rrpriv->fw_running = 0;
661         wmb();
662
663         hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
664         writel(hostctrl, &regs->HostCtrl);
665         wmb();
666
667         spin_unlock_irqrestore(&rrpriv->lock, flags);
668
669         for (i = 0; i < RX_RING_ENTRIES; i++) {
670                 struct sk_buff *skb;
671                 dma_addr_t addr;
672
673                 rrpriv->rx_ring[i].mode = 0;
674                 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
675                 if (!skb) {
676                         printk(KERN_WARNING "%s: Unable to allocate memory "
677                                "for receive ring - halting NIC\n", dev->name);
678                         ecode = -ENOMEM;
679                         goto error;
680                 }
681                 rrpriv->rx_skbuff[i] = skb;
682                 addr = pci_map_single(rrpriv->pci_dev, skb->data,
683                         dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
684                 /*
685                  * Sanity test to see if we conflict with the DMA
686                  * limitations of the Roadrunner.
687                  */
688                 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
689                         printk("skb alloc error\n");
690
691                 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
692                 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
693         }
694
695         rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
696         rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
697         rrpriv->rx_ctrl[4].mode = 8;
698         rrpriv->rx_ctrl[4].pi = 0;
699         wmb();
700         set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
701
702         udelay(1000);
703
704         /*
705          * Now start the FirmWare.
706          */
707         cmd.code = C_START_FW;
708         cmd.ring = 0;
709         cmd.index = 0;
710
711         rr_issue_cmd(rrpriv, &cmd);
712
713         /*
714          * Give the FirmWare time to chew on the `get running' command.
715          */
716         myjif = jiffies + 5 * HZ;
717         while (time_before(jiffies, myjif) && !rrpriv->fw_running)
718                 cpu_relax();
719
720         netif_start_queue(dev);
721
722         return ecode;
723
724  error:
725         /*
726          * We might have gotten here because we are out of memory,
727          * make sure we release everything we allocated before failing
728          */
729         for (i = 0; i < RX_RING_ENTRIES; i++) {
730                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
731
732                 if (skb) {
733                         pci_unmap_single(rrpriv->pci_dev,
734                                          rrpriv->rx_ring[i].addr.addrlo,
735                                          dev->mtu + HIPPI_HLEN,
736                                          PCI_DMA_FROMDEVICE);
737                         rrpriv->rx_ring[i].size = 0;
738                         set_rraddr(&rrpriv->rx_ring[i].addr, 0);
739                         dev_kfree_skb(skb);
740                         rrpriv->rx_skbuff[i] = NULL;
741                 }
742         }
743         return ecode;
744 }
745
746
747 /*
748  * All events are considered to be slow (RX/TX ints do not generate
749  * events) and are handled here, outside the main interrupt handler,
750  * to reduce the size of the handler.
751  */
752 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
753 {
754         struct rr_private *rrpriv;
755         struct rr_regs __iomem *regs;
756         u32 tmp;
757
758         rrpriv = netdev_priv(dev);
759         regs = rrpriv->regs;
760
761         while (prodidx != eidx){
762                 switch (rrpriv->evt_ring[eidx].code){
763                 case E_NIC_UP:
764                         tmp = readl(&regs->FwRev);
765                         printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
766                                "up and running\n", dev->name,
767                                (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
768                         rrpriv->fw_running = 1;
769                         writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
770                         wmb();
771                         break;
772                 case E_LINK_ON:
773                         printk(KERN_INFO "%s: Optical link ON\n", dev->name);
774                         break;
775                 case E_LINK_OFF:
776                         printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
777                         break;
778                 case E_RX_IDLE:
779                         printk(KERN_WARNING "%s: RX data not moving\n",
780                                dev->name);
781                         goto drop;
782                 case E_WATCHDOG:
783                         printk(KERN_INFO "%s: The watchdog is here to see "
784                                "us\n", dev->name);
785                         break;
786                 case E_INTERN_ERR:
787                         printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
788                                dev->name);
789                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
790                                &regs->HostCtrl);
791                         wmb();
792                         break;
793                 case E_HOST_ERR:
794                         printk(KERN_ERR "%s: Host software error\n",
795                                dev->name);
796                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
797                                &regs->HostCtrl);
798                         wmb();
799                         break;
800                 /*
801                  * TX events.
802                  */
803                 case E_CON_REJ:
804                         printk(KERN_WARNING "%s: Connection rejected\n",
805                                dev->name);
806                         dev->stats.tx_aborted_errors++;
807                         break;
808                 case E_CON_TMOUT:
809                         printk(KERN_WARNING "%s: Connection timeout\n",
810                                dev->name);
811                         break;
812                 case E_DISC_ERR:
813                         printk(KERN_WARNING "%s: HIPPI disconnect error\n",
814                                dev->name);
815                         dev->stats.tx_aborted_errors++;
816                         break;
817                 case E_INT_PRTY:
818                         printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
819                                dev->name);
820                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
821                                &regs->HostCtrl);
822                         wmb();
823                         break;
824                 case E_TX_IDLE:
825                         printk(KERN_WARNING "%s: Transmitter idle\n",
826                                dev->name);
827                         break;
828                 case E_TX_LINK_DROP:
829                         printk(KERN_WARNING "%s: Link lost during transmit\n",
830                                dev->name);
831                         dev->stats.tx_aborted_errors++;
832                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
833                                &regs->HostCtrl);
834                         wmb();
835                         break;
836                 case E_TX_INV_RNG:
837                         printk(KERN_ERR "%s: Invalid send ring block\n",
838                                dev->name);
839                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
840                                &regs->HostCtrl);
841                         wmb();
842                         break;
843                 case E_TX_INV_BUF:
844                         printk(KERN_ERR "%s: Invalid send buffer address\n",
845                                dev->name);
846                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
847                                &regs->HostCtrl);
848                         wmb();
849                         break;
850                 case E_TX_INV_DSC:
851                         printk(KERN_ERR "%s: Invalid descriptor address\n",
852                                dev->name);
853                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
854                                &regs->HostCtrl);
855                         wmb();
856                         break;
857                 /*
858                  * RX events.
859                  */
860                 case E_RX_RNG_OUT:
861                         printk(KERN_INFO "%s: Receive ring full\n", dev->name);
862                         break;
863
864                 case E_RX_PAR_ERR:
865                         printk(KERN_WARNING "%s: Receive parity error\n",
866                                dev->name);
867                         goto drop;
868                 case E_RX_LLRC_ERR:
869                         printk(KERN_WARNING "%s: Receive LLRC error\n",
870                                dev->name);
871                         goto drop;
872                 case E_PKT_LN_ERR:
873                         printk(KERN_WARNING "%s: Receive packet length "
874                                "error\n", dev->name);
875                         goto drop;
876                 case E_DTA_CKSM_ERR:
877                         printk(KERN_WARNING "%s: Data checksum error\n",
878                                dev->name);
879                         goto drop;
880                 case E_SHT_BST:
881                         printk(KERN_WARNING "%s: Unexpected short burst "
882                                "error\n", dev->name);
883                         goto drop;
884                 case E_STATE_ERR:
885                         printk(KERN_WARNING "%s: Recv. state transition"
886                                " error\n", dev->name);
887                         goto drop;
888                 case E_UNEXP_DATA:
889                         printk(KERN_WARNING "%s: Unexpected data error\n",
890                                dev->name);
891                         goto drop;
892                 case E_LST_LNK_ERR:
893                         printk(KERN_WARNING "%s: Link lost error\n",
894                                dev->name);
895                         goto drop;
896                 case E_FRM_ERR:
897                         printk(KERN_WARNING "%s: Framming Error\n",
898                                dev->name);
899                         goto drop;
900                 case E_FLG_SYN_ERR:
901                         printk(KERN_WARNING "%s: Flag sync. lost during"
902                                "packet\n", dev->name);
903                         goto drop;
904                 case E_RX_INV_BUF:
905                         printk(KERN_ERR "%s: Invalid receive buffer "
906                                "address\n", dev->name);
907                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
908                                &regs->HostCtrl);
909                         wmb();
910                         break;
911                 case E_RX_INV_DSC:
912                         printk(KERN_ERR "%s: Invalid receive descriptor "
913                                "address\n", dev->name);
914                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
915                                &regs->HostCtrl);
916                         wmb();
917                         break;
918                 case E_RNG_BLK:
919                         printk(KERN_ERR "%s: Invalid ring block\n",
920                                dev->name);
921                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
922                                &regs->HostCtrl);
923                         wmb();
924                         break;
925                 drop:
926                         /* Label packet to be dropped.
927                          * Actual dropping occurs in rx
928                          * handling.
929                          *
930                          * The index of packet we get to drop is
931                          * the index of the packet following
932                          * the bad packet. -kbf
933                          */
934                         {
935                                 u16 index = rrpriv->evt_ring[eidx].index;
936                                 index = (index + (RX_RING_ENTRIES - 1)) %
937                                         RX_RING_ENTRIES;
938                                 rrpriv->rx_ring[index].mode |=
939                                         (PACKET_BAD | PACKET_END);
940                         }
941                         break;
942                 default:
943                         printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
944                                dev->name, rrpriv->evt_ring[eidx].code);
945                 }
946                 eidx = (eidx + 1) % EVT_RING_ENTRIES;
947         }
948
949         rrpriv->info->evt_ctrl.pi = eidx;
950         wmb();
951         return eidx;
952 }
953
954
955 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
956 {
957         struct rr_private *rrpriv = netdev_priv(dev);
958         struct rr_regs __iomem *regs = rrpriv->regs;
959
960         do {
961                 struct rx_desc *desc;
962                 u32 pkt_len;
963
964                 desc = &(rrpriv->rx_ring[index]);
965                 pkt_len = desc->size;
966 #if (DEBUG > 2)
967                 printk("index %i, rxlimit %i\n", index, rxlimit);
968                 printk("len %x, mode %x\n", pkt_len, desc->mode);
969 #endif
970                 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
971                         dev->stats.rx_dropped++;
972                         goto defer;
973                 }
974
975                 if (pkt_len > 0){
976                         struct sk_buff *skb, *rx_skb;
977
978                         rx_skb = rrpriv->rx_skbuff[index];
979
980                         if (pkt_len < PKT_COPY_THRESHOLD) {
981                                 skb = alloc_skb(pkt_len, GFP_ATOMIC);
982                                 if (skb == NULL){
983                                         printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
984                                         dev->stats.rx_dropped++;
985                                         goto defer;
986                                 } else {
987                                         pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
988                                                                     desc->addr.addrlo,
989                                                                     pkt_len,
990                                                                     PCI_DMA_FROMDEVICE);
991
992                                         memcpy(skb_put(skb, pkt_len),
993                                                rx_skb->data, pkt_len);
994
995                                         pci_dma_sync_single_for_device(rrpriv->pci_dev,
996                                                                        desc->addr.addrlo,
997                                                                        pkt_len,
998                                                                        PCI_DMA_FROMDEVICE);
999                                 }
1000                         }else{
1001                                 struct sk_buff *newskb;
1002
1003                                 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
1004                                         GFP_ATOMIC);
1005                                 if (newskb){
1006                                         dma_addr_t addr;
1007
1008                                         pci_unmap_single(rrpriv->pci_dev,
1009                                                 desc->addr.addrlo, dev->mtu +
1010                                                 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1011                                         skb = rx_skb;
1012                                         skb_put(skb, pkt_len);
1013                                         rrpriv->rx_skbuff[index] = newskb;
1014                                         addr = pci_map_single(rrpriv->pci_dev,
1015                                                 newskb->data,
1016                                                 dev->mtu + HIPPI_HLEN,
1017                                                 PCI_DMA_FROMDEVICE);
1018                                         set_rraddr(&desc->addr, addr);
1019                                 } else {
1020                                         printk("%s: Out of memory, deferring "
1021                                                "packet\n", dev->name);
1022                                         dev->stats.rx_dropped++;
1023                                         goto defer;
1024                                 }
1025                         }
1026                         skb->protocol = hippi_type_trans(skb, dev);
1027
1028                         netif_rx(skb);          /* send it up */
1029
1030                         dev->last_rx = jiffies;
1031                         dev->stats.rx_packets++;
1032                         dev->stats.rx_bytes += pkt_len;
1033                 }
1034         defer:
1035                 desc->mode = 0;
1036                 desc->size = dev->mtu + HIPPI_HLEN;
1037
1038                 if ((index & 7) == 7)
1039                         writel(index, &regs->IpRxPi);
1040
1041                 index = (index + 1) % RX_RING_ENTRIES;
1042         } while(index != rxlimit);
1043
1044         rrpriv->cur_rx = index;
1045         wmb();
1046 }
1047
1048
1049 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1050 {
1051         struct rr_private *rrpriv;
1052         struct rr_regs __iomem *regs;
1053         struct net_device *dev = (struct net_device *)dev_id;
1054         u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1055
1056         rrpriv = netdev_priv(dev);
1057         regs = rrpriv->regs;
1058
1059         if (!(readl(&regs->HostCtrl) & RR_INT))
1060                 return IRQ_NONE;
1061
1062         spin_lock(&rrpriv->lock);
1063
1064         prodidx = readl(&regs->EvtPrd);
1065         txcsmr = (prodidx >> 8) & 0xff;
1066         rxlimit = (prodidx >> 16) & 0xff;
1067         prodidx &= 0xff;
1068
1069 #if (DEBUG > 2)
1070         printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1071                prodidx, rrpriv->info->evt_ctrl.pi);
1072 #endif
1073         /*
1074          * Order here is important.  We must handle events
1075          * before doing anything else in order to catch
1076          * such things as LLRC errors, etc -kbf
1077          */
1078
1079         eidx = rrpriv->info->evt_ctrl.pi;
1080         if (prodidx != eidx)
1081                 eidx = rr_handle_event(dev, prodidx, eidx);
1082
1083         rxindex = rrpriv->cur_rx;
1084         if (rxindex != rxlimit)
1085                 rx_int(dev, rxlimit, rxindex);
1086
1087         txcon = rrpriv->dirty_tx;
1088         if (txcsmr != txcon) {
1089                 do {
1090                         /* Due to occational firmware TX producer/consumer out
1091                          * of sync. error need to check entry in ring -kbf
1092                          */
1093                         if(rrpriv->tx_skbuff[txcon]){
1094                                 struct tx_desc *desc;
1095                                 struct sk_buff *skb;
1096
1097                                 desc = &(rrpriv->tx_ring[txcon]);
1098                                 skb = rrpriv->tx_skbuff[txcon];
1099
1100                                 dev->stats.tx_packets++;
1101                                 dev->stats.tx_bytes += skb->len;
1102
1103                                 pci_unmap_single(rrpriv->pci_dev,
1104                                                  desc->addr.addrlo, skb->len,
1105                                                  PCI_DMA_TODEVICE);
1106                                 dev_kfree_skb_irq(skb);
1107
1108                                 rrpriv->tx_skbuff[txcon] = NULL;
1109                                 desc->size = 0;
1110                                 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1111                                 desc->mode = 0;
1112                         }
1113                         txcon = (txcon + 1) % TX_RING_ENTRIES;
1114                 } while (txcsmr != txcon);
1115                 wmb();
1116
1117                 rrpriv->dirty_tx = txcon;
1118                 if (rrpriv->tx_full && rr_if_busy(dev) &&
1119                     (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1120                      != rrpriv->dirty_tx)){
1121                         rrpriv->tx_full = 0;
1122                         netif_wake_queue(dev);
1123                 }
1124         }
1125
1126         eidx |= ((txcsmr << 8) | (rxlimit << 16));
1127         writel(eidx, &regs->EvtCon);
1128         wmb();
1129
1130         spin_unlock(&rrpriv->lock);
1131         return IRQ_HANDLED;
1132 }
1133
1134 static inline void rr_raz_tx(struct rr_private *rrpriv,
1135                              struct net_device *dev)
1136 {
1137         int i;
1138
1139         for (i = 0; i < TX_RING_ENTRIES; i++) {
1140                 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1141
1142                 if (skb) {
1143                         struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1144
1145                         pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1146                                 skb->len, PCI_DMA_TODEVICE);
1147                         desc->size = 0;
1148                         set_rraddr(&desc->addr, 0);
1149                         dev_kfree_skb(skb);
1150                         rrpriv->tx_skbuff[i] = NULL;
1151                 }
1152         }
1153 }
1154
1155
1156 static inline void rr_raz_rx(struct rr_private *rrpriv,
1157                              struct net_device *dev)
1158 {
1159         int i;
1160
1161         for (i = 0; i < RX_RING_ENTRIES; i++) {
1162                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1163
1164                 if (skb) {
1165                         struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1166
1167                         pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1168                                 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1169                         desc->size = 0;
1170                         set_rraddr(&desc->addr, 0);
1171                         dev_kfree_skb(skb);
1172                         rrpriv->rx_skbuff[i] = NULL;
1173                 }
1174         }
1175 }
1176
1177 static void rr_timer(unsigned long data)
1178 {
1179         struct net_device *dev = (struct net_device *)data;
1180         struct rr_private *rrpriv = netdev_priv(dev);
1181         struct rr_regs __iomem *regs = rrpriv->regs;
1182         unsigned long flags;
1183
1184         if (readl(&regs->HostCtrl) & NIC_HALTED){
1185                 printk("%s: Restarting nic\n", dev->name);
1186                 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1187                 memset(rrpriv->info, 0, sizeof(struct rr_info));
1188                 wmb();
1189
1190                 rr_raz_tx(rrpriv, dev);
1191                 rr_raz_rx(rrpriv, dev);
1192
1193                 if (rr_init1(dev)) {
1194                         spin_lock_irqsave(&rrpriv->lock, flags);
1195                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1196                                &regs->HostCtrl);
1197                         spin_unlock_irqrestore(&rrpriv->lock, flags);
1198                 }
1199         }
1200         rrpriv->timer.expires = RUN_AT(5*HZ);
1201         add_timer(&rrpriv->timer);
1202 }
1203
1204
1205 static int rr_open(struct net_device *dev)
1206 {
1207         struct rr_private *rrpriv = netdev_priv(dev);
1208         struct pci_dev *pdev = rrpriv->pci_dev;
1209         struct rr_regs __iomem *regs;
1210         int ecode = 0;
1211         unsigned long flags;
1212         dma_addr_t dma_addr;
1213
1214         regs = rrpriv->regs;
1215
1216         if (rrpriv->fw_rev < 0x00020000) {
1217                 printk(KERN_WARNING "%s: trying to configure device with "
1218                        "obsolete firmware\n", dev->name);
1219                 ecode = -EBUSY;
1220                 goto error;
1221         }
1222
1223         rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1224                                                256 * sizeof(struct ring_ctrl),
1225                                                &dma_addr);
1226         if (!rrpriv->rx_ctrl) {
1227                 ecode = -ENOMEM;
1228                 goto error;
1229         }
1230         rrpriv->rx_ctrl_dma = dma_addr;
1231         memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1232
1233         rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1234                                             &dma_addr);
1235         if (!rrpriv->info) {
1236                 ecode = -ENOMEM;
1237                 goto error;
1238         }
1239         rrpriv->info_dma = dma_addr;
1240         memset(rrpriv->info, 0, sizeof(struct rr_info));
1241         wmb();
1242
1243         spin_lock_irqsave(&rrpriv->lock, flags);
1244         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1245         readl(&regs->HostCtrl);
1246         spin_unlock_irqrestore(&rrpriv->lock, flags);
1247
1248         if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1249                 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1250                        dev->name, dev->irq);
1251                 ecode = -EAGAIN;
1252                 goto error;
1253         }
1254
1255         if ((ecode = rr_init1(dev)))
1256                 goto error;
1257
1258         /* Set the timer to switch to check for link beat and perhaps switch
1259            to an alternate media type. */
1260         init_timer(&rrpriv->timer);
1261         rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1262         rrpriv->timer.data = (unsigned long)dev;
1263         rrpriv->timer.function = &rr_timer;               /* timer handler */
1264         add_timer(&rrpriv->timer);
1265
1266         netif_start_queue(dev);
1267
1268         return ecode;
1269
1270  error:
1271         spin_lock_irqsave(&rrpriv->lock, flags);
1272         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1273         spin_unlock_irqrestore(&rrpriv->lock, flags);
1274
1275         if (rrpriv->info) {
1276                 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1277                                     rrpriv->info_dma);
1278                 rrpriv->info = NULL;
1279         }
1280         if (rrpriv->rx_ctrl) {
1281                 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1282                                     rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1283                 rrpriv->rx_ctrl = NULL;
1284         }
1285
1286         netif_stop_queue(dev);
1287
1288         return ecode;
1289 }
1290
1291
1292 static void rr_dump(struct net_device *dev)
1293 {
1294         struct rr_private *rrpriv;
1295         struct rr_regs __iomem *regs;
1296         u32 index, cons;
1297         short i;
1298         int len;
1299
1300         rrpriv = netdev_priv(dev);
1301         regs = rrpriv->regs;
1302
1303         printk("%s: dumping NIC TX rings\n", dev->name);
1304
1305         printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1306                readl(&regs->RxPrd), readl(&regs->TxPrd),
1307                readl(&regs->EvtPrd), readl(&regs->TxPi),
1308                rrpriv->info->tx_ctrl.pi);
1309
1310         printk("Error code 0x%x\n", readl(&regs->Fail1));
1311
1312         index = (((readl(&regs->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES;
1313         cons = rrpriv->dirty_tx;
1314         printk("TX ring index %i, TX consumer %i\n",
1315                index, cons);
1316
1317         if (rrpriv->tx_skbuff[index]){
1318                 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1319                 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1320                 for (i = 0; i < len; i++){
1321                         if (!(i & 7))
1322                                 printk("\n");
1323                         printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1324                 }
1325                 printk("\n");
1326         }
1327
1328         if (rrpriv->tx_skbuff[cons]){
1329                 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1330                 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1331                 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1332                        rrpriv->tx_ring[cons].mode,
1333                        rrpriv->tx_ring[cons].size,
1334                        (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1335                        (unsigned long)rrpriv->tx_skbuff[cons]->data,
1336                        (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1337                 for (i = 0; i < len; i++){
1338                         if (!(i & 7))
1339                                 printk("\n");
1340                         printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1341                 }
1342                 printk("\n");
1343         }
1344
1345         printk("dumping TX ring info:\n");
1346         for (i = 0; i < TX_RING_ENTRIES; i++)
1347                 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1348                        rrpriv->tx_ring[i].mode,
1349                        rrpriv->tx_ring[i].size,
1350                        (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1351
1352 }
1353
1354
1355 static int rr_close(struct net_device *dev)
1356 {
1357         struct rr_private *rrpriv;
1358         struct rr_regs __iomem *regs;
1359         unsigned long flags;
1360         u32 tmp;
1361         short i;
1362
1363         netif_stop_queue(dev);
1364
1365         rrpriv = netdev_priv(dev);
1366         regs = rrpriv->regs;
1367
1368         /*
1369          * Lock to make sure we are not cleaning up while another CPU
1370          * is handling interrupts.
1371          */
1372         spin_lock_irqsave(&rrpriv->lock, flags);
1373
1374         tmp = readl(&regs->HostCtrl);
1375         if (tmp & NIC_HALTED){
1376                 printk("%s: NIC already halted\n", dev->name);
1377                 rr_dump(dev);
1378         }else{
1379                 tmp |= HALT_NIC | RR_CLEAR_INT;
1380                 writel(tmp, &regs->HostCtrl);
1381                 readl(&regs->HostCtrl);
1382         }
1383
1384         rrpriv->fw_running = 0;
1385
1386         del_timer_sync(&rrpriv->timer);
1387
1388         writel(0, &regs->TxPi);
1389         writel(0, &regs->IpRxPi);
1390
1391         writel(0, &regs->EvtCon);
1392         writel(0, &regs->EvtPrd);
1393
1394         for (i = 0; i < CMD_RING_ENTRIES; i++)
1395                 writel(0, &regs->CmdRing[i]);
1396
1397         rrpriv->info->tx_ctrl.entries = 0;
1398         rrpriv->info->cmd_ctrl.pi = 0;
1399         rrpriv->info->evt_ctrl.pi = 0;
1400         rrpriv->rx_ctrl[4].entries = 0;
1401
1402         rr_raz_tx(rrpriv, dev);
1403         rr_raz_rx(rrpriv, dev);
1404
1405         pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
1406                             rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1407         rrpriv->rx_ctrl = NULL;
1408
1409         pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
1410                             rrpriv->info, rrpriv->info_dma);
1411         rrpriv->info = NULL;
1412
1413         free_irq(dev->irq, dev);
1414         spin_unlock_irqrestore(&rrpriv->lock, flags);
1415
1416         return 0;
1417 }
1418
1419
1420 static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev)
1421 {
1422         struct rr_private *rrpriv = netdev_priv(dev);
1423         struct rr_regs __iomem *regs = rrpriv->regs;
1424         struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1425         struct ring_ctrl *txctrl;
1426         unsigned long flags;
1427         u32 index, len = skb->len;
1428         u32 *ifield;
1429         struct sk_buff *new_skb;
1430
1431         if (readl(&regs->Mode) & FATAL_ERR)
1432                 printk("error codes Fail1 %02x, Fail2 %02x\n",
1433                        readl(&regs->Fail1), readl(&regs->Fail2));
1434
1435         /*
1436          * We probably need to deal with tbusy here to prevent overruns.
1437          */
1438
1439         if (skb_headroom(skb) < 8){
1440                 printk("incoming skb too small - reallocating\n");
1441                 if (!(new_skb = dev_alloc_skb(len + 8))) {
1442                         dev_kfree_skb(skb);
1443                         netif_wake_queue(dev);
1444                         return -EBUSY;
1445                 }
1446                 skb_reserve(new_skb, 8);
1447                 skb_put(new_skb, len);
1448                 skb_copy_from_linear_data(skb, new_skb->data, len);
1449                 dev_kfree_skb(skb);
1450                 skb = new_skb;
1451         }
1452
1453         ifield = (u32 *)skb_push(skb, 8);
1454
1455         ifield[0] = 0;
1456         ifield[1] = hcb->ifield;
1457
1458         /*
1459          * We don't need the lock before we are actually going to start
1460          * fiddling with the control blocks.
1461          */
1462         spin_lock_irqsave(&rrpriv->lock, flags);
1463
1464         txctrl = &rrpriv->info->tx_ctrl;
1465
1466         index = txctrl->pi;
1467
1468         rrpriv->tx_skbuff[index] = skb;
1469         set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1470                 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1471         rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1472         rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1473         txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1474         wmb();
1475         writel(txctrl->pi, &regs->TxPi);
1476
1477         if (txctrl->pi == rrpriv->dirty_tx){
1478                 rrpriv->tx_full = 1;
1479                 netif_stop_queue(dev);
1480         }
1481
1482         spin_unlock_irqrestore(&rrpriv->lock, flags);
1483
1484         dev->trans_start = jiffies;
1485         return 0;
1486 }
1487
1488
1489 /*
1490  * Read the firmware out of the EEPROM and put it into the SRAM
1491  * (or from user space - later)
1492  *
1493  * This operation requires the NIC to be halted and is performed with
1494  * interrupts disabled and with the spinlock hold.
1495  */
1496 static int rr_load_firmware(struct net_device *dev)
1497 {
1498         struct rr_private *rrpriv;
1499         struct rr_regs __iomem *regs;
1500         unsigned long eptr, segptr;
1501         int i, j;
1502         u32 localctrl, sptr, len, tmp;
1503         u32 p2len, p2size, nr_seg, revision, io, sram_size;
1504         struct eeprom *hw = NULL;
1505
1506         rrpriv = netdev_priv(dev);
1507         regs = rrpriv->regs;
1508
1509         if (dev->flags & IFF_UP)
1510                 return -EBUSY;
1511
1512         if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1513                 printk("%s: Trying to load firmware to a running NIC.\n",
1514                        dev->name);
1515                 return -EBUSY;
1516         }
1517
1518         localctrl = readl(&regs->LocalCtrl);
1519         writel(0, &regs->LocalCtrl);
1520
1521         writel(0, &regs->EvtPrd);
1522         writel(0, &regs->RxPrd);
1523         writel(0, &regs->TxPrd);
1524
1525         /*
1526          * First wipe the entire SRAM, otherwise we might run into all
1527          * kinds of trouble ... sigh, this took almost all afternoon
1528          * to track down ;-(
1529          */
1530         io = readl(&regs->ExtIo);
1531         writel(0, &regs->ExtIo);
1532         sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
1533
1534         for (i = 200; i < sram_size / 4; i++){
1535                 writel(i * 4, &regs->WinBase);
1536                 mb();
1537                 writel(0, &regs->WinData);
1538                 mb();
1539         }
1540         writel(io, &regs->ExtIo);
1541         mb();
1542
1543         eptr = (unsigned long)rr_read_eeprom_word(rrpriv,
1544                                                &hw->rncd_info.AddrRunCodeSegs);
1545         eptr = ((eptr & 0x1fffff) >> 3);
1546
1547         p2len = rr_read_eeprom_word(rrpriv, (void *)(0x83*4));
1548         p2len = (p2len << 2);
1549         p2size = rr_read_eeprom_word(rrpriv, (void *)(0x84*4));
1550         p2size = ((p2size & 0x1fffff) >> 3);
1551
1552         if ((eptr < p2size) || (eptr > (p2size + p2len))){
1553                 printk("%s: eptr is invalid\n", dev->name);
1554                 goto out;
1555         }
1556
1557         revision = rr_read_eeprom_word(rrpriv, &hw->manf.HeaderFmt);
1558
1559         if (revision != 1){
1560                 printk("%s: invalid firmware format (%i)\n",
1561                        dev->name, revision);
1562                 goto out;
1563         }
1564
1565         nr_seg = rr_read_eeprom_word(rrpriv, (void *)eptr);
1566         eptr +=4;
1567 #if (DEBUG > 1)
1568         printk("%s: nr_seg %i\n", dev->name, nr_seg);
1569 #endif
1570
1571         for (i = 0; i < nr_seg; i++){
1572                 sptr = rr_read_eeprom_word(rrpriv, (void *)eptr);
1573                 eptr += 4;
1574                 len = rr_read_eeprom_word(rrpriv, (void *)eptr);
1575                 eptr += 4;
1576                 segptr = (unsigned long)rr_read_eeprom_word(rrpriv, (void *)eptr);
1577                 segptr = ((segptr & 0x1fffff) >> 3);
1578                 eptr += 4;
1579 #if (DEBUG > 1)
1580                 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1581                        dev->name, i, sptr, len, segptr);
1582 #endif
1583                 for (j = 0; j < len; j++){
1584                         tmp = rr_read_eeprom_word(rrpriv, (void *)segptr);
1585                         writel(sptr, &regs->WinBase);
1586                         mb();
1587                         writel(tmp, &regs->WinData);
1588                         mb();
1589                         segptr += 4;
1590                         sptr += 4;
1591                 }
1592         }
1593
1594 out:
1595         writel(localctrl, &regs->LocalCtrl);
1596         mb();
1597         return 0;
1598 }
1599
1600
1601 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1602 {
1603         struct rr_private *rrpriv;
1604         unsigned char *image, *oldimage;
1605         unsigned long flags;
1606         unsigned int i;
1607         int error = -EOPNOTSUPP;
1608
1609         rrpriv = netdev_priv(dev);
1610
1611         switch(cmd){
1612         case SIOCRRGFW:
1613                 if (!capable(CAP_SYS_RAWIO)){
1614                         return -EPERM;
1615                 }
1616
1617                 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1618                 if (!image){
1619                         printk(KERN_ERR "%s: Unable to allocate memory "
1620                                "for EEPROM image\n", dev->name);
1621                         return -ENOMEM;
1622                 }
1623
1624
1625                 if (rrpriv->fw_running){
1626                         printk("%s: Firmware already running\n", dev->name);
1627                         error = -EPERM;
1628                         goto gf_out;
1629                 }
1630
1631                 spin_lock_irqsave(&rrpriv->lock, flags);
1632                 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1633                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1634                 if (i != EEPROM_BYTES){
1635                         printk(KERN_ERR "%s: Error reading EEPROM\n",
1636                                dev->name);
1637                         error = -EFAULT;
1638                         goto gf_out;
1639                 }
1640                 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1641                 if (error)
1642                         error = -EFAULT;
1643         gf_out:
1644                 kfree(image);
1645                 return error;
1646
1647         case SIOCRRPFW:
1648                 if (!capable(CAP_SYS_RAWIO)){
1649                         return -EPERM;
1650                 }
1651
1652                 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1653                 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1654                 if (!image || !oldimage) {
1655                         printk(KERN_ERR "%s: Unable to allocate memory "
1656                                "for EEPROM image\n", dev->name);
1657                         error = -ENOMEM;
1658                         goto wf_out;
1659                 }
1660
1661                 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1662                 if (error) {
1663                         error = -EFAULT;
1664                         goto wf_out;
1665                 }
1666
1667                 if (rrpriv->fw_running){
1668                         printk("%s: Firmware already running\n", dev->name);
1669                         error = -EPERM;
1670                         goto wf_out;
1671                 }
1672
1673                 printk("%s: Updating EEPROM firmware\n", dev->name);
1674
1675                 spin_lock_irqsave(&rrpriv->lock, flags);
1676                 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1677                 if (error)
1678                         printk(KERN_ERR "%s: Error writing EEPROM\n",
1679                                dev->name);
1680
1681                 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1682                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1683
1684                 if (i != EEPROM_BYTES)
1685                         printk(KERN_ERR "%s: Error reading back EEPROM "
1686                                "image\n", dev->name);
1687
1688                 error = memcmp(image, oldimage, EEPROM_BYTES);
1689                 if (error){
1690                         printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1691                                dev->name);
1692                         error = -EFAULT;
1693                 }
1694         wf_out:
1695                 kfree(oldimage);
1696                 kfree(image);
1697                 return error;
1698
1699         case SIOCRRID:
1700                 return put_user(0x52523032, (int __user *)rq->ifr_data);
1701         default:
1702                 return error;
1703         }
1704 }
1705
1706 static struct pci_device_id rr_pci_tbl[] = {
1707         { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1708                 PCI_ANY_ID, PCI_ANY_ID, },
1709         { 0,}
1710 };
1711 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1712
1713 static struct pci_driver rr_driver = {
1714         .name           = "rrunner",
1715         .id_table       = rr_pci_tbl,
1716         .probe          = rr_init_one,
1717         .remove         = __devexit_p(rr_remove_one),
1718 };
1719
1720 static int __init rr_init_module(void)
1721 {
1722         return pci_register_driver(&rr_driver);
1723 }
1724
1725 static void __exit rr_cleanup_module(void)
1726 {
1727         pci_unregister_driver(&rr_driver);
1728 }
1729
1730 module_init(rr_init_module);
1731 module_exit(rr_cleanup_module);
1732
1733 /*
1734  * Local variables:
1735  * compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c rrunner.c"
1736  * End:
1737  */