2 * Copyright 2001 MontaVista Software Inc.
3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4 * Copyright (c) 2003, 2004 Maciej W. Rozycki
6 * Common time service routines for MIPS machines. See
7 * Documentation/mips/time.README.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
14 #include <linux/config.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/param.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/smp.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/module.h>
28 #include <asm/bootinfo.h>
29 #include <asm/cache.h>
30 #include <asm/compiler.h>
32 #include <asm/cpu-features.h>
33 #include <asm/div64.h>
34 #include <asm/sections.h>
38 * The integer part of the number of usecs per jiffy is taken from tick,
39 * but the fractional part is not recorded, so we calculate it using the
40 * initial value of HZ. This aids systems where tick isn't really an
41 * integer (e.g. for HZ = 128).
43 #define USECS_PER_JIFFY TICK_SIZE
44 #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
46 #define TICK_SIZE (tick_nsec / 1000)
51 extern volatile unsigned long wall_jiffies;
53 DEFINE_SPINLOCK(rtc_lock);
56 * By default we provide the null RTC ops
58 static unsigned long null_rtc_get_time(void)
60 return mktime(2000, 1, 1, 0, 0, 0);
63 static int null_rtc_set_time(unsigned long sec)
68 unsigned long (*rtc_get_time)(void) = null_rtc_get_time;
69 int (*rtc_set_time)(unsigned long) = null_rtc_set_time;
70 int (*rtc_set_mmss)(unsigned long);
73 /* usecs per counter cycle, shifted to left by 32 bits */
74 static unsigned int sll32_usecs_per_cycle;
76 /* how many counter cycles in a jiffy */
77 static unsigned long cycles_per_jiffy __read_mostly;
79 /* Cycle counter value at the previous timer interrupt.. */
80 static unsigned int timerhi, timerlo;
82 /* expirelo is the count value for next CPU timer interrupt */
83 static unsigned int expirelo;
87 * Null timer ack for systems not needing one (e.g. i8254).
89 static void null_timer_ack(void) { /* nothing */ }
92 * Null high precision timer functions for systems lacking one.
94 static unsigned int null_hpt_read(void)
99 static void null_hpt_init(unsigned int count)
106 * Timer ack for an R4k-compatible timer of a known frequency.
108 static void c0_timer_ack(void)
112 #ifndef CONFIG_SOC_PNX8550 /* pnx8550 resets to zero */
113 /* Ack this timer interrupt and set the next one. */
114 expirelo += cycles_per_jiffy;
116 write_c0_compare(expirelo);
118 /* Check to see if we have missed any timer interrupts. */
119 count = read_c0_count();
120 if ((count - expirelo) < 0x7fffffff) {
121 /* missed_timer_count++; */
122 expirelo = count + cycles_per_jiffy;
123 write_c0_compare(expirelo);
128 * High precision timer functions for a R4k-compatible timer.
130 static unsigned int c0_hpt_read(void)
132 return read_c0_count();
135 /* For use solely as a high precision timer. */
136 static void c0_hpt_init(unsigned int count)
138 write_c0_count(read_c0_count() - count);
141 /* For use both as a high precision timer and an interrupt source. */
142 static void c0_hpt_timer_init(unsigned int count)
144 count = read_c0_count() - count;
145 expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
146 write_c0_count(expirelo - cycles_per_jiffy);
147 write_c0_compare(expirelo);
148 write_c0_count(count);
151 int (*mips_timer_state)(void);
152 void (*mips_timer_ack)(void);
153 unsigned int (*mips_hpt_read)(void);
154 void (*mips_hpt_init)(unsigned int);
158 * This version of gettimeofday has microsecond resolution and better than
159 * microsecond precision on fast machines with cycle counter.
161 void do_gettimeofday(struct timeval *tv)
165 unsigned long usec, sec;
166 unsigned long max_ntp_tick;
169 seq = read_seqbegin(&xtime_lock);
171 usec = do_gettimeoffset();
173 lost = jiffies - wall_jiffies;
176 * If time_adjust is negative then NTP is slowing the clock
177 * so make sure not to go into next possible interval.
178 * Better to lose some accuracy than have time go backwards..
180 if (unlikely(time_adjust < 0)) {
181 max_ntp_tick = (USEC_PER_SEC / HZ) - tickadj;
182 usec = min(usec, max_ntp_tick);
185 usec += lost * max_ntp_tick;
186 } else if (unlikely(lost))
187 usec += lost * (USEC_PER_SEC / HZ);
190 usec += (xtime.tv_nsec / 1000);
192 } while (read_seqretry(&xtime_lock, seq));
194 while (usec >= 1000000) {
203 EXPORT_SYMBOL(do_gettimeofday);
205 int do_settimeofday(struct timespec *tv)
207 time_t wtm_sec, sec = tv->tv_sec;
208 long wtm_nsec, nsec = tv->tv_nsec;
210 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
213 write_seqlock_irq(&xtime_lock);
216 * This is revolting. We need to set "xtime" correctly. However,
217 * the value in this location is the value at the most recent update
218 * of wall time. Discover what correction gettimeofday() would have
219 * made, and then undo it!
221 nsec -= do_gettimeoffset() * NSEC_PER_USEC;
222 nsec -= (jiffies - wall_jiffies) * tick_nsec;
224 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
225 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
227 set_normalized_timespec(&xtime, sec, nsec);
228 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
231 write_sequnlock_irq(&xtime_lock);
236 EXPORT_SYMBOL(do_settimeofday);
239 * Gettimeoffset routines. These routines returns the time duration
240 * since last timer interrupt in usecs.
242 * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
243 * Otherwise use calibrate_gettimeoffset()
245 * If the CPU does not have the counter register, you can either supply
246 * your own gettimeoffset() routine, or use null_gettimeoffset(), which
247 * gives the same resolution as HZ.
250 static unsigned long null_gettimeoffset(void)
256 /* The function pointer to one of the gettimeoffset funcs. */
257 unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
260 static unsigned long fixed_rate_gettimeoffset(void)
265 /* Get last timer tick in absolute kernel time */
266 count = mips_hpt_read();
268 /* .. relative to previous jiffy (32 bits is enough) */
271 __asm__("multu %1,%2"
273 : "r" (count), "r" (sll32_usecs_per_cycle)
274 : "lo", GCC_REG_ACCUM);
277 * Due to possible jiffies inconsistencies, we need to check
278 * the result so that we'll get a timer that is monotonic.
280 if (res >= USECS_PER_JIFFY)
281 res = USECS_PER_JIFFY - 1;
288 * Cached "1/(clocks per usec) * 2^32" value.
289 * It has to be recalculated once each jiffy.
291 static unsigned long cached_quotient;
293 /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
294 static unsigned long last_jiffies;
297 * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
299 static unsigned long calibrate_div32_gettimeoffset(void)
302 unsigned long res, tmp;
303 unsigned long quotient;
307 quotient = cached_quotient;
309 if (last_jiffies != tmp) {
311 if (last_jiffies != 0) {
313 do_div64_32(r0, timerhi, timerlo, tmp);
314 do_div64_32(quotient, USECS_PER_JIFFY,
315 USECS_PER_JIFFY_FRAC, r0);
316 cached_quotient = quotient;
320 /* Get last timer tick in absolute kernel time */
321 count = mips_hpt_read();
323 /* .. relative to previous jiffy (32 bits is enough) */
326 __asm__("multu %1,%2"
328 : "r" (count), "r" (quotient)
329 : "lo", GCC_REG_ACCUM);
332 * Due to possible jiffies inconsistencies, we need to check
333 * the result so that we'll get a timer that is monotonic.
335 if (res >= USECS_PER_JIFFY)
336 res = USECS_PER_JIFFY - 1;
341 static unsigned long calibrate_div64_gettimeoffset(void)
344 unsigned long res, tmp;
345 unsigned long quotient;
349 quotient = cached_quotient;
351 if (last_jiffies != tmp) {
355 __asm__(".set push\n\t"
367 : "=&r" (quotient), "=&r" (r0)
368 : "r" (timerhi), "m" (timerlo),
369 "r" (tmp), "r" (USECS_PER_JIFFY),
370 "r" (USECS_PER_JIFFY_FRAC)
371 : "hi", "lo", GCC_REG_ACCUM);
372 cached_quotient = quotient;
376 /* Get last timer tick in absolute kernel time */
377 count = mips_hpt_read();
379 /* .. relative to previous jiffy (32 bits is enough) */
382 __asm__("multu %1,%2"
384 : "r" (count), "r" (quotient)
385 : "lo", GCC_REG_ACCUM);
388 * Due to possible jiffies inconsistencies, we need to check
389 * the result so that we'll get a timer that is monotonic.
391 if (res >= USECS_PER_JIFFY)
392 res = USECS_PER_JIFFY - 1;
398 /* last time when xtime and rtc are sync'ed up */
399 static long last_rtc_update;
402 * local_timer_interrupt() does profiling and process accounting
403 * on a per-CPU basis.
405 * In UP mode, it is invoked from the (global) timer_interrupt.
407 * In SMP mode, it might invoked by per-CPU timer interrupt, or
408 * a broadcasted inter-processor interrupt which itself is triggered
409 * by the global timer interrupt.
411 void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
414 profile_tick(CPU_PROFILING, regs);
415 update_process_times(user_mode(regs));
419 * High-level timer interrupt service routines. This function
420 * is set as irqaction->handler and is invoked through do_IRQ.
422 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
427 write_seqlock(&xtime_lock);
429 count = mips_hpt_read();
432 /* Update timerhi/timerlo for intra-jiffy calibration. */
433 timerhi += count < timerlo; /* Wrap around */
437 * call the generic timer interrupt handling
442 * If we have an externally synchronized Linux clock, then update
443 * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be
444 * called as close as possible to 500 ms before the new second starts.
447 xtime.tv_sec > last_rtc_update + 660 &&
448 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
449 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
450 if (rtc_set_mmss(xtime.tv_sec) == 0) {
451 last_rtc_update = xtime.tv_sec;
453 /* do it again in 60 s */
454 last_rtc_update = xtime.tv_sec - 600;
459 * If jiffies has overflown in this timer_interrupt, we must
460 * update the timer[hi]/[lo] to make fast gettimeoffset funcs
461 * quotient calc still valid. -arca
463 * The first timer interrupt comes late as interrupts are
464 * enabled long after timers are initialized. Therefore the
465 * high precision timer is fast, leading to wrong gettimeoffset()
466 * calculations. We deal with it by setting it based on the
467 * number of its ticks between the second and the third interrupt.
468 * That is still somewhat imprecise, but it's a good estimate.
473 static unsigned int prev_count;
474 static int hpt_initialized;
478 timerhi = timerlo = 0;
479 mips_hpt_init(count);
485 if (!hpt_initialized) {
486 unsigned int c3 = 3 * (count - prev_count);
490 mips_hpt_init(count - c3);
499 write_sequnlock(&xtime_lock);
502 * In UP mode, we call local_timer_interrupt() to do profiling
503 * and process accouting.
505 * In SMP mode, local_timer_interrupt() is invoked by appropriate
506 * low-level local timer interrupt handler.
508 local_timer_interrupt(irq, dev_id, regs);
513 int null_perf_irq(struct pt_regs *regs)
518 int (*perf_irq)(struct pt_regs *regs) = null_perf_irq;
520 EXPORT_SYMBOL(null_perf_irq);
521 EXPORT_SYMBOL(perf_irq);
523 asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
525 int r2 = cpu_has_mips_r2;
528 kstat_this_cpu.irqs[irq]++;
532 * Before R2 of the architecture there was no way to see if a
533 * performance counter interrupt was pending, so we have to run the
534 * performance counter interrupt handler anyway.
536 if (!r2 || (read_c0_cause() & (1 << 26)))
540 /* we keep interrupt disabled all the time */
541 if (!r2 || (read_c0_cause() & (1 << 30)))
542 timer_interrupt(irq, NULL, regs);
548 asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
551 if (smp_processor_id() != 0)
552 kstat_this_cpu.irqs[irq]++;
554 /* we keep interrupt disabled all the time */
555 local_timer_interrupt(irq, NULL, regs);
561 * time_init() - it does the following things.
563 * 1) board_time_init() -
564 * a) (optional) set up RTC routines,
565 * b) (optional) calibrate and set the mips_hpt_frequency
566 * (only needed if you intended to use fixed_rate_gettimeoffset
567 * or use cpu counter as timer interrupt source)
568 * 2) setup xtime based on rtc_get_time().
569 * 3) choose a appropriate gettimeoffset routine.
570 * 4) calculate a couple of cached variables for later usage
571 * 5) board_timer_setup() -
572 * a) (optional) over-write any choices made above by time_init().
573 * b) machine specific code should setup the timer irqaction.
574 * c) enable the timer interrupt
577 void (*board_time_init)(void);
578 void (*board_timer_setup)(struct irqaction *irq);
580 unsigned int mips_hpt_frequency;
582 static struct irqaction timer_irqaction = {
583 .handler = timer_interrupt,
584 .flags = SA_INTERRUPT,
588 static unsigned int __init calibrate_hpt(void)
591 u32 hpt_start, hpt_end, hpt_count, hz;
593 const int loops = HZ / 10;
598 * We want to calibrate for 0.1s, but to avoid a 64-bit
599 * division we round the number of loops up to the nearest
602 while (loops > 1 << log_2_loops)
604 i = 1 << log_2_loops;
607 * Wait for a rising edge of the timer interrupt.
609 while (mips_timer_state());
610 while (!mips_timer_state());
613 * Now see how many high precision timer ticks happen
614 * during the calculated number of periods between timer
617 hpt_start = mips_hpt_read();
619 while (mips_timer_state());
620 while (!mips_timer_state());
622 hpt_end = mips_hpt_read();
624 hpt_count = hpt_end - hpt_start;
626 frequency = (u64)hpt_count * (u64)hz;
628 return frequency >> log_2_loops;
631 void __init time_init(void)
637 rtc_set_mmss = rtc_set_time;
639 xtime.tv_sec = rtc_get_time();
642 set_normalized_timespec(&wall_to_monotonic,
643 -xtime.tv_sec, -xtime.tv_nsec);
645 /* Choose appropriate high precision timer routines. */
646 if (!cpu_has_counter && !mips_hpt_read) {
647 /* No high precision timer -- sorry. */
648 mips_hpt_read = null_hpt_read;
649 mips_hpt_init = null_hpt_init;
650 } else if (!mips_hpt_frequency && !mips_timer_state) {
651 /* A high precision timer of unknown frequency. */
652 if (!mips_hpt_read) {
653 /* No external high precision timer -- use R4k. */
654 mips_hpt_read = c0_hpt_read;
655 mips_hpt_init = c0_hpt_init;
658 if (cpu_has_mips32r1 || cpu_has_mips32r2 ||
659 (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
660 (current_cpu_data.isa_level == MIPS_CPU_ISA_II))
662 * We need to calibrate the counter but we don't have
665 do_gettimeoffset = calibrate_div32_gettimeoffset;
668 * We need to calibrate the counter but we *do* have
671 do_gettimeoffset = calibrate_div64_gettimeoffset;
673 /* We know counter frequency. Or we can get it. */
674 if (!mips_hpt_read) {
675 /* No external high precision timer -- use R4k. */
676 mips_hpt_read = c0_hpt_read;
678 if (mips_timer_state)
679 mips_hpt_init = c0_hpt_init;
681 /* No external timer interrupt -- use R4k. */
682 mips_hpt_init = c0_hpt_timer_init;
683 mips_timer_ack = c0_timer_ack;
686 if (!mips_hpt_frequency)
687 mips_hpt_frequency = calibrate_hpt();
689 do_gettimeoffset = fixed_rate_gettimeoffset;
691 /* Calculate cache parameters. */
692 cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
694 /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */
695 do_div64_32(sll32_usecs_per_cycle,
696 1000000, mips_hpt_frequency / 2,
699 /* Report the high precision timer rate for a reference. */
700 printk("Using %u.%03u MHz high precision timer.\n",
701 ((mips_hpt_frequency + 500) / 1000) / 1000,
702 ((mips_hpt_frequency + 500) / 1000) % 1000);
706 /* No timer interrupt ack (e.g. i8254). */
707 mips_timer_ack = null_timer_ack;
709 /* This sets up the high precision timer for the first interrupt. */
710 mips_hpt_init(mips_hpt_read());
713 * Call board specific timer interrupt setup.
715 * this pointer must be setup in machine setup routine.
717 * Even if a machine chooses to use a low-level timer interrupt,
718 * it still needs to setup the timer_irqaction.
719 * In that case, it might be better to set timer_irqaction.handler
720 * to be NULL function so that we are sure the high-level code
721 * is not invoked accidentally.
723 board_timer_setup(&timer_irqaction);
727 #define STARTOFTIME 1970
728 #define SECDAY 86400L
729 #define SECYR (SECDAY * 365)
730 #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))
731 #define days_in_year(y) (leapyear(y) ? 366 : 365)
732 #define days_in_month(m) (month_days[(m) - 1])
734 static int month_days[12] = {
735 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
738 void to_tm(unsigned long tim, struct rtc_time *tm)
743 gday = day = tim / SECDAY;
746 /* Hours, minutes, seconds are easy */
747 tm->tm_hour = hms / 3600;
748 tm->tm_min = (hms % 3600) / 60;
749 tm->tm_sec = (hms % 3600) % 60;
751 /* Number of years in days */
752 for (i = STARTOFTIME; day >= days_in_year(i); i++)
753 day -= days_in_year(i);
756 /* Number of months in days left */
757 if (leapyear(tm->tm_year))
758 days_in_month(FEBRUARY) = 29;
759 for (i = 1; day >= days_in_month(i); i++)
760 day -= days_in_month(i);
761 days_in_month(FEBRUARY) = 28;
762 tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */
764 /* Days are what is left over (+1) from all that. */
765 tm->tm_mday = day + 1;
768 * Determine the day of week
770 tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */
773 EXPORT_SYMBOL(rtc_lock);
774 EXPORT_SYMBOL(to_tm);
775 EXPORT_SYMBOL(rtc_set_time);
776 EXPORT_SYMBOL(rtc_get_time);
778 unsigned long long sched_clock(void)
780 return (unsigned long long)jiffies*(1000000000/HZ);