2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2004 Freescale Semiconductor, Inc.
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
19 * Gianfar: AKA Lambda Draconis, "Dragon"
27 * The driver is initialized through platform_device. Structures which
28 * define the configuration needed by the board are defined in a
29 * board structure in arch/ppc/platforms (though I do not
30 * discount the possibility that other architectures could one
33 * The Gianfar Ethernet Controller uses a ring of buffer
34 * descriptors. The beginning is indicated by a register
35 * pointing to the physical address of the start of the ring.
36 * The end is determined by a "wrap" bit being set in the
37 * last descriptor of the ring.
39 * When a packet is received, the RXF bit in the
40 * IEVENT register is set, triggering an interrupt when the
41 * corresponding bit in the IMASK register is also set (if
42 * interrupt coalescing is active, then the interrupt may not
43 * happen immediately, but will wait until either a set number
44 * of frames or amount of time have passed). In NAPI, the
45 * interrupt handler will signal there is work to be done, and
46 * exit. Without NAPI, the packet(s) will be handled
47 * immediately. Both methods will start at the last known empty
48 * descriptor, and process every subsequent descriptor until there
49 * are none left with data (NAPI will stop after a set number of
50 * packets to give time to other tasks, but will eventually
51 * process all the packets). The data arrives inside a
52 * pre-allocated skb, and so after the skb is passed up to the
53 * stack, a new skb must be allocated, and the address field in
54 * the buffer descriptor must be updated to indicate this new
57 * When the kernel requests that a packet be transmitted, the
58 * driver starts where it left off last time, and points the
59 * descriptor at the buffer which was passed in. The driver
60 * then informs the DMA engine that there are packets ready to
61 * be transmitted. Once the controller is finished transmitting
62 * the packet, an interrupt may be triggered (under the same
63 * conditions as for reception, but depending on the TXF bit).
64 * The driver then cleans up the buffer.
67 #include <linux/config.h>
68 #include <linux/kernel.h>
69 #include <linux/sched.h>
70 #include <linux/string.h>
71 #include <linux/errno.h>
72 #include <linux/unistd.h>
73 #include <linux/slab.h>
74 #include <linux/interrupt.h>
75 #include <linux/init.h>
76 #include <linux/delay.h>
77 #include <linux/netdevice.h>
78 #include <linux/etherdevice.h>
79 #include <linux/skbuff.h>
80 #include <linux/if_vlan.h>
81 #include <linux/spinlock.h>
83 #include <linux/platform_device.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
91 #include <asm/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/dma-mapping.h>
94 #include <linux/crc32.h>
95 #include <linux/mii.h>
96 #include <linux/phy.h>
99 #include "gianfar_mii.h"
101 #define TX_TIMEOUT (1*HZ)
102 #define SKB_ALLOC_TIMEOUT 1000000
103 #undef BRIEF_GFAR_ERRORS
104 #undef VERBOSE_GFAR_ERRORS
106 #ifdef CONFIG_GFAR_NAPI
107 #define RECEIVE(x) netif_receive_skb(x)
109 #define RECEIVE(x) netif_rx(x)
112 const char gfar_driver_name[] = "Gianfar Ethernet";
113 const char gfar_driver_version[] = "1.3";
115 static int gfar_enet_open(struct net_device *dev);
116 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
120 static struct net_device_stats *gfar_get_stats(struct net_device *dev);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs);
126 static void adjust_link(struct net_device *dev);
127 static void init_registers(struct net_device *dev);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *pdev);
130 static int gfar_remove(struct platform_device *pdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 #ifdef CONFIG_GFAR_NAPI
135 static int gfar_poll(struct net_device *dev, int *budget);
137 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
138 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
139 static void gfar_vlan_rx_register(struct net_device *netdev,
140 struct vlan_group *grp);
141 static void gfar_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
142 void gfar_halt(struct net_device *dev);
143 void gfar_start(struct net_device *dev);
144 static void gfar_clear_exact_match(struct net_device *dev);
145 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
147 extern struct ethtool_ops gfar_ethtool_ops;
149 MODULE_AUTHOR("Freescale Semiconductor, Inc");
150 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
151 MODULE_LICENSE("GPL");
153 /* Returns 1 if incoming frames use an FCB */
154 static inline int gfar_uses_fcb(struct gfar_private *priv)
156 return (priv->vlan_enable || priv->rx_csum_enable);
159 /* Set up the ethernet device structure, private data,
160 * and anything else we need before we start */
161 static int gfar_probe(struct platform_device *pdev)
164 struct net_device *dev = NULL;
165 struct gfar_private *priv = NULL;
166 struct gianfar_platform_data *einfo;
171 einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
174 printk(KERN_ERR "gfar %d: Missing additional data!\n",
180 /* Create an ethernet device instance */
181 dev = alloc_etherdev(sizeof (*priv));
186 priv = netdev_priv(dev);
188 /* Set the info in the priv to the current info */
191 /* fill out IRQ fields */
192 if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
193 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
194 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
195 priv->interruptError = platform_get_irq_byname(pdev, "error");
197 priv->interruptTransmit = platform_get_irq(pdev, 0);
200 /* get a pointer to the register memory */
201 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
202 priv->regs = ioremap(r->start, sizeof (struct gfar));
204 if (NULL == priv->regs) {
209 spin_lock_init(&priv->lock);
211 platform_set_drvdata(pdev, dev);
213 /* Stop the DMA engine now, in case it was running before */
214 /* (The firmware could have used it, and left it running). */
215 /* To do this, we write Graceful Receive Stop and Graceful */
216 /* Transmit Stop, and then wait until the corresponding bits */
217 /* in IEVENT indicate the stops have completed. */
218 tempval = gfar_read(&priv->regs->dmactrl);
219 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
220 gfar_write(&priv->regs->dmactrl, tempval);
222 tempval = gfar_read(&priv->regs->dmactrl);
223 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
224 gfar_write(&priv->regs->dmactrl, tempval);
226 while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
229 /* Reset MAC layer */
230 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
232 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
233 gfar_write(&priv->regs->maccfg1, tempval);
235 /* Initialize MACCFG2. */
236 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
238 /* Initialize ECNTRL */
239 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
241 /* Copy the station address into the dev structure, */
242 memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
244 /* Set the dev->base_addr to the gfar reg region */
245 dev->base_addr = (unsigned long) (priv->regs);
247 SET_MODULE_OWNER(dev);
248 SET_NETDEV_DEV(dev, &pdev->dev);
250 /* Fill in the dev structure */
251 dev->open = gfar_enet_open;
252 dev->hard_start_xmit = gfar_start_xmit;
253 dev->tx_timeout = gfar_timeout;
254 dev->watchdog_timeo = TX_TIMEOUT;
255 #ifdef CONFIG_GFAR_NAPI
256 dev->poll = gfar_poll;
257 dev->weight = GFAR_DEV_WEIGHT;
259 dev->stop = gfar_close;
260 dev->get_stats = gfar_get_stats;
261 dev->change_mtu = gfar_change_mtu;
263 dev->set_multicast_list = gfar_set_multi;
265 dev->ethtool_ops = &gfar_ethtool_ops;
267 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
268 priv->rx_csum_enable = 1;
269 dev->features |= NETIF_F_IP_CSUM;
271 priv->rx_csum_enable = 0;
275 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
276 dev->vlan_rx_register = gfar_vlan_rx_register;
277 dev->vlan_rx_kill_vid = gfar_vlan_rx_kill_vid;
279 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
281 priv->vlan_enable = 1;
284 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
285 priv->extended_hash = 1;
286 priv->hash_width = 9;
288 priv->hash_regs[0] = &priv->regs->igaddr0;
289 priv->hash_regs[1] = &priv->regs->igaddr1;
290 priv->hash_regs[2] = &priv->regs->igaddr2;
291 priv->hash_regs[3] = &priv->regs->igaddr3;
292 priv->hash_regs[4] = &priv->regs->igaddr4;
293 priv->hash_regs[5] = &priv->regs->igaddr5;
294 priv->hash_regs[6] = &priv->regs->igaddr6;
295 priv->hash_regs[7] = &priv->regs->igaddr7;
296 priv->hash_regs[8] = &priv->regs->gaddr0;
297 priv->hash_regs[9] = &priv->regs->gaddr1;
298 priv->hash_regs[10] = &priv->regs->gaddr2;
299 priv->hash_regs[11] = &priv->regs->gaddr3;
300 priv->hash_regs[12] = &priv->regs->gaddr4;
301 priv->hash_regs[13] = &priv->regs->gaddr5;
302 priv->hash_regs[14] = &priv->regs->gaddr6;
303 priv->hash_regs[15] = &priv->regs->gaddr7;
306 priv->extended_hash = 0;
307 priv->hash_width = 8;
309 priv->hash_regs[0] = &priv->regs->gaddr0;
310 priv->hash_regs[1] = &priv->regs->gaddr1;
311 priv->hash_regs[2] = &priv->regs->gaddr2;
312 priv->hash_regs[3] = &priv->regs->gaddr3;
313 priv->hash_regs[4] = &priv->regs->gaddr4;
314 priv->hash_regs[5] = &priv->regs->gaddr5;
315 priv->hash_regs[6] = &priv->regs->gaddr6;
316 priv->hash_regs[7] = &priv->regs->gaddr7;
319 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
320 priv->padding = DEFAULT_PADDING;
324 if (dev->features & NETIF_F_IP_CSUM)
325 dev->hard_header_len += GMAC_FCB_LEN;
327 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
328 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
329 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
331 priv->txcoalescing = DEFAULT_TX_COALESCE;
332 priv->txcount = DEFAULT_TXCOUNT;
333 priv->txtime = DEFAULT_TXTIME;
334 priv->rxcoalescing = DEFAULT_RX_COALESCE;
335 priv->rxcount = DEFAULT_RXCOUNT;
336 priv->rxtime = DEFAULT_RXTIME;
338 /* Enable most messages by default */
339 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
341 err = register_netdev(dev);
344 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
349 /* Create all the sysfs files */
350 gfar_init_sysfs(dev);
352 /* Print out the device info */
353 printk(KERN_INFO DEVICE_NAME, dev->name);
354 for (idx = 0; idx < 6; idx++)
355 printk("%2.2x%c", dev->dev_addr[idx], idx == 5 ? ' ' : ':');
358 /* Even more device info helps when determining which kernel */
359 /* provided which set of benchmarks. */
360 #ifdef CONFIG_GFAR_NAPI
361 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
363 printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
365 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
366 dev->name, priv->rx_ring_size, priv->tx_ring_size);
377 static int gfar_remove(struct platform_device *pdev)
379 struct net_device *dev = platform_get_drvdata(pdev);
380 struct gfar_private *priv = netdev_priv(dev);
382 platform_set_drvdata(pdev, NULL);
391 /* Initializes driver's PHY state, and attaches to the PHY.
392 * Returns 0 on success.
394 static int init_phy(struct net_device *dev)
396 struct gfar_private *priv = netdev_priv(dev);
397 uint gigabit_support =
398 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
399 SUPPORTED_1000baseT_Full : 0;
400 struct phy_device *phydev;
401 char phy_id[BUS_ID_SIZE];
405 priv->oldduplex = -1;
407 snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
409 phydev = phy_connect(dev, phy_id, &adjust_link, 0);
411 if (IS_ERR(phydev)) {
412 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
413 return PTR_ERR(phydev);
416 /* Remove any features not supported by the controller */
417 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
418 phydev->advertising = phydev->supported;
420 priv->phydev = phydev;
425 static void init_registers(struct net_device *dev)
427 struct gfar_private *priv = netdev_priv(dev);
430 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
432 /* Initialize IMASK */
433 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
435 /* Init hash registers to zero */
436 gfar_write(&priv->regs->igaddr0, 0);
437 gfar_write(&priv->regs->igaddr1, 0);
438 gfar_write(&priv->regs->igaddr2, 0);
439 gfar_write(&priv->regs->igaddr3, 0);
440 gfar_write(&priv->regs->igaddr4, 0);
441 gfar_write(&priv->regs->igaddr5, 0);
442 gfar_write(&priv->regs->igaddr6, 0);
443 gfar_write(&priv->regs->igaddr7, 0);
445 gfar_write(&priv->regs->gaddr0, 0);
446 gfar_write(&priv->regs->gaddr1, 0);
447 gfar_write(&priv->regs->gaddr2, 0);
448 gfar_write(&priv->regs->gaddr3, 0);
449 gfar_write(&priv->regs->gaddr4, 0);
450 gfar_write(&priv->regs->gaddr5, 0);
451 gfar_write(&priv->regs->gaddr6, 0);
452 gfar_write(&priv->regs->gaddr7, 0);
454 /* Zero out the rmon mib registers if it has them */
455 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
456 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
458 /* Mask off the CAM interrupts */
459 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
460 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
463 /* Initialize the max receive buffer length */
464 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
466 /* Initialize the Minimum Frame Length Register */
467 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
469 /* Assign the TBI an address which won't conflict with the PHYs */
470 gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
474 /* Halt the receive and transmit queues */
475 void gfar_halt(struct net_device *dev)
477 struct gfar_private *priv = netdev_priv(dev);
478 struct gfar __iomem *regs = priv->regs;
481 /* Mask all interrupts */
482 gfar_write(®s->imask, IMASK_INIT_CLEAR);
484 /* Clear all interrupts */
485 gfar_write(®s->ievent, IEVENT_INIT_CLEAR);
487 /* Stop the DMA, and wait for it to stop */
488 tempval = gfar_read(&priv->regs->dmactrl);
489 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
490 != (DMACTRL_GRS | DMACTRL_GTS)) {
491 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
492 gfar_write(&priv->regs->dmactrl, tempval);
494 while (!(gfar_read(&priv->regs->ievent) &
495 (IEVENT_GRSC | IEVENT_GTSC)))
499 /* Disable Rx and Tx */
500 tempval = gfar_read(®s->maccfg1);
501 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
502 gfar_write(®s->maccfg1, tempval);
505 void stop_gfar(struct net_device *dev)
507 struct gfar_private *priv = netdev_priv(dev);
508 struct gfar __iomem *regs = priv->regs;
511 phy_stop(priv->phydev);
514 spin_lock_irqsave(&priv->lock, flags);
518 spin_unlock_irqrestore(&priv->lock, flags);
521 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
522 free_irq(priv->interruptError, dev);
523 free_irq(priv->interruptTransmit, dev);
524 free_irq(priv->interruptReceive, dev);
526 free_irq(priv->interruptTransmit, dev);
529 free_skb_resources(priv);
531 dma_free_coherent(NULL,
532 sizeof(struct txbd8)*priv->tx_ring_size
533 + sizeof(struct rxbd8)*priv->rx_ring_size,
535 gfar_read(®s->tbase0));
538 /* If there are any tx skbs or rx skbs still around, free them.
539 * Then free tx_skbuff and rx_skbuff */
540 static void free_skb_resources(struct gfar_private *priv)
546 /* Go through all the buffer descriptors and free their data buffers */
547 txbdp = priv->tx_bd_base;
549 for (i = 0; i < priv->tx_ring_size; i++) {
551 if (priv->tx_skbuff[i]) {
552 dma_unmap_single(NULL, txbdp->bufPtr,
555 dev_kfree_skb_any(priv->tx_skbuff[i]);
556 priv->tx_skbuff[i] = NULL;
560 kfree(priv->tx_skbuff);
562 rxbdp = priv->rx_bd_base;
564 /* rx_skbuff is not guaranteed to be allocated, so only
565 * free it and its contents if it is allocated */
566 if(priv->rx_skbuff != NULL) {
567 for (i = 0; i < priv->rx_ring_size; i++) {
568 if (priv->rx_skbuff[i]) {
569 dma_unmap_single(NULL, rxbdp->bufPtr,
570 priv->rx_buffer_size,
573 dev_kfree_skb_any(priv->rx_skbuff[i]);
574 priv->rx_skbuff[i] = NULL;
584 kfree(priv->rx_skbuff);
588 void gfar_start(struct net_device *dev)
590 struct gfar_private *priv = netdev_priv(dev);
591 struct gfar __iomem *regs = priv->regs;
594 /* Enable Rx and Tx in MACCFG1 */
595 tempval = gfar_read(®s->maccfg1);
596 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
597 gfar_write(®s->maccfg1, tempval);
599 /* Initialize DMACTRL to have WWR and WOP */
600 tempval = gfar_read(&priv->regs->dmactrl);
601 tempval |= DMACTRL_INIT_SETTINGS;
602 gfar_write(&priv->regs->dmactrl, tempval);
604 /* Clear THLT, so that the DMA starts polling now */
605 gfar_write(®s->tstat, TSTAT_CLEAR_THALT);
607 /* Make sure we aren't stopped */
608 tempval = gfar_read(&priv->regs->dmactrl);
609 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
610 gfar_write(&priv->regs->dmactrl, tempval);
612 /* Unmask the interrupts we look for */
613 gfar_write(®s->imask, IMASK_DEFAULT);
616 /* Bring the controller up and running */
617 int startup_gfar(struct net_device *dev)
624 struct gfar_private *priv = netdev_priv(dev);
625 struct gfar __iomem *regs = priv->regs;
630 gfar_write(®s->imask, IMASK_INIT_CLEAR);
632 /* Allocate memory for the buffer descriptors */
633 vaddr = (unsigned long) dma_alloc_coherent(NULL,
634 sizeof (struct txbd8) * priv->tx_ring_size +
635 sizeof (struct rxbd8) * priv->rx_ring_size,
639 if (netif_msg_ifup(priv))
640 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
645 priv->tx_bd_base = (struct txbd8 *) vaddr;
647 /* enet DMA only understands physical addresses */
648 gfar_write(®s->tbase0, addr);
650 /* Start the rx descriptor ring where the tx ring leaves off */
651 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
652 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
653 priv->rx_bd_base = (struct rxbd8 *) vaddr;
654 gfar_write(®s->rbase0, addr);
656 /* Setup the skbuff rings */
658 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
659 priv->tx_ring_size, GFP_KERNEL);
661 if (NULL == priv->tx_skbuff) {
662 if (netif_msg_ifup(priv))
663 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
669 for (i = 0; i < priv->tx_ring_size; i++)
670 priv->tx_skbuff[i] = NULL;
673 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
674 priv->rx_ring_size, GFP_KERNEL);
676 if (NULL == priv->rx_skbuff) {
677 if (netif_msg_ifup(priv))
678 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
684 for (i = 0; i < priv->rx_ring_size; i++)
685 priv->rx_skbuff[i] = NULL;
687 /* Initialize some variables in our dev structure */
688 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
689 priv->cur_rx = priv->rx_bd_base;
690 priv->skb_curtx = priv->skb_dirtytx = 0;
693 /* Initialize Transmit Descriptor Ring */
694 txbdp = priv->tx_bd_base;
695 for (i = 0; i < priv->tx_ring_size; i++) {
702 /* Set the last descriptor in the ring to indicate wrap */
704 txbdp->status |= TXBD_WRAP;
706 rxbdp = priv->rx_bd_base;
707 for (i = 0; i < priv->rx_ring_size; i++) {
708 struct sk_buff *skb = NULL;
712 skb = gfar_new_skb(dev, rxbdp);
714 priv->rx_skbuff[i] = skb;
719 /* Set the last descriptor in the ring to wrap */
721 rxbdp->status |= RXBD_WRAP;
723 /* If the device has multiple interrupts, register for
724 * them. Otherwise, only register for the one */
725 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
726 /* Install our interrupt handlers for Error,
727 * Transmit, and Receive */
728 if (request_irq(priv->interruptError, gfar_error,
729 0, "enet_error", dev) < 0) {
730 if (netif_msg_intr(priv))
731 printk(KERN_ERR "%s: Can't get IRQ %d\n",
732 dev->name, priv->interruptError);
738 if (request_irq(priv->interruptTransmit, gfar_transmit,
739 0, "enet_tx", dev) < 0) {
740 if (netif_msg_intr(priv))
741 printk(KERN_ERR "%s: Can't get IRQ %d\n",
742 dev->name, priv->interruptTransmit);
749 if (request_irq(priv->interruptReceive, gfar_receive,
750 0, "enet_rx", dev) < 0) {
751 if (netif_msg_intr(priv))
752 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
753 dev->name, priv->interruptReceive);
759 if (request_irq(priv->interruptTransmit, gfar_interrupt,
760 0, "gfar_interrupt", dev) < 0) {
761 if (netif_msg_intr(priv))
762 printk(KERN_ERR "%s: Can't get IRQ %d\n",
763 dev->name, priv->interruptError);
770 phy_start(priv->phydev);
772 /* Configure the coalescing support */
773 if (priv->txcoalescing)
774 gfar_write(®s->txic,
775 mk_ic_value(priv->txcount, priv->txtime));
777 gfar_write(®s->txic, 0);
779 if (priv->rxcoalescing)
780 gfar_write(®s->rxic,
781 mk_ic_value(priv->rxcount, priv->rxtime));
783 gfar_write(®s->rxic, 0);
785 if (priv->rx_csum_enable)
786 rctrl |= RCTRL_CHECKSUMMING;
788 if (priv->extended_hash) {
789 rctrl |= RCTRL_EXTHASH;
791 gfar_clear_exact_match(dev);
795 if (priv->vlan_enable)
799 rctrl &= ~RCTRL_PAL_MASK;
800 rctrl |= RCTRL_PADDING(priv->padding);
803 /* Init rctrl based on our settings */
804 gfar_write(&priv->regs->rctrl, rctrl);
806 if (dev->features & NETIF_F_IP_CSUM)
807 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
809 /* Set the extraction length and index */
810 attrs = ATTRELI_EL(priv->rx_stash_size) |
811 ATTRELI_EI(priv->rx_stash_index);
813 gfar_write(&priv->regs->attreli, attrs);
815 /* Start with defaults, and add stashing or locking
816 * depending on the approprate variables */
817 attrs = ATTR_INIT_SETTINGS;
819 if (priv->bd_stash_en)
820 attrs |= ATTR_BDSTASH;
822 if (priv->rx_stash_size != 0)
823 attrs |= ATTR_BUFSTASH;
825 gfar_write(&priv->regs->attr, attrs);
827 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
828 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
829 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
831 /* Start the controller */
837 free_irq(priv->interruptTransmit, dev);
839 free_irq(priv->interruptError, dev);
842 free_skb_resources(priv);
844 dma_free_coherent(NULL,
845 sizeof(struct txbd8)*priv->tx_ring_size
846 + sizeof(struct rxbd8)*priv->rx_ring_size,
848 gfar_read(®s->tbase0));
853 /* Called when something needs to use the ethernet device */
854 /* Returns 0 for success. */
855 static int gfar_enet_open(struct net_device *dev)
859 /* Initialize a bunch of registers */
862 gfar_set_mac_address(dev);
869 err = startup_gfar(dev);
871 netif_start_queue(dev);
876 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
878 struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
880 memset(fcb, 0, GMAC_FCB_LEN);
885 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
889 /* If we're here, it's a IP packet with a TCP or UDP
890 * payload. We set it to checksum, using a pseudo-header
893 flags = TXFCB_DEFAULT;
895 /* Tell the controller what the protocol is */
896 /* And provide the already calculated phcs */
897 if (skb->nh.iph->protocol == IPPROTO_UDP) {
899 fcb->phcs = skb->h.uh->check;
901 fcb->phcs = skb->h.th->check;
903 /* l3os is the distance between the start of the
904 * frame (skb->data) and the start of the IP hdr.
905 * l4os is the distance between the start of the
906 * l3 hdr and the l4 hdr */
907 fcb->l3os = (u16)(skb->nh.raw - skb->data - GMAC_FCB_LEN);
908 fcb->l4os = (u16)(skb->h.raw - skb->nh.raw);
913 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
915 fcb->flags |= TXFCB_VLN;
916 fcb->vlctl = vlan_tx_tag_get(skb);
919 /* This is called by the kernel when a frame is ready for transmission. */
920 /* It is pointed to by the dev->hard_start_xmit function pointer */
921 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
923 struct gfar_private *priv = netdev_priv(dev);
924 struct txfcb *fcb = NULL;
928 /* Update transmit stats */
929 priv->stats.tx_bytes += skb->len;
932 spin_lock_irq(&priv->lock);
934 /* Point at the first free tx descriptor */
935 txbdp = priv->cur_tx;
937 /* Clear all but the WRAP status flags */
938 status = txbdp->status & TXBD_WRAP;
940 /* Set up checksumming */
941 if (likely((dev->features & NETIF_F_IP_CSUM)
942 && (CHECKSUM_HW == skb->ip_summed))) {
943 fcb = gfar_add_fcb(skb, txbdp);
945 gfar_tx_checksum(skb, fcb);
948 if (priv->vlan_enable &&
949 unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
950 if (unlikely(NULL == fcb)) {
951 fcb = gfar_add_fcb(skb, txbdp);
955 gfar_tx_vlan(skb, fcb);
958 /* Set buffer length and pointer */
959 txbdp->length = skb->len;
960 txbdp->bufPtr = dma_map_single(NULL, skb->data,
961 skb->len, DMA_TO_DEVICE);
963 /* Save the skb pointer so we can free it later */
964 priv->tx_skbuff[priv->skb_curtx] = skb;
966 /* Update the current skb pointer (wrapping if this was the last) */
968 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
970 /* Flag the BD as interrupt-causing */
971 status |= TXBD_INTERRUPT;
973 /* Flag the BD as ready to go, last in frame, and */
975 status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
977 dev->trans_start = jiffies;
979 txbdp->status = status;
981 /* If this was the last BD in the ring, the next one */
982 /* is at the beginning of the ring */
983 if (txbdp->status & TXBD_WRAP)
984 txbdp = priv->tx_bd_base;
988 /* If the next BD still needs to be cleaned up, then the bds
989 are full. We need to tell the kernel to stop sending us stuff. */
990 if (txbdp == priv->dirty_tx) {
991 netif_stop_queue(dev);
993 priv->stats.tx_fifo_errors++;
996 /* Update the current txbd to the next one */
997 priv->cur_tx = txbdp;
999 /* Tell the DMA to go go go */
1000 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1003 spin_unlock_irq(&priv->lock);
1008 /* Stops the kernel queue, and halts the controller */
1009 static int gfar_close(struct net_device *dev)
1011 struct gfar_private *priv = netdev_priv(dev);
1014 /* Disconnect from the PHY */
1015 phy_disconnect(priv->phydev);
1016 priv->phydev = NULL;
1018 netif_stop_queue(dev);
1023 /* returns a net_device_stats structure pointer */
1024 static struct net_device_stats * gfar_get_stats(struct net_device *dev)
1026 struct gfar_private *priv = netdev_priv(dev);
1028 return &(priv->stats);
1031 /* Changes the mac address if the controller is not running. */
1032 int gfar_set_mac_address(struct net_device *dev)
1034 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1040 /* Enables and disables VLAN insertion/extraction */
1041 static void gfar_vlan_rx_register(struct net_device *dev,
1042 struct vlan_group *grp)
1044 struct gfar_private *priv = netdev_priv(dev);
1045 unsigned long flags;
1048 spin_lock_irqsave(&priv->lock, flags);
1053 /* Enable VLAN tag insertion */
1054 tempval = gfar_read(&priv->regs->tctrl);
1055 tempval |= TCTRL_VLINS;
1057 gfar_write(&priv->regs->tctrl, tempval);
1059 /* Enable VLAN tag extraction */
1060 tempval = gfar_read(&priv->regs->rctrl);
1061 tempval |= RCTRL_VLEX;
1062 gfar_write(&priv->regs->rctrl, tempval);
1064 /* Disable VLAN tag insertion */
1065 tempval = gfar_read(&priv->regs->tctrl);
1066 tempval &= ~TCTRL_VLINS;
1067 gfar_write(&priv->regs->tctrl, tempval);
1069 /* Disable VLAN tag extraction */
1070 tempval = gfar_read(&priv->regs->rctrl);
1071 tempval &= ~RCTRL_VLEX;
1072 gfar_write(&priv->regs->rctrl, tempval);
1075 spin_unlock_irqrestore(&priv->lock, flags);
1079 static void gfar_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid)
1081 struct gfar_private *priv = netdev_priv(dev);
1082 unsigned long flags;
1084 spin_lock_irqsave(&priv->lock, flags);
1087 priv->vlgrp->vlan_devices[vid] = NULL;
1089 spin_unlock_irqrestore(&priv->lock, flags);
1093 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1095 int tempsize, tempval;
1096 struct gfar_private *priv = netdev_priv(dev);
1097 int oldsize = priv->rx_buffer_size;
1098 int frame_size = new_mtu + ETH_HLEN;
1100 if (priv->vlan_enable)
1101 frame_size += VLAN_ETH_HLEN;
1103 if (gfar_uses_fcb(priv))
1104 frame_size += GMAC_FCB_LEN;
1106 frame_size += priv->padding;
1108 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1109 if (netif_msg_drv(priv))
1110 printk(KERN_ERR "%s: Invalid MTU setting\n",
1116 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1117 INCREMENTAL_BUFFER_SIZE;
1119 /* Only stop and start the controller if it isn't already
1120 * stopped, and we changed something */
1121 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1124 priv->rx_buffer_size = tempsize;
1128 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1129 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1131 /* If the mtu is larger than the max size for standard
1132 * ethernet frames (ie, a jumbo frame), then set maccfg2
1133 * to allow huge frames, and to check the length */
1134 tempval = gfar_read(&priv->regs->maccfg2);
1136 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1137 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1139 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1141 gfar_write(&priv->regs->maccfg2, tempval);
1143 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1149 /* gfar_timeout gets called when a packet has not been
1150 * transmitted after a set amount of time.
1151 * For now, assume that clearing out all the structures, and
1152 * starting over will fix the problem. */
1153 static void gfar_timeout(struct net_device *dev)
1155 struct gfar_private *priv = netdev_priv(dev);
1157 priv->stats.tx_errors++;
1159 if (dev->flags & IFF_UP) {
1164 netif_schedule(dev);
1167 /* Interrupt Handler for Transmit complete */
1168 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs)
1170 struct net_device *dev = (struct net_device *) dev_id;
1171 struct gfar_private *priv = netdev_priv(dev);
1175 gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1178 spin_lock(&priv->lock);
1179 bdp = priv->dirty_tx;
1180 while ((bdp->status & TXBD_READY) == 0) {
1181 /* If dirty_tx and cur_tx are the same, then either the */
1182 /* ring is empty or full now (it could only be full in the beginning, */
1183 /* obviously). If it is empty, we are done. */
1184 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1187 priv->stats.tx_packets++;
1189 /* Deferred means some collisions occurred during transmit, */
1190 /* but we eventually sent the packet. */
1191 if (bdp->status & TXBD_DEF)
1192 priv->stats.collisions++;
1194 /* Free the sk buffer associated with this TxBD */
1195 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1196 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1198 (priv->skb_dirtytx +
1199 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1201 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1202 if (bdp->status & TXBD_WRAP)
1203 bdp = priv->tx_bd_base;
1207 /* Move dirty_tx to be the next bd */
1208 priv->dirty_tx = bdp;
1210 /* We freed a buffer, so now we can restart transmission */
1211 if (netif_queue_stopped(dev))
1212 netif_wake_queue(dev);
1213 } /* while ((bdp->status & TXBD_READY) == 0) */
1215 /* If we are coalescing the interrupts, reset the timer */
1216 /* Otherwise, clear it */
1217 if (priv->txcoalescing)
1218 gfar_write(&priv->regs->txic,
1219 mk_ic_value(priv->txcount, priv->txtime));
1221 gfar_write(&priv->regs->txic, 0);
1223 spin_unlock(&priv->lock);
1228 struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
1230 unsigned int alignamount;
1231 struct gfar_private *priv = netdev_priv(dev);
1232 struct sk_buff *skb = NULL;
1233 unsigned int timeout = SKB_ALLOC_TIMEOUT;
1235 /* We have to allocate the skb, so keep trying till we succeed */
1236 while ((!skb) && timeout--)
1237 skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
1242 alignamount = RXBUF_ALIGNMENT -
1243 (((unsigned) skb->data) & (RXBUF_ALIGNMENT - 1));
1245 /* We need the data buffer to be aligned properly. We will reserve
1246 * as many bytes as needed to align the data properly
1248 skb_reserve(skb, alignamount);
1252 bdp->bufPtr = dma_map_single(NULL, skb->data,
1253 priv->rx_buffer_size, DMA_FROM_DEVICE);
1257 /* Mark the buffer empty */
1258 bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
1263 static inline void count_errors(unsigned short status, struct gfar_private *priv)
1265 struct net_device_stats *stats = &priv->stats;
1266 struct gfar_extra_stats *estats = &priv->extra_stats;
1268 /* If the packet was truncated, none of the other errors
1270 if (status & RXBD_TRUNCATED) {
1271 stats->rx_length_errors++;
1277 /* Count the errors, if there were any */
1278 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1279 stats->rx_length_errors++;
1281 if (status & RXBD_LARGE)
1286 if (status & RXBD_NONOCTET) {
1287 stats->rx_frame_errors++;
1288 estats->rx_nonoctet++;
1290 if (status & RXBD_CRCERR) {
1291 estats->rx_crcerr++;
1292 stats->rx_crc_errors++;
1294 if (status & RXBD_OVERRUN) {
1295 estats->rx_overrun++;
1296 stats->rx_crc_errors++;
1300 irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs)
1302 struct net_device *dev = (struct net_device *) dev_id;
1303 struct gfar_private *priv = netdev_priv(dev);
1305 #ifdef CONFIG_GFAR_NAPI
1309 /* Clear IEVENT, so rx interrupt isn't called again
1310 * because of this interrupt */
1311 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1314 #ifdef CONFIG_GFAR_NAPI
1315 if (netif_rx_schedule_prep(dev)) {
1316 tempval = gfar_read(&priv->regs->imask);
1317 tempval &= IMASK_RX_DISABLED;
1318 gfar_write(&priv->regs->imask, tempval);
1320 __netif_rx_schedule(dev);
1322 if (netif_msg_rx_err(priv))
1323 printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1324 dev->name, gfar_read(&priv->regs->ievent),
1325 gfar_read(&priv->regs->imask));
1329 spin_lock(&priv->lock);
1330 gfar_clean_rx_ring(dev, priv->rx_ring_size);
1332 /* If we are coalescing interrupts, update the timer */
1333 /* Otherwise, clear it */
1334 if (priv->rxcoalescing)
1335 gfar_write(&priv->regs->rxic,
1336 mk_ic_value(priv->rxcount, priv->rxtime));
1338 gfar_write(&priv->regs->rxic, 0);
1340 spin_unlock(&priv->lock);
1346 static inline int gfar_rx_vlan(struct sk_buff *skb,
1347 struct vlan_group *vlgrp, unsigned short vlctl)
1349 #ifdef CONFIG_GFAR_NAPI
1350 return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
1352 return vlan_hwaccel_rx(skb, vlgrp, vlctl);
1356 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1358 /* If valid headers were found, and valid sums
1359 * were verified, then we tell the kernel that no
1360 * checksumming is necessary. Otherwise, it is */
1361 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1362 skb->ip_summed = CHECKSUM_UNNECESSARY;
1364 skb->ip_summed = CHECKSUM_NONE;
1368 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1370 struct rxfcb *fcb = (struct rxfcb *)skb->data;
1372 /* Remove the FCB from the skb */
1373 skb_pull(skb, GMAC_FCB_LEN);
1378 /* gfar_process_frame() -- handle one incoming packet if skb
1380 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1383 struct gfar_private *priv = netdev_priv(dev);
1384 struct rxfcb *fcb = NULL;
1387 if (netif_msg_rx_err(priv))
1388 printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1389 priv->stats.rx_dropped++;
1390 priv->extra_stats.rx_skbmissing++;
1394 /* Prep the skb for the packet */
1395 skb_put(skb, length);
1397 /* Grab the FCB if there is one */
1398 if (gfar_uses_fcb(priv))
1399 fcb = gfar_get_fcb(skb);
1401 /* Remove the padded bytes, if there are any */
1403 skb_pull(skb, priv->padding);
1405 if (priv->rx_csum_enable)
1406 gfar_rx_checksum(skb, fcb);
1408 /* Tell the skb what kind of packet this is */
1409 skb->protocol = eth_type_trans(skb, dev);
1411 /* Send the packet up the stack */
1412 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1413 ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
1417 if (NET_RX_DROP == ret)
1418 priv->extra_stats.kernel_dropped++;
1424 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1425 * until the budget/quota has been reached. Returns the number
1428 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1431 struct sk_buff *skb;
1434 struct gfar_private *priv = netdev_priv(dev);
1436 /* Get the first full descriptor */
1439 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1440 skb = priv->rx_skbuff[priv->skb_currx];
1443 (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
1444 | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
1445 /* Increment the number of packets */
1446 priv->stats.rx_packets++;
1449 /* Remove the FCS from the packet length */
1450 pkt_len = bdp->length - 4;
1452 gfar_process_frame(dev, skb, pkt_len);
1454 priv->stats.rx_bytes += pkt_len;
1456 count_errors(bdp->status, priv);
1459 dev_kfree_skb_any(skb);
1461 priv->rx_skbuff[priv->skb_currx] = NULL;
1464 dev->last_rx = jiffies;
1466 /* Clear the status flags for this buffer */
1467 bdp->status &= ~RXBD_STATS;
1469 /* Add another skb for the future */
1470 skb = gfar_new_skb(dev, bdp);
1471 priv->rx_skbuff[priv->skb_currx] = skb;
1473 /* Update to the next pointer */
1474 if (bdp->status & RXBD_WRAP)
1475 bdp = priv->rx_bd_base;
1479 /* update to point at the next skb */
1482 1) & RX_RING_MOD_MASK(priv->rx_ring_size);
1486 /* Update the current rxbd pointer to be the next one */
1489 /* If no packets have arrived since the
1490 * last one we processed, clear the IEVENT RX and
1491 * BSY bits so that another interrupt won't be
1492 * generated when we set IMASK */
1493 if (bdp->status & RXBD_EMPTY)
1494 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1499 #ifdef CONFIG_GFAR_NAPI
1500 static int gfar_poll(struct net_device *dev, int *budget)
1503 struct gfar_private *priv = netdev_priv(dev);
1504 int rx_work_limit = *budget;
1506 if (rx_work_limit > dev->quota)
1507 rx_work_limit = dev->quota;
1509 howmany = gfar_clean_rx_ring(dev, rx_work_limit);
1511 dev->quota -= howmany;
1512 rx_work_limit -= howmany;
1515 if (rx_work_limit >= 0) {
1516 netif_rx_complete(dev);
1518 /* Clear the halt bit in RSTAT */
1519 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1521 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1523 /* If we are coalescing interrupts, update the timer */
1524 /* Otherwise, clear it */
1525 if (priv->rxcoalescing)
1526 gfar_write(&priv->regs->rxic,
1527 mk_ic_value(priv->rxcount, priv->rxtime));
1529 gfar_write(&priv->regs->rxic, 0);
1532 return (rx_work_limit < 0) ? 1 : 0;
1536 /* The interrupt handler for devices with one interrupt */
1537 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1539 struct net_device *dev = dev_id;
1540 struct gfar_private *priv = netdev_priv(dev);
1542 /* Save ievent for future reference */
1543 u32 events = gfar_read(&priv->regs->ievent);
1546 gfar_write(&priv->regs->ievent, events);
1548 /* Check for reception */
1549 if ((events & IEVENT_RXF0) || (events & IEVENT_RXB0))
1550 gfar_receive(irq, dev_id, regs);
1552 /* Check for transmit completion */
1553 if ((events & IEVENT_TXF) || (events & IEVENT_TXB))
1554 gfar_transmit(irq, dev_id, regs);
1556 /* Update error statistics */
1557 if (events & IEVENT_TXE) {
1558 priv->stats.tx_errors++;
1560 if (events & IEVENT_LC)
1561 priv->stats.tx_window_errors++;
1562 if (events & IEVENT_CRL)
1563 priv->stats.tx_aborted_errors++;
1564 if (events & IEVENT_XFUN) {
1565 if (netif_msg_tx_err(priv))
1566 printk(KERN_WARNING "%s: tx underrun. dropped packet\n", dev->name);
1567 priv->stats.tx_dropped++;
1568 priv->extra_stats.tx_underrun++;
1570 /* Reactivate the Tx Queues */
1571 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1574 if (events & IEVENT_BSY) {
1575 priv->stats.rx_errors++;
1576 priv->extra_stats.rx_bsy++;
1578 gfar_receive(irq, dev_id, regs);
1580 #ifndef CONFIG_GFAR_NAPI
1581 /* Clear the halt bit in RSTAT */
1582 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1585 if (netif_msg_rx_err(priv))
1586 printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
1588 gfar_read(&priv->regs->rstat));
1590 if (events & IEVENT_BABR) {
1591 priv->stats.rx_errors++;
1592 priv->extra_stats.rx_babr++;
1594 if (netif_msg_rx_err(priv))
1595 printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1597 if (events & IEVENT_EBERR) {
1598 priv->extra_stats.eberr++;
1599 if (netif_msg_rx_err(priv))
1600 printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1602 if ((events & IEVENT_RXC) && (netif_msg_rx_err(priv)))
1603 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1605 if (events & IEVENT_BABT) {
1606 priv->extra_stats.tx_babt++;
1607 if (netif_msg_rx_err(priv))
1608 printk(KERN_DEBUG "%s: babt error\n", dev->name);
1614 /* Called every time the controller might need to be made
1615 * aware of new link state. The PHY code conveys this
1616 * information through variables in the phydev structure, and this
1617 * function converts those variables into the appropriate
1618 * register values, and can bring down the device if needed.
1620 static void adjust_link(struct net_device *dev)
1622 struct gfar_private *priv = netdev_priv(dev);
1623 struct gfar __iomem *regs = priv->regs;
1624 unsigned long flags;
1625 struct phy_device *phydev = priv->phydev;
1628 spin_lock_irqsave(&priv->lock, flags);
1630 u32 tempval = gfar_read(®s->maccfg2);
1631 u32 ecntrl = gfar_read(®s->ecntrl);
1633 /* Now we make sure that we can be in full duplex mode.
1634 * If not, we operate in half-duplex mode. */
1635 if (phydev->duplex != priv->oldduplex) {
1637 if (!(phydev->duplex))
1638 tempval &= ~(MACCFG2_FULL_DUPLEX);
1640 tempval |= MACCFG2_FULL_DUPLEX;
1642 priv->oldduplex = phydev->duplex;
1645 if (phydev->speed != priv->oldspeed) {
1647 switch (phydev->speed) {
1650 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1655 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1657 /* Reduced mode distinguishes
1658 * between 10 and 100 */
1659 if (phydev->speed == SPEED_100)
1660 ecntrl |= ECNTRL_R100;
1662 ecntrl &= ~(ECNTRL_R100);
1665 if (netif_msg_link(priv))
1667 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1668 dev->name, phydev->speed);
1672 priv->oldspeed = phydev->speed;
1675 gfar_write(®s->maccfg2, tempval);
1676 gfar_write(®s->ecntrl, ecntrl);
1678 if (!priv->oldlink) {
1681 netif_schedule(dev);
1683 } else if (priv->oldlink) {
1687 priv->oldduplex = -1;
1690 if (new_state && netif_msg_link(priv))
1691 phy_print_status(phydev);
1693 spin_unlock_irqrestore(&priv->lock, flags);
1696 /* Update the hash table based on the current list of multicast
1697 * addresses we subscribe to. Also, change the promiscuity of
1698 * the device based on the flags (this function is called
1699 * whenever dev->flags is changed */
1700 static void gfar_set_multi(struct net_device *dev)
1702 struct dev_mc_list *mc_ptr;
1703 struct gfar_private *priv = netdev_priv(dev);
1704 struct gfar __iomem *regs = priv->regs;
1707 if(dev->flags & IFF_PROMISC) {
1708 if (netif_msg_drv(priv))
1709 printk(KERN_INFO "%s: Entering promiscuous mode.\n",
1711 /* Set RCTRL to PROM */
1712 tempval = gfar_read(®s->rctrl);
1713 tempval |= RCTRL_PROM;
1714 gfar_write(®s->rctrl, tempval);
1716 /* Set RCTRL to not PROM */
1717 tempval = gfar_read(®s->rctrl);
1718 tempval &= ~(RCTRL_PROM);
1719 gfar_write(®s->rctrl, tempval);
1722 if(dev->flags & IFF_ALLMULTI) {
1723 /* Set the hash to rx all multicast frames */
1724 gfar_write(®s->igaddr0, 0xffffffff);
1725 gfar_write(®s->igaddr1, 0xffffffff);
1726 gfar_write(®s->igaddr2, 0xffffffff);
1727 gfar_write(®s->igaddr3, 0xffffffff);
1728 gfar_write(®s->igaddr4, 0xffffffff);
1729 gfar_write(®s->igaddr5, 0xffffffff);
1730 gfar_write(®s->igaddr6, 0xffffffff);
1731 gfar_write(®s->igaddr7, 0xffffffff);
1732 gfar_write(®s->gaddr0, 0xffffffff);
1733 gfar_write(®s->gaddr1, 0xffffffff);
1734 gfar_write(®s->gaddr2, 0xffffffff);
1735 gfar_write(®s->gaddr3, 0xffffffff);
1736 gfar_write(®s->gaddr4, 0xffffffff);
1737 gfar_write(®s->gaddr5, 0xffffffff);
1738 gfar_write(®s->gaddr6, 0xffffffff);
1739 gfar_write(®s->gaddr7, 0xffffffff);
1744 /* zero out the hash */
1745 gfar_write(®s->igaddr0, 0x0);
1746 gfar_write(®s->igaddr1, 0x0);
1747 gfar_write(®s->igaddr2, 0x0);
1748 gfar_write(®s->igaddr3, 0x0);
1749 gfar_write(®s->igaddr4, 0x0);
1750 gfar_write(®s->igaddr5, 0x0);
1751 gfar_write(®s->igaddr6, 0x0);
1752 gfar_write(®s->igaddr7, 0x0);
1753 gfar_write(®s->gaddr0, 0x0);
1754 gfar_write(®s->gaddr1, 0x0);
1755 gfar_write(®s->gaddr2, 0x0);
1756 gfar_write(®s->gaddr3, 0x0);
1757 gfar_write(®s->gaddr4, 0x0);
1758 gfar_write(®s->gaddr5, 0x0);
1759 gfar_write(®s->gaddr6, 0x0);
1760 gfar_write(®s->gaddr7, 0x0);
1762 /* If we have extended hash tables, we need to
1763 * clear the exact match registers to prepare for
1765 if (priv->extended_hash) {
1766 em_num = GFAR_EM_NUM + 1;
1767 gfar_clear_exact_match(dev);
1774 if(dev->mc_count == 0)
1777 /* Parse the list, and set the appropriate bits */
1778 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1780 gfar_set_mac_for_addr(dev, idx,
1784 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1792 /* Clears each of the exact match registers to zero, so they
1793 * don't interfere with normal reception */
1794 static void gfar_clear_exact_match(struct net_device *dev)
1797 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1799 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1800 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1803 /* Set the appropriate hash bit for the given addr */
1804 /* The algorithm works like so:
1805 * 1) Take the Destination Address (ie the multicast address), and
1806 * do a CRC on it (little endian), and reverse the bits of the
1808 * 2) Use the 8 most significant bits as a hash into a 256-entry
1809 * table. The table is controlled through 8 32-bit registers:
1810 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1811 * gaddr7. This means that the 3 most significant bits in the
1812 * hash index which gaddr register to use, and the 5 other bits
1813 * indicate which bit (assuming an IBM numbering scheme, which
1814 * for PowerPC (tm) is usually the case) in the register holds
1816 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1819 struct gfar_private *priv = netdev_priv(dev);
1820 u32 result = ether_crc(MAC_ADDR_LEN, addr);
1821 int width = priv->hash_width;
1822 u8 whichbit = (result >> (32 - width)) & 0x1f;
1823 u8 whichreg = result >> (32 - width + 5);
1824 u32 value = (1 << (31-whichbit));
1826 tempval = gfar_read(priv->hash_regs[whichreg]);
1828 gfar_write(priv->hash_regs[whichreg], tempval);
1834 /* There are multiple MAC Address register pairs on some controllers
1835 * This function sets the numth pair to a given address
1837 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1839 struct gfar_private *priv = netdev_priv(dev);
1841 char tmpbuf[MAC_ADDR_LEN];
1843 u32 __iomem *macptr = &priv->regs->macstnaddr1;
1847 /* Now copy it into the mac registers backwards, cuz */
1848 /* little endian is silly */
1849 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
1850 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
1852 gfar_write(macptr, *((u32 *) (tmpbuf)));
1854 tempval = *((u32 *) (tmpbuf + 4));
1856 gfar_write(macptr+1, tempval);
1859 /* GFAR error interrupt handler */
1860 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs)
1862 struct net_device *dev = dev_id;
1863 struct gfar_private *priv = netdev_priv(dev);
1865 /* Save ievent for future reference */
1866 u32 events = gfar_read(&priv->regs->ievent);
1869 gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
1872 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
1873 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1874 dev->name, events, gfar_read(&priv->regs->imask));
1876 /* Update the error counters */
1877 if (events & IEVENT_TXE) {
1878 priv->stats.tx_errors++;
1880 if (events & IEVENT_LC)
1881 priv->stats.tx_window_errors++;
1882 if (events & IEVENT_CRL)
1883 priv->stats.tx_aborted_errors++;
1884 if (events & IEVENT_XFUN) {
1885 if (netif_msg_tx_err(priv))
1886 printk(KERN_DEBUG "%s: underrun. packet dropped.\n",
1888 priv->stats.tx_dropped++;
1889 priv->extra_stats.tx_underrun++;
1891 /* Reactivate the Tx Queues */
1892 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1894 if (netif_msg_tx_err(priv))
1895 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
1897 if (events & IEVENT_BSY) {
1898 priv->stats.rx_errors++;
1899 priv->extra_stats.rx_bsy++;
1901 gfar_receive(irq, dev_id, regs);
1903 #ifndef CONFIG_GFAR_NAPI
1904 /* Clear the halt bit in RSTAT */
1905 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1908 if (netif_msg_rx_err(priv))
1909 printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
1911 gfar_read(&priv->regs->rstat));
1913 if (events & IEVENT_BABR) {
1914 priv->stats.rx_errors++;
1915 priv->extra_stats.rx_babr++;
1917 if (netif_msg_rx_err(priv))
1918 printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1920 if (events & IEVENT_EBERR) {
1921 priv->extra_stats.eberr++;
1922 if (netif_msg_rx_err(priv))
1923 printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1925 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
1926 if (netif_msg_rx_status(priv))
1927 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1929 if (events & IEVENT_BABT) {
1930 priv->extra_stats.tx_babt++;
1931 if (netif_msg_tx_err(priv))
1932 printk(KERN_DEBUG "%s: babt error\n", dev->name);
1937 /* Structure for a device driver */
1938 static struct platform_driver gfar_driver = {
1939 .probe = gfar_probe,
1940 .remove = gfar_remove,
1942 .name = "fsl-gianfar",
1946 static int __init gfar_init(void)
1948 int err = gfar_mdio_init();
1953 err = platform_driver_register(&gfar_driver);
1961 static void __exit gfar_exit(void)
1963 platform_driver_unregister(&gfar_driver);
1967 module_init(gfar_init);
1968 module_exit(gfar_exit);