2 * linux/arch/x86-64/kernel/time.c
4 * "High Precision Event Timer" based timekeeping.
6 * Copyright (c) 1991,1992,1995 Linus Torvalds
7 * Copyright (c) 1994 Alan Modra
8 * Copyright (c) 1995 Markus Kuhn
9 * Copyright (c) 1996 Ingo Molnar
10 * Copyright (c) 1998 Andrea Arcangeli
11 * Copyright (c) 2002,2006 Vojtech Pavlik
12 * Copyright (c) 2003 Andi Kleen
13 * RTC support code taken from arch/i386/kernel/timers/time_hpet.c
16 #include <linux/kernel.h>
17 #include <linux/sched.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/mc146818rtc.h>
21 #include <linux/time.h>
22 #include <linux/ioport.h>
23 #include <linux/module.h>
24 #include <linux/device.h>
25 #include <linux/sysdev.h>
26 #include <linux/bcd.h>
27 #include <linux/notifier.h>
28 #include <linux/cpu.h>
29 #include <linux/kallsyms.h>
30 #include <linux/acpi.h>
32 #include <acpi/achware.h> /* for PM timer frequency */
33 #include <acpi/acpi_bus.h>
35 #include <asm/8253pit.h>
36 #include <asm/pgtable.h>
37 #include <asm/vsyscall.h>
38 #include <asm/timex.h>
39 #include <asm/proto.h>
41 #include <asm/sections.h>
42 #include <linux/cpufreq.h>
43 #include <linux/hpet.h>
44 #ifdef CONFIG_X86_LOCAL_APIC
48 #ifdef CONFIG_CPU_FREQ
49 static void cpufreq_delayed_get(void);
51 extern void i8254_timer_resume(void);
52 extern int using_apic_timer;
54 static char *timename = NULL;
56 DEFINE_SPINLOCK(rtc_lock);
57 EXPORT_SYMBOL(rtc_lock);
58 DEFINE_SPINLOCK(i8253_lock);
60 int nohpet __initdata = 0;
61 static int notsc __initdata = 0;
63 #define USEC_PER_TICK (USEC_PER_SEC / HZ)
64 #define NSEC_PER_TICK (NSEC_PER_SEC / HZ)
65 #define FSEC_PER_TICK (FSEC_PER_SEC / HZ)
67 #define NS_SCALE 10 /* 2^10, carefully chosen */
68 #define US_SCALE 32 /* 2^32, arbitralrily chosen */
70 unsigned int cpu_khz; /* TSC clocks / usec, not used here */
71 EXPORT_SYMBOL(cpu_khz);
72 static unsigned long hpet_period; /* fsecs / HPET clock */
73 unsigned long hpet_tick; /* HPET clocks / interrupt */
74 int hpet_use_timer; /* Use counter of hpet for time keeping, otherwise PIT */
75 unsigned long vxtime_hz = PIT_TICK_RATE;
76 int report_lost_ticks; /* command line option */
77 unsigned long long monotonic_base;
79 struct vxtime_data __vxtime __section_vxtime; /* for vsyscalls */
81 volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
82 unsigned long __wall_jiffies __section_wall_jiffies = INITIAL_JIFFIES;
83 struct timespec __xtime __section_xtime;
84 struct timezone __sys_tz __section_sys_tz;
87 * do_gettimeoffset() returns microseconds since last timer interrupt was
88 * triggered by hardware. A memory read of HPET is slower than a register read
89 * of TSC, but much more reliable. It's also synchronized to the timer
90 * interrupt. Note that do_gettimeoffset() may return more than hpet_tick, if a
91 * timer interrupt has happened already, but vxtime.trigger wasn't updated yet.
92 * This is not a problem, because jiffies hasn't updated either. They are bound
93 * together by xtime_lock.
96 static inline unsigned int do_gettimeoffset_tsc(void)
100 t = get_cycles_sync();
101 if (t < vxtime.last_tsc)
102 t = vxtime.last_tsc; /* hack */
103 x = ((t - vxtime.last_tsc) * vxtime.tsc_quot) >> US_SCALE;
107 static inline unsigned int do_gettimeoffset_hpet(void)
109 /* cap counter read to one tick to avoid inconsistencies */
110 unsigned long counter = hpet_readl(HPET_COUNTER) - vxtime.last;
111 return (min(counter,hpet_tick) * vxtime.quot) >> US_SCALE;
114 unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc;
117 * This version of gettimeofday() has microsecond resolution and better than
118 * microsecond precision, as we're using at least a 10 MHz (usually 14.31818
122 void do_gettimeofday(struct timeval *tv)
124 unsigned long seq, t;
125 unsigned int sec, usec;
128 seq = read_seqbegin(&xtime_lock);
131 usec = xtime.tv_nsec / NSEC_PER_USEC;
133 /* i386 does some correction here to keep the clock
134 monotonous even when ntpd is fixing drift.
135 But they didn't work for me, there is a non monotonic
136 clock anyways with ntp.
137 I dropped all corrections now until a real solution can
138 be found. Note when you fix it here you need to do the same
139 in arch/x86_64/kernel/vsyscall.c and export all needed
140 variables in vmlinux.lds. -AK */
142 t = (jiffies - wall_jiffies) * USEC_PER_TICK +
146 } while (read_seqretry(&xtime_lock, seq));
148 tv->tv_sec = sec + usec / USEC_PER_SEC;
149 tv->tv_usec = usec % USEC_PER_SEC;
152 EXPORT_SYMBOL(do_gettimeofday);
155 * settimeofday() first undoes the correction that gettimeofday would do
156 * on the time, and then saves it. This is ugly, but has been like this for
160 int do_settimeofday(struct timespec *tv)
162 time_t wtm_sec, sec = tv->tv_sec;
163 long wtm_nsec, nsec = tv->tv_nsec;
165 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
168 write_seqlock_irq(&xtime_lock);
170 nsec -= do_gettimeoffset() * NSEC_PER_USEC +
171 (jiffies - wall_jiffies) * NSEC_PER_TICK;
173 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
174 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
176 set_normalized_timespec(&xtime, sec, nsec);
177 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
181 write_sequnlock_irq(&xtime_lock);
186 EXPORT_SYMBOL(do_settimeofday);
188 unsigned long profile_pc(struct pt_regs *regs)
190 unsigned long pc = instruction_pointer(regs);
192 /* Assume the lock function has either no stack frame or a copy
194 Eflags always has bits 22 and up cleared unlike kernel addresses. */
195 if (!user_mode(regs) && in_lock_functions(pc)) {
196 unsigned long *sp = (unsigned long *)regs->rsp;
204 EXPORT_SYMBOL(profile_pc);
207 * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
208 * ms after the second nowtime has started, because when nowtime is written
209 * into the registers of the CMOS clock, it will jump to the next second
210 * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
214 static void set_rtc_mmss(unsigned long nowtime)
216 int real_seconds, real_minutes, cmos_minutes;
217 unsigned char control, freq_select;
220 * IRQs are disabled when we're called from the timer interrupt,
221 * no need for spin_lock_irqsave()
224 spin_lock(&rtc_lock);
227 * Tell the clock it's being set and stop it.
230 control = CMOS_READ(RTC_CONTROL);
231 CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
233 freq_select = CMOS_READ(RTC_FREQ_SELECT);
234 CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
236 cmos_minutes = CMOS_READ(RTC_MINUTES);
237 BCD_TO_BIN(cmos_minutes);
240 * since we're only adjusting minutes and seconds, don't interfere with hour
241 * overflow. This avoids messing with unknown time zones but requires your RTC
242 * not to be off by more than 15 minutes. Since we're calling it only when
243 * our clock is externally synchronized using NTP, this shouldn't be a problem.
246 real_seconds = nowtime % 60;
247 real_minutes = nowtime / 60;
248 if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
249 real_minutes += 30; /* correct for half hour time zone */
252 if (abs(real_minutes - cmos_minutes) >= 30) {
253 printk(KERN_WARNING "time.c: can't update CMOS clock "
254 "from %d to %d\n", cmos_minutes, real_minutes);
256 BIN_TO_BCD(real_seconds);
257 BIN_TO_BCD(real_minutes);
258 CMOS_WRITE(real_seconds, RTC_SECONDS);
259 CMOS_WRITE(real_minutes, RTC_MINUTES);
263 * The following flags have to be released exactly in this order, otherwise the
264 * DS12887 (popular MC146818A clone with integrated battery and quartz) will
265 * not reset the oscillator and will not update precisely 500 ms later. You
266 * won't find this mentioned in the Dallas Semiconductor data sheets, but who
267 * believes data sheets anyway ... -- Markus Kuhn
270 CMOS_WRITE(control, RTC_CONTROL);
271 CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
273 spin_unlock(&rtc_lock);
277 /* monotonic_clock(): returns # of nanoseconds passed since time_init()
278 * Note: This function is required to return accurate
279 * time even in the absence of multiple timer ticks.
281 unsigned long long monotonic_clock(void)
284 u32 last_offset, this_offset, offset;
285 unsigned long long base;
287 if (vxtime.mode == VXTIME_HPET) {
289 seq = read_seqbegin(&xtime_lock);
291 last_offset = vxtime.last;
292 base = monotonic_base;
293 this_offset = hpet_readl(HPET_COUNTER);
294 } while (read_seqretry(&xtime_lock, seq));
295 offset = (this_offset - last_offset);
296 offset *= NSEC_PER_TICK / hpet_tick;
299 seq = read_seqbegin(&xtime_lock);
301 last_offset = vxtime.last_tsc;
302 base = monotonic_base;
303 } while (read_seqretry(&xtime_lock, seq));
304 this_offset = get_cycles_sync();
305 /* FIXME: 1000 or 1000000? */
306 offset = (this_offset - last_offset)*1000 / cpu_khz;
308 return base + offset;
310 EXPORT_SYMBOL(monotonic_clock);
312 static noinline void handle_lost_ticks(int lost, struct pt_regs *regs)
314 static long lost_count;
316 if (report_lost_ticks) {
317 printk(KERN_WARNING "time.c: Lost %d timer tick(s)! ", lost);
318 print_symbol("rip %s)\n", regs->rip);
321 if (lost_count == 1000 && !warned) {
322 printk(KERN_WARNING "warning: many lost ticks.\n"
323 KERN_WARNING "Your time source seems to be instable or "
324 "some driver is hogging interupts\n");
325 print_symbol("rip %s\n", regs->rip);
326 if (vxtime.mode == VXTIME_TSC && vxtime.hpet_address) {
327 printk(KERN_WARNING "Falling back to HPET\n");
329 vxtime.last = hpet_readl(HPET_T0_CMP) -
332 vxtime.last = hpet_readl(HPET_COUNTER);
333 vxtime.mode = VXTIME_HPET;
334 do_gettimeoffset = do_gettimeoffset_hpet;
336 /* else should fall back to PIT, but code missing. */
341 #ifdef CONFIG_CPU_FREQ
342 /* In some cases the CPU can change frequency without us noticing
343 Give cpufreq a change to catch up. */
344 if ((lost_count+1) % 25 == 0)
345 cpufreq_delayed_get();
349 void main_timer_handler(struct pt_regs *regs)
351 static unsigned long rtc_update = 0;
353 int delay = 0, offset = 0, lost = 0;
356 * Here we are in the timer irq handler. We have irqs locally disabled (so we
357 * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
358 * on the other CPU, so we need a lock. We also need to lock the vsyscall
359 * variables, because both do_timer() and us change them -arca+vojtech
362 write_seqlock(&xtime_lock);
364 if (vxtime.hpet_address)
365 offset = hpet_readl(HPET_COUNTER);
367 if (hpet_use_timer) {
368 /* if we're using the hpet timer functionality,
369 * we can more accurately know the counter value
370 * when the timer interrupt occured.
372 offset = hpet_readl(HPET_T0_CMP) - hpet_tick;
373 delay = hpet_readl(HPET_COUNTER) - offset;
374 } else if (!pmtmr_ioport) {
375 spin_lock(&i8253_lock);
378 delay |= inb(0x40) << 8;
379 spin_unlock(&i8253_lock);
380 delay = LATCH - 1 - delay;
383 tsc = get_cycles_sync();
385 if (vxtime.mode == VXTIME_HPET) {
386 if (offset - vxtime.last > hpet_tick) {
387 lost = (offset - vxtime.last) / hpet_tick - 1;
391 (offset - vxtime.last) * NSEC_PER_TICK / hpet_tick;
393 vxtime.last = offset;
394 #ifdef CONFIG_X86_PM_TIMER
395 } else if (vxtime.mode == VXTIME_PMTMR) {
396 lost = pmtimer_mark_offset();
399 offset = (((tsc - vxtime.last_tsc) *
400 vxtime.tsc_quot) >> US_SCALE) - USEC_PER_TICK;
405 if (offset > USEC_PER_TICK) {
406 lost = offset / USEC_PER_TICK;
407 offset %= USEC_PER_TICK;
410 /* FIXME: 1000 or 1000000? */
411 monotonic_base += (tsc - vxtime.last_tsc) * 1000000 / cpu_khz;
413 vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot;
415 if ((((tsc - vxtime.last_tsc) *
416 vxtime.tsc_quot) >> US_SCALE) < offset)
417 vxtime.last_tsc = tsc -
418 (((long) offset << US_SCALE) / vxtime.tsc_quot) - 1;
422 handle_lost_ticks(lost, regs);
427 * Do the timer stuff.
432 update_process_times(user_mode(regs));
436 * In the SMP case we use the local APIC timer interrupt to do the profiling,
437 * except when we simulate SMP mode on a uniprocessor system, in that case we
438 * have to call the local interrupt handler.
441 #ifndef CONFIG_X86_LOCAL_APIC
442 profile_tick(CPU_PROFILING, regs);
444 if (!using_apic_timer)
445 smp_local_timer_interrupt(regs);
449 * If we have an externally synchronized Linux clock, then update CMOS clock
450 * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy
451 * closest to exactly 500 ms before the next second. If the update fails, we
452 * don't care, as it'll be updated on the next turn, and the problem (time way
453 * off) isn't likely to go away much sooner anyway.
456 if (ntp_synced() && xtime.tv_sec > rtc_update &&
457 abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) {
458 set_rtc_mmss(xtime.tv_sec);
459 rtc_update = xtime.tv_sec + 660;
462 write_sequnlock(&xtime_lock);
465 static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
467 if (apic_runs_main_timer > 1)
469 main_timer_handler(regs);
470 #ifdef CONFIG_X86_LOCAL_APIC
471 if (using_apic_timer)
472 smp_send_timer_broadcast_ipi();
477 static unsigned int cyc2ns_scale __read_mostly;
479 static inline void set_cyc2ns_scale(unsigned long cpu_khz)
481 cyc2ns_scale = (NSEC_PER_MSEC << NS_SCALE) / cpu_khz;
484 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
486 return (cyc * cyc2ns_scale) >> NS_SCALE;
489 unsigned long long sched_clock(void)
494 /* Don't do a HPET read here. Using TSC always is much faster
495 and HPET may not be mapped yet when the scheduler first runs.
496 Disadvantage is a small drift between CPUs in some configurations,
497 but that should be tolerable. */
498 if (__vxtime.mode == VXTIME_HPET)
499 return (hpet_readl(HPET_COUNTER) * vxtime.quot) >> US_SCALE;
502 /* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
503 which means it is not completely exact and may not be monotonous between
504 CPUs. But the errors should be too small to matter for scheduling
508 return cycles_2_ns(a);
511 static unsigned long get_cmos_time(void)
513 unsigned int year, mon, day, hour, min, sec;
515 unsigned extyear = 0;
517 spin_lock_irqsave(&rtc_lock, flags);
520 sec = CMOS_READ(RTC_SECONDS);
521 min = CMOS_READ(RTC_MINUTES);
522 hour = CMOS_READ(RTC_HOURS);
523 day = CMOS_READ(RTC_DAY_OF_MONTH);
524 mon = CMOS_READ(RTC_MONTH);
525 year = CMOS_READ(RTC_YEAR);
527 if (acpi_fadt.revision >= FADT2_REVISION_ID &&
529 extyear = CMOS_READ(acpi_fadt.century);
531 } while (sec != CMOS_READ(RTC_SECONDS));
533 spin_unlock_irqrestore(&rtc_lock, flags);
536 * We know that x86-64 always uses BCD format, no need to check the
550 printk(KERN_INFO "Extended CMOS year: %d\n", extyear);
553 * x86-64 systems only exists since 2002.
554 * This will work up to Dec 31, 2100
559 return mktime(year, mon, day, hour, min, sec);
562 #ifdef CONFIG_CPU_FREQ
564 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
567 RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
568 not that important because current Opteron setups do not support
569 scaling on SMP anyroads.
571 Should fix up last_tsc too. Currently gettimeofday in the
572 first tick after the change will be slightly wrong. */
574 #include <linux/workqueue.h>
576 static unsigned int cpufreq_delayed_issched = 0;
577 static unsigned int cpufreq_init = 0;
578 static struct work_struct cpufreq_delayed_get_work;
580 static void handle_cpufreq_delayed_get(void *v)
583 for_each_online_cpu(cpu) {
586 cpufreq_delayed_issched = 0;
589 /* if we notice lost ticks, schedule a call to cpufreq_get() as it tries
590 * to verify the CPU frequency the timing core thinks the CPU is running
591 * at is still correct.
593 static void cpufreq_delayed_get(void)
596 if (cpufreq_init && !cpufreq_delayed_issched) {
597 cpufreq_delayed_issched = 1;
601 "Losing some ticks... checking if CPU frequency changed.\n");
603 schedule_work(&cpufreq_delayed_get_work);
607 static unsigned int ref_freq = 0;
608 static unsigned long loops_per_jiffy_ref = 0;
610 static unsigned long cpu_khz_ref = 0;
612 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
615 struct cpufreq_freqs *freq = data;
616 unsigned long *lpj, dummy;
618 if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC))
622 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
624 lpj = &cpu_data[freq->cpu].loops_per_jiffy;
626 lpj = &boot_cpu_data.loops_per_jiffy;
630 ref_freq = freq->old;
631 loops_per_jiffy_ref = *lpj;
632 cpu_khz_ref = cpu_khz;
634 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
635 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
636 (val == CPUFREQ_RESUMECHANGE)) {
638 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
640 cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new);
641 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
642 vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
645 set_cyc2ns_scale(cpu_khz_ref);
650 static struct notifier_block time_cpufreq_notifier_block = {
651 .notifier_call = time_cpufreq_notifier
654 static int __init cpufreq_tsc(void)
656 INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
657 if (!cpufreq_register_notifier(&time_cpufreq_notifier_block,
658 CPUFREQ_TRANSITION_NOTIFIER))
663 core_initcall(cpufreq_tsc);
668 * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
669 * it to the HPET timer of known frequency.
672 #define TICK_COUNT 100000000
674 static unsigned int __init hpet_calibrate_tsc(void)
676 int tsc_start, hpet_start;
677 int tsc_now, hpet_now;
680 local_irq_save(flags);
683 hpet_start = hpet_readl(HPET_COUNTER);
688 hpet_now = hpet_readl(HPET_COUNTER);
689 tsc_now = get_cycles_sync();
690 local_irq_restore(flags);
691 } while ((tsc_now - tsc_start) < TICK_COUNT &&
692 (hpet_now - hpet_start) < TICK_COUNT);
694 return (tsc_now - tsc_start) * 1000000000L
695 / ((hpet_now - hpet_start) * hpet_period / 1000);
700 * pit_calibrate_tsc() uses the speaker output (channel 2) of
701 * the PIT. This is better than using the timer interrupt output,
702 * because we can read the value of the speaker with just one inb(),
703 * where we need three i/o operations for the interrupt channel.
704 * We count how many ticks the TSC does in 50 ms.
707 static unsigned int __init pit_calibrate_tsc(void)
709 unsigned long start, end;
712 spin_lock_irqsave(&i8253_lock, flags);
714 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
717 outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
718 outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
719 start = get_cycles_sync();
720 while ((inb(0x61) & 0x20) == 0);
721 end = get_cycles_sync();
723 spin_unlock_irqrestore(&i8253_lock, flags);
725 return (end - start) / 50;
729 static __init int late_hpet_init(void)
734 if (!vxtime.hpet_address)
737 memset(&hd, 0, sizeof (hd));
739 ntimer = hpet_readl(HPET_ID);
740 ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
744 * Register with driver.
745 * Timer0 and Timer1 is used by platform.
747 hd.hd_phys_address = vxtime.hpet_address;
748 hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
749 hd.hd_nirqs = ntimer;
750 hd.hd_flags = HPET_DATA_PLATFORM;
751 hpet_reserve_timer(&hd, 0);
752 #ifdef CONFIG_HPET_EMULATE_RTC
753 hpet_reserve_timer(&hd, 1);
755 hd.hd_irq[0] = HPET_LEGACY_8254;
756 hd.hd_irq[1] = HPET_LEGACY_RTC;
759 struct hpet_timer *timer;
762 hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE);
763 timer = &hpet->hpet_timers[2];
764 for (i = 2; i < ntimer; timer++, i++)
765 hd.hd_irq[i] = (timer->hpet_config &
766 Tn_INT_ROUTE_CNF_MASK) >>
767 Tn_INT_ROUTE_CNF_SHIFT;
774 fs_initcall(late_hpet_init);
777 static int hpet_timer_stop_set_go(unsigned long tick)
782 * Stop the timers and reset the main counter.
785 cfg = hpet_readl(HPET_CFG);
786 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
787 hpet_writel(cfg, HPET_CFG);
788 hpet_writel(0, HPET_COUNTER);
789 hpet_writel(0, HPET_COUNTER + 4);
792 * Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
793 * and period also hpet_tick.
795 if (hpet_use_timer) {
796 hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
797 HPET_TN_32BIT, HPET_T0_CFG);
798 hpet_writel(hpet_tick, HPET_T0_CMP); /* next interrupt */
799 hpet_writel(hpet_tick, HPET_T0_CMP); /* period */
800 cfg |= HPET_CFG_LEGACY;
806 cfg |= HPET_CFG_ENABLE;
807 hpet_writel(cfg, HPET_CFG);
812 static int hpet_init(void)
816 if (!vxtime.hpet_address)
818 set_fixmap_nocache(FIX_HPET_BASE, vxtime.hpet_address);
819 __set_fixmap(VSYSCALL_HPET, vxtime.hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
822 * Read the period, compute tick and quotient.
825 id = hpet_readl(HPET_ID);
827 if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER))
830 hpet_period = hpet_readl(HPET_PERIOD);
831 if (hpet_period < 100000 || hpet_period > 100000000)
834 hpet_tick = (FSEC_PER_TICK + hpet_period / 2) / hpet_period;
836 hpet_use_timer = (id & HPET_ID_LEGSUP);
838 return hpet_timer_stop_set_go(hpet_tick);
841 static int hpet_reenable(void)
843 return hpet_timer_stop_set_go(hpet_tick);
846 #define PIT_MODE 0x43
849 static void __init __pit_init(int val, u8 mode)
853 spin_lock_irqsave(&i8253_lock, flags);
854 outb_p(mode, PIT_MODE);
855 outb_p(val & 0xff, PIT_CH0); /* LSB */
856 outb_p(val >> 8, PIT_CH0); /* MSB */
857 spin_unlock_irqrestore(&i8253_lock, flags);
860 void __init pit_init(void)
862 __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */
865 void __init pit_stop_interrupt(void)
867 __pit_init(0, 0x30); /* mode 0 */
870 void __init stop_timer_interrupt(void)
873 if (vxtime.hpet_address) {
875 hpet_timer_stop_set_go(0);
878 pit_stop_interrupt();
880 printk(KERN_INFO "timer: %s interrupt stopped.\n", name);
883 int __init time_setup(char *str)
885 report_lost_ticks = 1;
889 static struct irqaction irq0 = {
890 timer_interrupt, IRQF_DISABLED, CPU_MASK_NONE, "timer", NULL, NULL
894 time_cpu_notifier(struct notifier_block *nb, unsigned long action, void *hcpu)
896 unsigned cpu = (unsigned long) hcpu;
897 if (action == CPU_ONLINE)
898 vsyscall_set_cpu(cpu);
902 void __init time_init(void)
905 vxtime.hpet_address = 0;
907 xtime.tv_sec = get_cmos_time();
910 set_normalized_timespec(&wall_to_monotonic,
911 -xtime.tv_sec, -xtime.tv_nsec);
914 vxtime_hz = (FSEC_PER_SEC + hpet_period / 2) / hpet_period;
916 vxtime.hpet_address = 0;
918 if (hpet_use_timer) {
919 /* set tick_nsec to use the proper rate for HPET */
920 tick_nsec = TICK_NSEC_HPET;
921 cpu_khz = hpet_calibrate_tsc();
923 #ifdef CONFIG_X86_PM_TIMER
924 } else if (pmtmr_ioport && !vxtime.hpet_address) {
925 vxtime_hz = PM_TIMER_FREQUENCY;
928 cpu_khz = pit_calibrate_tsc();
932 cpu_khz = pit_calibrate_tsc();
936 vxtime.mode = VXTIME_TSC;
937 vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz;
938 vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
939 vxtime.last_tsc = get_cycles_sync();
942 set_cyc2ns_scale(cpu_khz);
944 hotcpu_notifier(time_cpu_notifier, 0);
945 time_cpu_notifier(NULL, CPU_ONLINE, (void *)(long)smp_processor_id());
953 * Make an educated guess if the TSC is trustworthy and synchronized
956 __cpuinit int unsynchronized_tsc(void)
959 if (apic_is_clustered_box())
962 /* Most intel systems have synchronized TSCs except for
963 multi node systems */
964 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
966 /* But TSC doesn't tick in C3 so don't use it there */
967 if (acpi_fadt.length > 0 && acpi_fadt.plvl3_lat < 100)
973 /* Assume multi socket systems are not synchronized */
974 return num_present_cpus() > 1;
978 * Decide what mode gettimeofday should use.
980 void time_init_gtod(void)
984 if (unsynchronized_tsc())
987 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
988 vgetcpu_mode = VGETCPU_RDTSCP;
990 vgetcpu_mode = VGETCPU_LSL;
992 if (vxtime.hpet_address && notsc) {
993 timetype = hpet_use_timer ? "HPET" : "PIT/HPET";
995 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
997 vxtime.last = hpet_readl(HPET_COUNTER);
998 vxtime.mode = VXTIME_HPET;
999 do_gettimeoffset = do_gettimeoffset_hpet;
1000 #ifdef CONFIG_X86_PM_TIMER
1001 /* Using PM for gettimeofday is quite slow, but we have no other
1002 choice because the TSC is too unreliable on some systems. */
1003 } else if (pmtmr_ioport && !vxtime.hpet_address && notsc) {
1005 do_gettimeoffset = do_gettimeoffset_pm;
1006 vxtime.mode = VXTIME_PMTMR;
1007 sysctl_vsyscall = 0;
1008 printk(KERN_INFO "Disabling vsyscall due to use of PM timer\n");
1011 timetype = hpet_use_timer ? "HPET/TSC" : "PIT/TSC";
1012 vxtime.mode = VXTIME_TSC;
1015 printk(KERN_INFO "time.c: Using %ld.%06ld MHz WALL %s GTOD %s timer.\n",
1016 vxtime_hz / 1000000, vxtime_hz % 1000000, timename, timetype);
1017 printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
1018 cpu_khz / 1000, cpu_khz % 1000);
1019 vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz;
1020 vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
1021 vxtime.last_tsc = get_cycles_sync();
1023 set_cyc2ns_scale(cpu_khz);
1026 __setup("report_lost_ticks", time_setup);
1028 static long clock_cmos_diff;
1029 static unsigned long sleep_start;
1032 * sysfs support for the timer.
1035 static int timer_suspend(struct sys_device *dev, pm_message_t state)
1038 * Estimate time zone so that set_time can update the clock
1040 long cmos_time = get_cmos_time();
1042 clock_cmos_diff = -cmos_time;
1043 clock_cmos_diff += get_seconds();
1044 sleep_start = cmos_time;
1048 static int timer_resume(struct sys_device *dev)
1050 unsigned long flags;
1052 unsigned long ctime = get_cmos_time();
1053 unsigned long sleep_length = (ctime - sleep_start) * HZ;
1055 if (vxtime.hpet_address)
1058 i8254_timer_resume();
1060 sec = ctime + clock_cmos_diff;
1061 write_seqlock_irqsave(&xtime_lock,flags);
1064 if (vxtime.mode == VXTIME_HPET) {
1066 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
1068 vxtime.last = hpet_readl(HPET_COUNTER);
1069 #ifdef CONFIG_X86_PM_TIMER
1070 } else if (vxtime.mode == VXTIME_PMTMR) {
1074 vxtime.last_tsc = get_cycles_sync();
1075 write_sequnlock_irqrestore(&xtime_lock,flags);
1076 jiffies += sleep_length;
1077 wall_jiffies += sleep_length;
1078 monotonic_base += sleep_length * (NSEC_PER_SEC/HZ);
1079 touch_softlockup_watchdog();
1083 static struct sysdev_class timer_sysclass = {
1084 .resume = timer_resume,
1085 .suspend = timer_suspend,
1086 set_kset_name("timer"),
1089 /* XXX this driverfs stuff should probably go elsewhere later -john */
1090 static struct sys_device device_timer = {
1092 .cls = &timer_sysclass,
1095 static int time_init_device(void)
1097 int error = sysdev_class_register(&timer_sysclass);
1099 error = sysdev_register(&device_timer);
1103 device_initcall(time_init_device);
1105 #ifdef CONFIG_HPET_EMULATE_RTC
1106 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1107 * is enabled, we support RTC interrupt functionality in software.
1108 * RTC has 3 kinds of interrupts:
1109 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1111 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1112 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1113 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1114 * (1) and (2) above are implemented using polling at a frequency of
1115 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1116 * overhead. (DEFAULT_RTC_INT_FREQ)
1117 * For (3), we use interrupts at 64Hz or user specified periodic
1118 * frequency, whichever is higher.
1120 #include <linux/rtc.h>
1122 #define DEFAULT_RTC_INT_FREQ 64
1123 #define RTC_NUM_INTS 1
1125 static unsigned long UIE_on;
1126 static unsigned long prev_update_sec;
1128 static unsigned long AIE_on;
1129 static struct rtc_time alarm_time;
1131 static unsigned long PIE_on;
1132 static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
1133 static unsigned long PIE_count;
1135 static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
1136 static unsigned int hpet_t1_cmp; /* cached comparator register */
1138 int is_hpet_enabled(void)
1140 return vxtime.hpet_address != 0;
1144 * Timer 1 for RTC, we do not use periodic interrupt feature,
1145 * even if HPET supports periodic interrupts on Timer 1.
1146 * The reason being, to set up a periodic interrupt in HPET, we need to
1147 * stop the main counter. And if we do that everytime someone diables/enables
1148 * RTC, we will have adverse effect on main kernel timer running on Timer 0.
1149 * So, for the time being, simulate the periodic interrupt in software.
1151 * hpet_rtc_timer_init() is called for the first time and during subsequent
1152 * interuppts reinit happens through hpet_rtc_timer_reinit().
1154 int hpet_rtc_timer_init(void)
1156 unsigned int cfg, cnt;
1157 unsigned long flags;
1159 if (!is_hpet_enabled())
1162 * Set the counter 1 and enable the interrupts.
1164 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1165 hpet_rtc_int_freq = PIE_freq;
1167 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1169 local_irq_save(flags);
1170 cnt = hpet_readl(HPET_COUNTER);
1171 cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
1172 hpet_writel(cnt, HPET_T1_CMP);
1174 local_irq_restore(flags);
1176 cfg = hpet_readl(HPET_T1_CFG);
1177 cfg &= ~HPET_TN_PERIODIC;
1178 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1179 hpet_writel(cfg, HPET_T1_CFG);
1184 static void hpet_rtc_timer_reinit(void)
1186 unsigned int cfg, cnt;
1188 if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
1189 cfg = hpet_readl(HPET_T1_CFG);
1190 cfg &= ~HPET_TN_ENABLE;
1191 hpet_writel(cfg, HPET_T1_CFG);
1195 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1196 hpet_rtc_int_freq = PIE_freq;
1198 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1200 /* It is more accurate to use the comparator value than current count.*/
1202 cnt += hpet_tick*HZ/hpet_rtc_int_freq;
1203 hpet_writel(cnt, HPET_T1_CMP);
1208 * The functions below are called from rtc driver.
1209 * Return 0 if HPET is not being used.
1210 * Otherwise do the necessary changes and return 1.
1212 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1214 if (!is_hpet_enabled())
1217 if (bit_mask & RTC_UIE)
1219 if (bit_mask & RTC_PIE)
1221 if (bit_mask & RTC_AIE)
1227 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1229 int timer_init_reqd = 0;
1231 if (!is_hpet_enabled())
1234 if (!(PIE_on | AIE_on | UIE_on))
1235 timer_init_reqd = 1;
1237 if (bit_mask & RTC_UIE) {
1240 if (bit_mask & RTC_PIE) {
1244 if (bit_mask & RTC_AIE) {
1248 if (timer_init_reqd)
1249 hpet_rtc_timer_init();
1254 int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1256 if (!is_hpet_enabled())
1259 alarm_time.tm_hour = hrs;
1260 alarm_time.tm_min = min;
1261 alarm_time.tm_sec = sec;
1266 int hpet_set_periodic_freq(unsigned long freq)
1268 if (!is_hpet_enabled())
1277 int hpet_rtc_dropped_irq(void)
1279 if (!is_hpet_enabled())
1285 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1287 struct rtc_time curr_time;
1288 unsigned long rtc_int_flag = 0;
1289 int call_rtc_interrupt = 0;
1291 hpet_rtc_timer_reinit();
1293 if (UIE_on | AIE_on) {
1294 rtc_get_rtc_time(&curr_time);
1297 if (curr_time.tm_sec != prev_update_sec) {
1298 /* Set update int info, call real rtc int routine */
1299 call_rtc_interrupt = 1;
1300 rtc_int_flag = RTC_UF;
1301 prev_update_sec = curr_time.tm_sec;
1306 if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
1307 /* Set periodic int info, call real rtc int routine */
1308 call_rtc_interrupt = 1;
1309 rtc_int_flag |= RTC_PF;
1314 if ((curr_time.tm_sec == alarm_time.tm_sec) &&
1315 (curr_time.tm_min == alarm_time.tm_min) &&
1316 (curr_time.tm_hour == alarm_time.tm_hour)) {
1317 /* Set alarm int info, call real rtc int routine */
1318 call_rtc_interrupt = 1;
1319 rtc_int_flag |= RTC_AF;
1322 if (call_rtc_interrupt) {
1323 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1324 rtc_interrupt(rtc_int_flag, dev_id, regs);
1330 static int __init nohpet_setup(char *s)
1336 __setup("nohpet", nohpet_setup);
1338 int __init notsc_setup(char *s)
1344 __setup("notsc", notsc_setup);