x86, es7000: clean up es7000_enable_apic_mode()
[linux-2.6] / arch / sh / kernel / smp.c
1 /*
2  * arch/sh/kernel/smp.c
3  *
4  * SMP support for the SuperH processors.
5  *
6  * Copyright (C) 2002 - 2008 Paul Mundt
7  * Copyright (C) 2006 - 2007 Akio Idehara
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/err.h>
14 #include <linux/cache.h>
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/cpu.h>
22 #include <linux/interrupt.h>
23 #include <asm/atomic.h>
24 #include <asm/processor.h>
25 #include <asm/system.h>
26 #include <asm/mmu_context.h>
27 #include <asm/smp.h>
28 #include <asm/cacheflush.h>
29 #include <asm/sections.h>
30
31 int __cpu_number_map[NR_CPUS];          /* Map physical to logical */
32 int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
33
34 static inline void __init smp_store_cpu_info(unsigned int cpu)
35 {
36         struct sh_cpuinfo *c = cpu_data + cpu;
37
38         c->loops_per_jiffy = loops_per_jiffy;
39 }
40
41 void __init smp_prepare_cpus(unsigned int max_cpus)
42 {
43         unsigned int cpu = smp_processor_id();
44
45         init_new_context(current, &init_mm);
46         current_thread_info()->cpu = cpu;
47         plat_prepare_cpus(max_cpus);
48
49 #ifndef CONFIG_HOTPLUG_CPU
50         cpu_present_map = cpu_possible_map;
51 #endif
52 }
53
54 void __devinit smp_prepare_boot_cpu(void)
55 {
56         unsigned int cpu = smp_processor_id();
57
58         __cpu_number_map[0] = cpu;
59         __cpu_logical_map[0] = cpu;
60
61         cpu_set(cpu, cpu_online_map);
62         cpu_set(cpu, cpu_possible_map);
63 }
64
65 asmlinkage void __cpuinit start_secondary(void)
66 {
67         unsigned int cpu;
68         struct mm_struct *mm = &init_mm;
69
70         atomic_inc(&mm->mm_count);
71         atomic_inc(&mm->mm_users);
72         current->active_mm = mm;
73         BUG_ON(current->mm);
74         enter_lazy_tlb(mm, current);
75
76         per_cpu_trap_init();
77
78         preempt_disable();
79
80         notify_cpu_starting(smp_processor_id());
81
82         local_irq_enable();
83
84         cpu = smp_processor_id();
85
86         /* Enable local timers */
87         local_timer_setup(cpu);
88         calibrate_delay();
89
90         smp_store_cpu_info(cpu);
91
92         cpu_set(cpu, cpu_online_map);
93
94         cpu_idle();
95 }
96
97 extern struct {
98         unsigned long sp;
99         unsigned long bss_start;
100         unsigned long bss_end;
101         void *start_kernel_fn;
102         void *cpu_init_fn;
103         void *thread_info;
104 } stack_start;
105
106 int __cpuinit __cpu_up(unsigned int cpu)
107 {
108         struct task_struct *tsk;
109         unsigned long timeout;
110
111         tsk = fork_idle(cpu);
112         if (IS_ERR(tsk)) {
113                 printk(KERN_ERR "Failed forking idle task for cpu %d\n", cpu);
114                 return PTR_ERR(tsk);
115         }
116
117         /* Fill in data in head.S for secondary cpus */
118         stack_start.sp = tsk->thread.sp;
119         stack_start.thread_info = tsk->stack;
120         stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
121         stack_start.start_kernel_fn = start_secondary;
122
123         flush_cache_all();
124
125         plat_start_cpu(cpu, (unsigned long)_stext);
126
127         timeout = jiffies + HZ;
128         while (time_before(jiffies, timeout)) {
129                 if (cpu_online(cpu))
130                         break;
131
132                 udelay(10);
133         }
134
135         if (cpu_online(cpu))
136                 return 0;
137
138         return -ENOENT;
139 }
140
141 void __init smp_cpus_done(unsigned int max_cpus)
142 {
143         unsigned long bogosum = 0;
144         int cpu;
145
146         for_each_online_cpu(cpu)
147                 bogosum += cpu_data[cpu].loops_per_jiffy;
148
149         printk(KERN_INFO "SMP: Total of %d processors activated "
150                "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
151                bogosum / (500000/HZ),
152                (bogosum / (5000/HZ)) % 100);
153 }
154
155 void smp_send_reschedule(int cpu)
156 {
157         plat_send_ipi(cpu, SMP_MSG_RESCHEDULE);
158 }
159
160 static void stop_this_cpu(void *unused)
161 {
162         cpu_clear(smp_processor_id(), cpu_online_map);
163         local_irq_disable();
164
165         for (;;)
166                 cpu_relax();
167 }
168
169 void smp_send_stop(void)
170 {
171         smp_call_function(stop_this_cpu, 0, 0);
172 }
173
174 void arch_send_call_function_ipi(cpumask_t mask)
175 {
176         int cpu;
177
178         for_each_cpu_mask(cpu, mask)
179                 plat_send_ipi(cpu, SMP_MSG_FUNCTION);
180 }
181
182 void arch_send_call_function_single_ipi(int cpu)
183 {
184         plat_send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
185 }
186
187 void smp_timer_broadcast(const struct cpumask *mask)
188 {
189         int cpu;
190
191         for_each_cpu(cpu, mask)
192                 plat_send_ipi(cpu, SMP_MSG_TIMER);
193 }
194
195 static void ipi_timer(void)
196 {
197         irq_enter();
198         local_timer_interrupt();
199         irq_exit();
200 }
201
202 void smp_message_recv(unsigned int msg)
203 {
204         switch (msg) {
205         case SMP_MSG_FUNCTION:
206                 generic_smp_call_function_interrupt();
207                 break;
208         case SMP_MSG_RESCHEDULE:
209                 break;
210         case SMP_MSG_FUNCTION_SINGLE:
211                 generic_smp_call_function_single_interrupt();
212                 break;
213         case SMP_MSG_TIMER:
214                 ipi_timer();
215                 break;
216         default:
217                 printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
218                        smp_processor_id(), __func__, msg);
219                 break;
220         }
221 }
222
223 /* Not really SMP stuff ... */
224 int setup_profiling_timer(unsigned int multiplier)
225 {
226         return 0;
227 }
228
229 static void flush_tlb_all_ipi(void *info)
230 {
231         local_flush_tlb_all();
232 }
233
234 void flush_tlb_all(void)
235 {
236         on_each_cpu(flush_tlb_all_ipi, 0, 1);
237 }
238
239 static void flush_tlb_mm_ipi(void *mm)
240 {
241         local_flush_tlb_mm((struct mm_struct *)mm);
242 }
243
244 /*
245  * The following tlb flush calls are invoked when old translations are
246  * being torn down, or pte attributes are changing. For single threaded
247  * address spaces, a new context is obtained on the current cpu, and tlb
248  * context on other cpus are invalidated to force a new context allocation
249  * at switch_mm time, should the mm ever be used on other cpus. For
250  * multithreaded address spaces, intercpu interrupts have to be sent.
251  * Another case where intercpu interrupts are required is when the target
252  * mm might be active on another cpu (eg debuggers doing the flushes on
253  * behalf of debugees, kswapd stealing pages from another process etc).
254  * Kanoj 07/00.
255  */
256
257 void flush_tlb_mm(struct mm_struct *mm)
258 {
259         preempt_disable();
260
261         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
262                 smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
263         } else {
264                 int i;
265                 for (i = 0; i < num_online_cpus(); i++)
266                         if (smp_processor_id() != i)
267                                 cpu_context(i, mm) = 0;
268         }
269         local_flush_tlb_mm(mm);
270
271         preempt_enable();
272 }
273
274 struct flush_tlb_data {
275         struct vm_area_struct *vma;
276         unsigned long addr1;
277         unsigned long addr2;
278 };
279
280 static void flush_tlb_range_ipi(void *info)
281 {
282         struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
283
284         local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
285 }
286
287 void flush_tlb_range(struct vm_area_struct *vma,
288                      unsigned long start, unsigned long end)
289 {
290         struct mm_struct *mm = vma->vm_mm;
291
292         preempt_disable();
293         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
294                 struct flush_tlb_data fd;
295
296                 fd.vma = vma;
297                 fd.addr1 = start;
298                 fd.addr2 = end;
299                 smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
300         } else {
301                 int i;
302                 for (i = 0; i < num_online_cpus(); i++)
303                         if (smp_processor_id() != i)
304                                 cpu_context(i, mm) = 0;
305         }
306         local_flush_tlb_range(vma, start, end);
307         preempt_enable();
308 }
309
310 static void flush_tlb_kernel_range_ipi(void *info)
311 {
312         struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
313
314         local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
315 }
316
317 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
318 {
319         struct flush_tlb_data fd;
320
321         fd.addr1 = start;
322         fd.addr2 = end;
323         on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
324 }
325
326 static void flush_tlb_page_ipi(void *info)
327 {
328         struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
329
330         local_flush_tlb_page(fd->vma, fd->addr1);
331 }
332
333 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
334 {
335         preempt_disable();
336         if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
337             (current->mm != vma->vm_mm)) {
338                 struct flush_tlb_data fd;
339
340                 fd.vma = vma;
341                 fd.addr1 = page;
342                 smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
343         } else {
344                 int i;
345                 for (i = 0; i < num_online_cpus(); i++)
346                         if (smp_processor_id() != i)
347                                 cpu_context(i, vma->vm_mm) = 0;
348         }
349         local_flush_tlb_page(vma, page);
350         preempt_enable();
351 }
352
353 static void flush_tlb_one_ipi(void *info)
354 {
355         struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
356         local_flush_tlb_one(fd->addr1, fd->addr2);
357 }
358
359 void flush_tlb_one(unsigned long asid, unsigned long vaddr)
360 {
361         struct flush_tlb_data fd;
362
363         fd.addr1 = asid;
364         fd.addr2 = vaddr;
365
366         smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
367         local_flush_tlb_one(asid, vaddr);
368 }