netxen: disable msi-x for NC512m adapter
[linux-2.6] / drivers / net / korina.c
1 /*
2  *  Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
3  *
4  *  Copyright 2004 IDT Inc. (rischelp@idt.com)
5  *  Copyright 2006 Felix Fietkau <nbd@openwrt.org>
6  *  Copyright 2008 Florian Fainelli <florian@openwrt.org>
7  *
8  *  This program is free software; you can redistribute  it and/or modify it
9  *  under  the terms of  the GNU General  Public License as published by the
10  *  Free Software Foundation;  either version 2 of the  License, or (at your
11  *  option) any later version.
12  *
13  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
14  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
15  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
16  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
17  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
19  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
20  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
21  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  *
24  *  You should have received a copy of the  GNU General Public License along
25  *  with this program; if not, write  to the Free Software Foundation, Inc.,
26  *  675 Mass Ave, Cambridge, MA 02139, USA.
27  *
28  *  Writing to a DMA status register:
29  *
30  *  When writing to the status register, you should mask the bit you have
31  *  been testing the status register with. Both Tx and Rx DMA registers
32  *  should stick to this procedure.
33  */
34
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/moduleparam.h>
38 #include <linux/sched.h>
39 #include <linux/ctype.h>
40 #include <linux/types.h>
41 #include <linux/interrupt.h>
42 #include <linux/init.h>
43 #include <linux/ioport.h>
44 #include <linux/in.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/delay.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/errno.h>
52 #include <linux/platform_device.h>
53 #include <linux/mii.h>
54 #include <linux/ethtool.h>
55 #include <linux/crc32.h>
56
57 #include <asm/bootinfo.h>
58 #include <asm/system.h>
59 #include <asm/bitops.h>
60 #include <asm/pgtable.h>
61 #include <asm/segment.h>
62 #include <asm/io.h>
63 #include <asm/dma.h>
64
65 #include <asm/mach-rc32434/rb.h>
66 #include <asm/mach-rc32434/rc32434.h>
67 #include <asm/mach-rc32434/eth.h>
68 #include <asm/mach-rc32434/dma_v.h>
69
70 #define DRV_NAME        "korina"
71 #define DRV_VERSION     "0.10"
72 #define DRV_RELDATE     "04Mar2008"
73
74 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
75                                    ((dev)->dev_addr[1]))
76 #define STATION_ADDRESS_LOW(dev)  (((dev)->dev_addr[2] << 24) | \
77                                    ((dev)->dev_addr[3] << 16) | \
78                                    ((dev)->dev_addr[4] << 8)  | \
79                                    ((dev)->dev_addr[5]))
80
81 #define MII_CLOCK 1250000       /* no more than 2.5MHz */
82
83 /* the following must be powers of two */
84 #define KORINA_NUM_RDS  64  /* number of receive descriptors */
85 #define KORINA_NUM_TDS  64  /* number of transmit descriptors */
86
87 /* KORINA_RBSIZE is the hardware's default maximum receive
88  * frame size in bytes. Having this hardcoded means that there
89  * is no support for MTU sizes greater than 1500. */
90 #define KORINA_RBSIZE   1536 /* size of one resource buffer = Ether MTU */
91 #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
92 #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
93 #define RD_RING_SIZE    (KORINA_NUM_RDS * sizeof(struct dma_desc))
94 #define TD_RING_SIZE    (KORINA_NUM_TDS * sizeof(struct dma_desc))
95
96 #define TX_TIMEOUT      (6000 * HZ / 1000)
97
98 enum chain_status { desc_filled, desc_empty };
99 #define IS_DMA_FINISHED(X)   (((X) & (DMA_DESC_FINI)) != 0)
100 #define IS_DMA_DONE(X)   (((X) & (DMA_DESC_DONE)) != 0)
101 #define RCVPKT_LENGTH(X)     (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
102
103 /* Information that need to be kept for each board. */
104 struct korina_private {
105         struct eth_regs *eth_regs;
106         struct dma_reg *rx_dma_regs;
107         struct dma_reg *tx_dma_regs;
108         struct dma_desc *td_ring; /* transmit descriptor ring */
109         struct dma_desc *rd_ring; /* receive descriptor ring  */
110
111         struct sk_buff *tx_skb[KORINA_NUM_TDS];
112         struct sk_buff *rx_skb[KORINA_NUM_RDS];
113
114         int rx_next_done;
115         int rx_chain_head;
116         int rx_chain_tail;
117         enum chain_status rx_chain_status;
118
119         int tx_next_done;
120         int tx_chain_head;
121         int tx_chain_tail;
122         enum chain_status tx_chain_status;
123         int tx_count;
124         int tx_full;
125
126         int rx_irq;
127         int tx_irq;
128         int ovr_irq;
129         int und_irq;
130
131         spinlock_t lock;        /* NIC xmit lock */
132
133         int dma_halt_cnt;
134         int dma_run_cnt;
135         struct napi_struct napi;
136         struct mii_if_info mii_if;
137         struct net_device *dev;
138         int phy_addr;
139 };
140
141 extern unsigned int idt_cpu_freq;
142
143 static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
144 {
145         writel(0, &ch->dmandptr);
146         writel(dma_addr, &ch->dmadptr);
147 }
148
149 static inline void korina_abort_dma(struct net_device *dev,
150                                         struct dma_reg *ch)
151 {
152        if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
153                writel(0x10, &ch->dmac);
154
155                while (!(readl(&ch->dmas) & DMA_STAT_HALT))
156                        dev->trans_start = jiffies;
157
158                writel(0, &ch->dmas);
159        }
160
161        writel(0, &ch->dmadptr);
162        writel(0, &ch->dmandptr);
163 }
164
165 static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
166 {
167         writel(dma_addr, &ch->dmandptr);
168 }
169
170 static void korina_abort_tx(struct net_device *dev)
171 {
172         struct korina_private *lp = netdev_priv(dev);
173
174         korina_abort_dma(dev, lp->tx_dma_regs);
175 }
176
177 static void korina_abort_rx(struct net_device *dev)
178 {
179         struct korina_private *lp = netdev_priv(dev);
180
181         korina_abort_dma(dev, lp->rx_dma_regs);
182 }
183
184 static void korina_start_rx(struct korina_private *lp,
185                                         struct dma_desc *rd)
186 {
187         korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
188 }
189
190 static void korina_chain_rx(struct korina_private *lp,
191                                         struct dma_desc *rd)
192 {
193         korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
194 }
195
196 /* transmit packet */
197 static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
198 {
199         struct korina_private *lp = netdev_priv(dev);
200         unsigned long flags;
201         u32 length;
202         u32 chain_prev, chain_next;
203         struct dma_desc *td;
204
205         spin_lock_irqsave(&lp->lock, flags);
206
207         td = &lp->td_ring[lp->tx_chain_tail];
208
209         /* stop queue when full, drop pkts if queue already full */
210         if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
211                 lp->tx_full = 1;
212
213                 if (lp->tx_count == (KORINA_NUM_TDS - 2))
214                         netif_stop_queue(dev);
215                 else {
216                         dev->stats.tx_dropped++;
217                         dev_kfree_skb_any(skb);
218                         spin_unlock_irqrestore(&lp->lock, flags);
219
220                         return NETDEV_TX_BUSY;
221                 }
222         }
223
224         lp->tx_count++;
225
226         lp->tx_skb[lp->tx_chain_tail] = skb;
227
228         length = skb->len;
229         dma_cache_wback((u32)skb->data, skb->len);
230
231         /* Setup the transmit descriptor. */
232         dma_cache_inv((u32) td, sizeof(*td));
233         td->ca = CPHYSADDR(skb->data);
234         chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK;
235         chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
236
237         if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
238                 if (lp->tx_chain_status == desc_empty) {
239                         /* Update tail */
240                         td->control = DMA_COUNT(length) |
241                                         DMA_DESC_COF | DMA_DESC_IOF;
242                         /* Move tail */
243                         lp->tx_chain_tail = chain_next;
244                         /* Write to NDPTR */
245                         writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
246                                         &lp->tx_dma_regs->dmandptr);
247                         /* Move head to tail */
248                         lp->tx_chain_head = lp->tx_chain_tail;
249                 } else {
250                         /* Update tail */
251                         td->control = DMA_COUNT(length) |
252                                         DMA_DESC_COF | DMA_DESC_IOF;
253                         /* Link to prev */
254                         lp->td_ring[chain_prev].control &=
255                                         ~DMA_DESC_COF;
256                         /* Link to prev */
257                         lp->td_ring[chain_prev].link =  CPHYSADDR(td);
258                         /* Move tail */
259                         lp->tx_chain_tail = chain_next;
260                         /* Write to NDPTR */
261                         writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
262                                         &(lp->tx_dma_regs->dmandptr));
263                         /* Move head to tail */
264                         lp->tx_chain_head = lp->tx_chain_tail;
265                         lp->tx_chain_status = desc_empty;
266                 }
267         } else {
268                 if (lp->tx_chain_status == desc_empty) {
269                         /* Update tail */
270                         td->control = DMA_COUNT(length) |
271                                         DMA_DESC_COF | DMA_DESC_IOF;
272                         /* Move tail */
273                         lp->tx_chain_tail = chain_next;
274                         lp->tx_chain_status = desc_filled;
275                 } else {
276                         /* Update tail */
277                         td->control = DMA_COUNT(length) |
278                                         DMA_DESC_COF | DMA_DESC_IOF;
279                         lp->td_ring[chain_prev].control &=
280                                         ~DMA_DESC_COF;
281                         lp->td_ring[chain_prev].link =  CPHYSADDR(td);
282                         lp->tx_chain_tail = chain_next;
283                 }
284         }
285         dma_cache_wback((u32) td, sizeof(*td));
286
287         dev->trans_start = jiffies;
288         spin_unlock_irqrestore(&lp->lock, flags);
289
290         return NETDEV_TX_OK;
291 }
292
293 static int mdio_read(struct net_device *dev, int mii_id, int reg)
294 {
295         struct korina_private *lp = netdev_priv(dev);
296         int ret;
297
298         mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
299
300         writel(0, &lp->eth_regs->miimcfg);
301         writel(0, &lp->eth_regs->miimcmd);
302         writel(mii_id | reg, &lp->eth_regs->miimaddr);
303         writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
304
305         ret = (int)(readl(&lp->eth_regs->miimrdd));
306         return ret;
307 }
308
309 static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
310 {
311         struct korina_private *lp = netdev_priv(dev);
312
313         mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
314
315         writel(0, &lp->eth_regs->miimcfg);
316         writel(1, &lp->eth_regs->miimcmd);
317         writel(mii_id | reg, &lp->eth_regs->miimaddr);
318         writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
319         writel(val, &lp->eth_regs->miimwtd);
320 }
321
322 /* Ethernet Rx DMA interrupt */
323 static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
324 {
325         struct net_device *dev = dev_id;
326         struct korina_private *lp = netdev_priv(dev);
327         u32 dmas, dmasm;
328         irqreturn_t retval;
329
330         dmas = readl(&lp->rx_dma_regs->dmas);
331         if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
332                 dmasm = readl(&lp->rx_dma_regs->dmasm);
333                 writel(dmasm | (DMA_STAT_DONE |
334                                 DMA_STAT_HALT | DMA_STAT_ERR),
335                                 &lp->rx_dma_regs->dmasm);
336
337                 napi_schedule(&lp->napi);
338
339                 if (dmas & DMA_STAT_ERR)
340                         printk(KERN_ERR DRV_NAME "%s: DMA error\n", dev->name);
341
342                 retval = IRQ_HANDLED;
343         } else
344                 retval = IRQ_NONE;
345
346         return retval;
347 }
348
349 static int korina_rx(struct net_device *dev, int limit)
350 {
351         struct korina_private *lp = netdev_priv(dev);
352         struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
353         struct sk_buff *skb, *skb_new;
354         u8 *pkt_buf;
355         u32 devcs, pkt_len, dmas;
356         int count;
357
358         dma_cache_inv((u32)rd, sizeof(*rd));
359
360         for (count = 0; count < limit; count++) {
361                 skb = lp->rx_skb[lp->rx_next_done];
362                 skb_new = NULL;
363
364                 devcs = rd->devcs;
365
366                 if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
367                         break;
368
369                 /* Update statistics counters */
370                 if (devcs & ETH_RX_CRC)
371                         dev->stats.rx_crc_errors++;
372                 if (devcs & ETH_RX_LOR)
373                         dev->stats.rx_length_errors++;
374                 if (devcs & ETH_RX_LE)
375                         dev->stats.rx_length_errors++;
376                 if (devcs & ETH_RX_OVR)
377                         dev->stats.rx_over_errors++;
378                 if (devcs & ETH_RX_CV)
379                         dev->stats.rx_frame_errors++;
380                 if (devcs & ETH_RX_CES)
381                         dev->stats.rx_length_errors++;
382                 if (devcs & ETH_RX_MP)
383                         dev->stats.multicast++;
384
385                 if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
386                         /* check that this is a whole packet
387                          * WARNING: DMA_FD bit incorrectly set
388                          * in Rc32434 (errata ref #077) */
389                         dev->stats.rx_errors++;
390                         dev->stats.rx_dropped++;
391                 } else if ((devcs & ETH_RX_ROK)) {
392                         pkt_len = RCVPKT_LENGTH(devcs);
393
394                         /* must be the (first and) last
395                          * descriptor then */
396                         pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
397
398                         /* invalidate the cache */
399                         dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
400
401                         /* Malloc up new buffer. */
402                         skb_new = netdev_alloc_skb(dev, KORINA_RBSIZE + 2);
403
404                         if (!skb_new)
405                                 break;
406                         /* Do not count the CRC */
407                         skb_put(skb, pkt_len - 4);
408                         skb->protocol = eth_type_trans(skb, dev);
409
410                         /* Pass the packet to upper layers */
411                         netif_receive_skb(skb);
412                         dev->stats.rx_packets++;
413                         dev->stats.rx_bytes += pkt_len;
414
415                         /* Update the mcast stats */
416                         if (devcs & ETH_RX_MP)
417                                 dev->stats.multicast++;
418
419                         /* 16 bit align */
420                         skb_reserve(skb_new, 2);
421
422                         lp->rx_skb[lp->rx_next_done] = skb_new;
423                 }
424
425                 rd->devcs = 0;
426
427                 /* Restore descriptor's curr_addr */
428                 if (skb_new)
429                         rd->ca = CPHYSADDR(skb_new->data);
430                 else
431                         rd->ca = CPHYSADDR(skb->data);
432
433                 rd->control = DMA_COUNT(KORINA_RBSIZE) |
434                         DMA_DESC_COD | DMA_DESC_IOD;
435                 lp->rd_ring[(lp->rx_next_done - 1) &
436                         KORINA_RDS_MASK].control &=
437                         ~DMA_DESC_COD;
438
439                 lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
440                 dma_cache_wback((u32)rd, sizeof(*rd));
441                 rd = &lp->rd_ring[lp->rx_next_done];
442                 writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
443         }
444
445         dmas = readl(&lp->rx_dma_regs->dmas);
446
447         if (dmas & DMA_STAT_HALT) {
448                 writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
449                                 &lp->rx_dma_regs->dmas);
450
451                 lp->dma_halt_cnt++;
452                 rd->devcs = 0;
453                 skb = lp->rx_skb[lp->rx_next_done];
454                 rd->ca = CPHYSADDR(skb->data);
455                 dma_cache_wback((u32)rd, sizeof(*rd));
456                 korina_chain_rx(lp, rd);
457         }
458
459         return count;
460 }
461
462 static int korina_poll(struct napi_struct *napi, int budget)
463 {
464         struct korina_private *lp =
465                 container_of(napi, struct korina_private, napi);
466         struct net_device *dev = lp->dev;
467         int work_done;
468
469         work_done = korina_rx(dev, budget);
470         if (work_done < budget) {
471                 napi_complete(napi);
472
473                 writel(readl(&lp->rx_dma_regs->dmasm) &
474                         ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
475                         &lp->rx_dma_regs->dmasm);
476         }
477         return work_done;
478 }
479
480 /*
481  * Set or clear the multicast filter for this adaptor.
482  */
483 static void korina_multicast_list(struct net_device *dev)
484 {
485         struct korina_private *lp = netdev_priv(dev);
486         unsigned long flags;
487         struct dev_mc_list *dmi = dev->mc_list;
488         u32 recognise = ETH_ARC_AB;     /* always accept broadcasts */
489         int i;
490
491         /* Set promiscuous mode */
492         if (dev->flags & IFF_PROMISC)
493                 recognise |= ETH_ARC_PRO;
494
495         else if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 4))
496                 /* All multicast and broadcast */
497                 recognise |= ETH_ARC_AM;
498
499         /* Build the hash table */
500         if (dev->mc_count > 4) {
501                 u16 hash_table[4];
502                 u32 crc;
503
504                 for (i = 0; i < 4; i++)
505                         hash_table[i] = 0;
506
507                 for (i = 0; i < dev->mc_count; i++) {
508                         char *addrs = dmi->dmi_addr;
509
510                         dmi = dmi->next;
511
512                         if (!(*addrs & 1))
513                                 continue;
514
515                         crc = ether_crc_le(6, addrs);
516                         crc >>= 26;
517                         hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
518                 }
519                 /* Accept filtered multicast */
520                 recognise |= ETH_ARC_AFM;
521
522                 /* Fill the MAC hash tables with their values */
523                 writel((u32)(hash_table[1] << 16 | hash_table[0]),
524                                         &lp->eth_regs->ethhash0);
525                 writel((u32)(hash_table[3] << 16 | hash_table[2]),
526                                         &lp->eth_regs->ethhash1);
527         }
528
529         spin_lock_irqsave(&lp->lock, flags);
530         writel(recognise, &lp->eth_regs->etharc);
531         spin_unlock_irqrestore(&lp->lock, flags);
532 }
533
534 static void korina_tx(struct net_device *dev)
535 {
536         struct korina_private *lp = netdev_priv(dev);
537         struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
538         u32 devcs;
539         u32 dmas;
540
541         spin_lock(&lp->lock);
542
543         /* Process all desc that are done */
544         while (IS_DMA_FINISHED(td->control)) {
545                 if (lp->tx_full == 1) {
546                         netif_wake_queue(dev);
547                         lp->tx_full = 0;
548                 }
549
550                 devcs = lp->td_ring[lp->tx_next_done].devcs;
551                 if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
552                                 (ETH_TX_FD | ETH_TX_LD)) {
553                         dev->stats.tx_errors++;
554                         dev->stats.tx_dropped++;
555
556                         /* Should never happen */
557                         printk(KERN_ERR DRV_NAME "%s: split tx ignored\n",
558                                                         dev->name);
559                 } else if (devcs & ETH_TX_TOK) {
560                         dev->stats.tx_packets++;
561                         dev->stats.tx_bytes +=
562                                         lp->tx_skb[lp->tx_next_done]->len;
563                 } else {
564                         dev->stats.tx_errors++;
565                         dev->stats.tx_dropped++;
566
567                         /* Underflow */
568                         if (devcs & ETH_TX_UND)
569                                 dev->stats.tx_fifo_errors++;
570
571                         /* Oversized frame */
572                         if (devcs & ETH_TX_OF)
573                                 dev->stats.tx_aborted_errors++;
574
575                         /* Excessive deferrals */
576                         if (devcs & ETH_TX_ED)
577                                 dev->stats.tx_carrier_errors++;
578
579                         /* Collisions: medium busy */
580                         if (devcs & ETH_TX_EC)
581                                 dev->stats.collisions++;
582
583                         /* Late collision */
584                         if (devcs & ETH_TX_LC)
585                                 dev->stats.tx_window_errors++;
586                 }
587
588                 /* We must always free the original skb */
589                 if (lp->tx_skb[lp->tx_next_done]) {
590                         dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
591                         lp->tx_skb[lp->tx_next_done] = NULL;
592                 }
593
594                 lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
595                 lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
596                 lp->td_ring[lp->tx_next_done].link = 0;
597                 lp->td_ring[lp->tx_next_done].ca = 0;
598                 lp->tx_count--;
599
600                 /* Go on to next transmission */
601                 lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
602                 td = &lp->td_ring[lp->tx_next_done];
603
604         }
605
606         /* Clear the DMA status register */
607         dmas = readl(&lp->tx_dma_regs->dmas);
608         writel(~dmas, &lp->tx_dma_regs->dmas);
609
610         writel(readl(&lp->tx_dma_regs->dmasm) &
611                         ~(DMA_STAT_FINI | DMA_STAT_ERR),
612                         &lp->tx_dma_regs->dmasm);
613
614         spin_unlock(&lp->lock);
615 }
616
617 static irqreturn_t
618 korina_tx_dma_interrupt(int irq, void *dev_id)
619 {
620         struct net_device *dev = dev_id;
621         struct korina_private *lp = netdev_priv(dev);
622         u32 dmas, dmasm;
623         irqreturn_t retval;
624
625         dmas = readl(&lp->tx_dma_regs->dmas);
626
627         if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
628                 dmasm = readl(&lp->tx_dma_regs->dmasm);
629                 writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
630                                 &lp->tx_dma_regs->dmasm);
631
632                 korina_tx(dev);
633
634                 if (lp->tx_chain_status == desc_filled &&
635                         (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
636                         writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
637                                 &(lp->tx_dma_regs->dmandptr));
638                         lp->tx_chain_status = desc_empty;
639                         lp->tx_chain_head = lp->tx_chain_tail;
640                         dev->trans_start = jiffies;
641                 }
642                 if (dmas & DMA_STAT_ERR)
643                         printk(KERN_ERR DRV_NAME "%s: DMA error\n", dev->name);
644
645                 retval = IRQ_HANDLED;
646         } else
647                 retval = IRQ_NONE;
648
649         return retval;
650 }
651
652
653 static void korina_check_media(struct net_device *dev, unsigned int init_media)
654 {
655         struct korina_private *lp = netdev_priv(dev);
656
657         mii_check_media(&lp->mii_if, 0, init_media);
658
659         if (lp->mii_if.full_duplex)
660                 writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
661                                                 &lp->eth_regs->ethmac2);
662         else
663                 writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
664                                                 &lp->eth_regs->ethmac2);
665 }
666
667 static void korina_set_carrier(struct mii_if_info *mii)
668 {
669         if (mii->force_media) {
670                 /* autoneg is off: Link is always assumed to be up */
671                 if (!netif_carrier_ok(mii->dev))
672                         netif_carrier_on(mii->dev);
673         } else  /* Let MMI library update carrier status */
674                 korina_check_media(mii->dev, 0);
675 }
676
677 static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
678 {
679         struct korina_private *lp = netdev_priv(dev);
680         struct mii_ioctl_data *data = if_mii(rq);
681         int rc;
682
683         if (!netif_running(dev))
684                 return -EINVAL;
685         spin_lock_irq(&lp->lock);
686         rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
687         spin_unlock_irq(&lp->lock);
688         korina_set_carrier(&lp->mii_if);
689
690         return rc;
691 }
692
693 /* ethtool helpers */
694 static void netdev_get_drvinfo(struct net_device *dev,
695                         struct ethtool_drvinfo *info)
696 {
697         struct korina_private *lp = netdev_priv(dev);
698
699         strcpy(info->driver, DRV_NAME);
700         strcpy(info->version, DRV_VERSION);
701         strcpy(info->bus_info, lp->dev->name);
702 }
703
704 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
705 {
706         struct korina_private *lp = netdev_priv(dev);
707         int rc;
708
709         spin_lock_irq(&lp->lock);
710         rc = mii_ethtool_gset(&lp->mii_if, cmd);
711         spin_unlock_irq(&lp->lock);
712
713         return rc;
714 }
715
716 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
717 {
718         struct korina_private *lp = netdev_priv(dev);
719         int rc;
720
721         spin_lock_irq(&lp->lock);
722         rc = mii_ethtool_sset(&lp->mii_if, cmd);
723         spin_unlock_irq(&lp->lock);
724         korina_set_carrier(&lp->mii_if);
725
726         return rc;
727 }
728
729 static u32 netdev_get_link(struct net_device *dev)
730 {
731         struct korina_private *lp = netdev_priv(dev);
732
733         return mii_link_ok(&lp->mii_if);
734 }
735
736 static struct ethtool_ops netdev_ethtool_ops = {
737         .get_drvinfo            = netdev_get_drvinfo,
738         .get_settings           = netdev_get_settings,
739         .set_settings           = netdev_set_settings,
740         .get_link               = netdev_get_link,
741 };
742
743 static void korina_alloc_ring(struct net_device *dev)
744 {
745         struct korina_private *lp = netdev_priv(dev);
746         struct sk_buff *skb;
747         int i;
748
749         /* Initialize the transmit descriptors */
750         for (i = 0; i < KORINA_NUM_TDS; i++) {
751                 lp->td_ring[i].control = DMA_DESC_IOF;
752                 lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
753                 lp->td_ring[i].ca = 0;
754                 lp->td_ring[i].link = 0;
755         }
756         lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
757                         lp->tx_full = lp->tx_count = 0;
758         lp->tx_chain_status = desc_empty;
759
760         /* Initialize the receive descriptors */
761         for (i = 0; i < KORINA_NUM_RDS; i++) {
762                 skb = dev_alloc_skb(KORINA_RBSIZE + 2);
763                 if (!skb)
764                         break;
765                 skb_reserve(skb, 2);
766                 lp->rx_skb[i] = skb;
767                 lp->rd_ring[i].control = DMA_DESC_IOD |
768                                 DMA_COUNT(KORINA_RBSIZE);
769                 lp->rd_ring[i].devcs = 0;
770                 lp->rd_ring[i].ca = CPHYSADDR(skb->data);
771                 lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
772         }
773
774         /* loop back receive descriptors, so the last
775          * descriptor points to the first one */
776         lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]);
777         lp->rd_ring[i - 1].control |= DMA_DESC_COD;
778
779         lp->rx_next_done  = 0;
780         lp->rx_chain_head = 0;
781         lp->rx_chain_tail = 0;
782         lp->rx_chain_status = desc_empty;
783 }
784
785 static void korina_free_ring(struct net_device *dev)
786 {
787         struct korina_private *lp = netdev_priv(dev);
788         int i;
789
790         for (i = 0; i < KORINA_NUM_RDS; i++) {
791                 lp->rd_ring[i].control = 0;
792                 if (lp->rx_skb[i])
793                         dev_kfree_skb_any(lp->rx_skb[i]);
794                 lp->rx_skb[i] = NULL;
795         }
796
797         for (i = 0; i < KORINA_NUM_TDS; i++) {
798                 lp->td_ring[i].control = 0;
799                 if (lp->tx_skb[i])
800                         dev_kfree_skb_any(lp->tx_skb[i]);
801                 lp->tx_skb[i] = NULL;
802         }
803 }
804
805 /*
806  * Initialize the RC32434 ethernet controller.
807  */
808 static int korina_init(struct net_device *dev)
809 {
810         struct korina_private *lp = netdev_priv(dev);
811
812         /* Disable DMA */
813         korina_abort_tx(dev);
814         korina_abort_rx(dev);
815
816         /* reset ethernet logic */
817         writel(0, &lp->eth_regs->ethintfc);
818         while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
819                 dev->trans_start = jiffies;
820
821         /* Enable Ethernet Interface */
822         writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
823
824         /* Allocate rings */
825         korina_alloc_ring(dev);
826
827         writel(0, &lp->rx_dma_regs->dmas);
828         /* Start Rx DMA */
829         korina_start_rx(lp, &lp->rd_ring[0]);
830
831         writel(readl(&lp->tx_dma_regs->dmasm) &
832                         ~(DMA_STAT_FINI | DMA_STAT_ERR),
833                         &lp->tx_dma_regs->dmasm);
834         writel(readl(&lp->rx_dma_regs->dmasm) &
835                         ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
836                         &lp->rx_dma_regs->dmasm);
837
838         /* Accept only packets destined for this Ethernet device address */
839         writel(ETH_ARC_AB, &lp->eth_regs->etharc);
840
841         /* Set all Ether station address registers to their initial values */
842         writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
843         writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
844
845         writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
846         writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
847
848         writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
849         writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
850
851         writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
852         writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
853
854
855         /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
856         writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
857                         &lp->eth_regs->ethmac2);
858
859         /* Back to back inter-packet-gap */
860         writel(0x15, &lp->eth_regs->ethipgt);
861         /* Non - Back to back inter-packet-gap */
862         writel(0x12, &lp->eth_regs->ethipgr);
863
864         /* Management Clock Prescaler Divisor
865          * Clock independent setting */
866         writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
867                        &lp->eth_regs->ethmcp);
868
869         /* don't transmit until fifo contains 48b */
870         writel(48, &lp->eth_regs->ethfifott);
871
872         writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
873
874         napi_enable(&lp->napi);
875         netif_start_queue(dev);
876
877         return 0;
878 }
879
880 /*
881  * Restart the RC32434 ethernet controller.
882  * FIXME: check the return status where we call it
883  */
884 static int korina_restart(struct net_device *dev)
885 {
886         struct korina_private *lp = netdev_priv(dev);
887         int ret;
888
889         /*
890          * Disable interrupts
891          */
892         disable_irq(lp->rx_irq);
893         disable_irq(lp->tx_irq);
894         disable_irq(lp->ovr_irq);
895         disable_irq(lp->und_irq);
896
897         writel(readl(&lp->tx_dma_regs->dmasm) |
898                                 DMA_STAT_FINI | DMA_STAT_ERR,
899                                 &lp->tx_dma_regs->dmasm);
900         writel(readl(&lp->rx_dma_regs->dmasm) |
901                                 DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
902                                 &lp->rx_dma_regs->dmasm);
903
904         korina_free_ring(dev);
905
906         napi_disable(&lp->napi);
907
908         ret = korina_init(dev);
909         if (ret < 0) {
910                 printk(KERN_ERR DRV_NAME "%s: cannot restart device\n",
911                                                                 dev->name);
912                 return ret;
913         }
914         korina_multicast_list(dev);
915
916         enable_irq(lp->und_irq);
917         enable_irq(lp->ovr_irq);
918         enable_irq(lp->tx_irq);
919         enable_irq(lp->rx_irq);
920
921         return ret;
922 }
923
924 static void korina_clear_and_restart(struct net_device *dev, u32 value)
925 {
926         struct korina_private *lp = netdev_priv(dev);
927
928         netif_stop_queue(dev);
929         writel(value, &lp->eth_regs->ethintfc);
930         korina_restart(dev);
931 }
932
933 /* Ethernet Tx Underflow interrupt */
934 static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
935 {
936         struct net_device *dev = dev_id;
937         struct korina_private *lp = netdev_priv(dev);
938         unsigned int und;
939
940         spin_lock(&lp->lock);
941
942         und = readl(&lp->eth_regs->ethintfc);
943
944         if (und & ETH_INT_FC_UND)
945                 korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
946
947         spin_unlock(&lp->lock);
948
949         return IRQ_HANDLED;
950 }
951
952 static void korina_tx_timeout(struct net_device *dev)
953 {
954         struct korina_private *lp = netdev_priv(dev);
955         unsigned long flags;
956
957         spin_lock_irqsave(&lp->lock, flags);
958         korina_restart(dev);
959         spin_unlock_irqrestore(&lp->lock, flags);
960 }
961
962 /* Ethernet Rx Overflow interrupt */
963 static irqreturn_t
964 korina_ovr_interrupt(int irq, void *dev_id)
965 {
966         struct net_device *dev = dev_id;
967         struct korina_private *lp = netdev_priv(dev);
968         unsigned int ovr;
969
970         spin_lock(&lp->lock);
971         ovr = readl(&lp->eth_regs->ethintfc);
972
973         if (ovr & ETH_INT_FC_OVR)
974                 korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
975
976         spin_unlock(&lp->lock);
977
978         return IRQ_HANDLED;
979 }
980
981 #ifdef CONFIG_NET_POLL_CONTROLLER
982 static void korina_poll_controller(struct net_device *dev)
983 {
984         disable_irq(dev->irq);
985         korina_tx_dma_interrupt(dev->irq, dev);
986         enable_irq(dev->irq);
987 }
988 #endif
989
990 static int korina_open(struct net_device *dev)
991 {
992         struct korina_private *lp = netdev_priv(dev);
993         int ret;
994
995         /* Initialize */
996         ret = korina_init(dev);
997         if (ret < 0) {
998                 printk(KERN_ERR DRV_NAME "%s: cannot open device\n", dev->name);
999                 goto out;
1000         }
1001
1002         /* Install the interrupt handler
1003          * that handles the Done Finished
1004          * Ovr and Und Events */
1005         ret = request_irq(lp->rx_irq, &korina_rx_dma_interrupt,
1006                         IRQF_DISABLED, "Korina ethernet Rx", dev);
1007         if (ret < 0) {
1008                 printk(KERN_ERR DRV_NAME "%s: unable to get Rx DMA IRQ %d\n",
1009                     dev->name, lp->rx_irq);
1010                 goto err_release;
1011         }
1012         ret = request_irq(lp->tx_irq, &korina_tx_dma_interrupt,
1013                         IRQF_DISABLED, "Korina ethernet Tx", dev);
1014         if (ret < 0) {
1015                 printk(KERN_ERR DRV_NAME "%s: unable to get Tx DMA IRQ %d\n",
1016                     dev->name, lp->tx_irq);
1017                 goto err_free_rx_irq;
1018         }
1019
1020         /* Install handler for overrun error. */
1021         ret = request_irq(lp->ovr_irq, &korina_ovr_interrupt,
1022                         IRQF_DISABLED, "Ethernet Overflow", dev);
1023         if (ret < 0) {
1024                 printk(KERN_ERR DRV_NAME"%s: unable to get OVR IRQ %d\n",
1025                     dev->name, lp->ovr_irq);
1026                 goto err_free_tx_irq;
1027         }
1028
1029         /* Install handler for underflow error. */
1030         ret = request_irq(lp->und_irq, &korina_und_interrupt,
1031                         IRQF_DISABLED, "Ethernet Underflow", dev);
1032         if (ret < 0) {
1033                 printk(KERN_ERR DRV_NAME "%s: unable to get UND IRQ %d\n",
1034                     dev->name, lp->und_irq);
1035                 goto err_free_ovr_irq;
1036         }
1037 out:
1038         return ret;
1039
1040 err_free_ovr_irq:
1041         free_irq(lp->ovr_irq, dev);
1042 err_free_tx_irq:
1043         free_irq(lp->tx_irq, dev);
1044 err_free_rx_irq:
1045         free_irq(lp->rx_irq, dev);
1046 err_release:
1047         korina_free_ring(dev);
1048         goto out;
1049 }
1050
1051 static int korina_close(struct net_device *dev)
1052 {
1053         struct korina_private *lp = netdev_priv(dev);
1054         u32 tmp;
1055
1056         /* Disable interrupts */
1057         disable_irq(lp->rx_irq);
1058         disable_irq(lp->tx_irq);
1059         disable_irq(lp->ovr_irq);
1060         disable_irq(lp->und_irq);
1061
1062         korina_abort_tx(dev);
1063         tmp = readl(&lp->tx_dma_regs->dmasm);
1064         tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
1065         writel(tmp, &lp->tx_dma_regs->dmasm);
1066
1067         korina_abort_rx(dev);
1068         tmp = readl(&lp->rx_dma_regs->dmasm);
1069         tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
1070         writel(tmp, &lp->rx_dma_regs->dmasm);
1071
1072         korina_free_ring(dev);
1073
1074         napi_disable(&lp->napi);
1075
1076         free_irq(lp->rx_irq, dev);
1077         free_irq(lp->tx_irq, dev);
1078         free_irq(lp->ovr_irq, dev);
1079         free_irq(lp->und_irq, dev);
1080
1081         return 0;
1082 }
1083
1084 static const struct net_device_ops korina_netdev_ops = {
1085         .ndo_open               = korina_open,
1086         .ndo_stop               = korina_close,
1087         .ndo_start_xmit         = korina_send_packet,
1088         .ndo_set_multicast_list = korina_multicast_list,
1089         .ndo_tx_timeout         = korina_tx_timeout,
1090         .ndo_do_ioctl           = korina_ioctl,
1091         .ndo_change_mtu         = eth_change_mtu,
1092         .ndo_validate_addr      = eth_validate_addr,
1093         .ndo_set_mac_address    = eth_mac_addr,
1094 #ifdef CONFIG_NET_POLL_CONTROLLER
1095         .ndo_poll_controller    = korina_poll_controller,
1096 #endif
1097 };
1098
1099 static int korina_probe(struct platform_device *pdev)
1100 {
1101         struct korina_device *bif = platform_get_drvdata(pdev);
1102         struct korina_private *lp;
1103         struct net_device *dev;
1104         struct resource *r;
1105         int rc;
1106
1107         dev = alloc_etherdev(sizeof(struct korina_private));
1108         if (!dev) {
1109                 printk(KERN_ERR DRV_NAME ": alloc_etherdev failed\n");
1110                 return -ENOMEM;
1111         }
1112         SET_NETDEV_DEV(dev, &pdev->dev);
1113         lp = netdev_priv(dev);
1114
1115         bif->dev = dev;
1116         memcpy(dev->dev_addr, bif->mac, 6);
1117
1118         lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
1119         lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
1120         lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
1121         lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
1122
1123         r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
1124         dev->base_addr = r->start;
1125         lp->eth_regs = ioremap_nocache(r->start, r->end - r->start);
1126         if (!lp->eth_regs) {
1127                 printk(KERN_ERR DRV_NAME "cannot remap registers\n");
1128                 rc = -ENXIO;
1129                 goto probe_err_out;
1130         }
1131
1132         r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
1133         lp->rx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
1134         if (!lp->rx_dma_regs) {
1135                 printk(KERN_ERR DRV_NAME "cannot remap Rx DMA registers\n");
1136                 rc = -ENXIO;
1137                 goto probe_err_dma_rx;
1138         }
1139
1140         r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
1141         lp->tx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
1142         if (!lp->tx_dma_regs) {
1143                 printk(KERN_ERR DRV_NAME "cannot remap Tx DMA registers\n");
1144                 rc = -ENXIO;
1145                 goto probe_err_dma_tx;
1146         }
1147
1148         lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
1149         if (!lp->td_ring) {
1150                 printk(KERN_ERR DRV_NAME "cannot allocate descriptors\n");
1151                 rc = -ENXIO;
1152                 goto probe_err_td_ring;
1153         }
1154
1155         dma_cache_inv((unsigned long)(lp->td_ring),
1156                         TD_RING_SIZE + RD_RING_SIZE);
1157
1158         /* now convert TD_RING pointer to KSEG1 */
1159         lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
1160         lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
1161
1162         spin_lock_init(&lp->lock);
1163         /* just use the rx dma irq */
1164         dev->irq = lp->rx_irq;
1165         lp->dev = dev;
1166
1167         dev->netdev_ops = &korina_netdev_ops;
1168         dev->ethtool_ops = &netdev_ethtool_ops;
1169         dev->watchdog_timeo = TX_TIMEOUT;
1170         netif_napi_add(dev, &lp->napi, korina_poll, 64);
1171
1172         lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
1173         lp->mii_if.dev = dev;
1174         lp->mii_if.mdio_read = mdio_read;
1175         lp->mii_if.mdio_write = mdio_write;
1176         lp->mii_if.phy_id = lp->phy_addr;
1177         lp->mii_if.phy_id_mask = 0x1f;
1178         lp->mii_if.reg_num_mask = 0x1f;
1179
1180         rc = register_netdev(dev);
1181         if (rc < 0) {
1182                 printk(KERN_ERR DRV_NAME
1183                         ": cannot register net device %d\n", rc);
1184                 goto probe_err_register;
1185         }
1186 out:
1187         return rc;
1188
1189 probe_err_register:
1190         kfree(lp->td_ring);
1191 probe_err_td_ring:
1192         iounmap(lp->tx_dma_regs);
1193 probe_err_dma_tx:
1194         iounmap(lp->rx_dma_regs);
1195 probe_err_dma_rx:
1196         iounmap(lp->eth_regs);
1197 probe_err_out:
1198         free_netdev(dev);
1199         goto out;
1200 }
1201
1202 static int korina_remove(struct platform_device *pdev)
1203 {
1204         struct korina_device *bif = platform_get_drvdata(pdev);
1205         struct korina_private *lp = netdev_priv(bif->dev);
1206
1207         iounmap(lp->eth_regs);
1208         iounmap(lp->rx_dma_regs);
1209         iounmap(lp->tx_dma_regs);
1210
1211         platform_set_drvdata(pdev, NULL);
1212         unregister_netdev(bif->dev);
1213         free_netdev(bif->dev);
1214
1215         return 0;
1216 }
1217
1218 static struct platform_driver korina_driver = {
1219         .driver.name = "korina",
1220         .probe = korina_probe,
1221         .remove = korina_remove,
1222 };
1223
1224 static int __init korina_init_module(void)
1225 {
1226         return platform_driver_register(&korina_driver);
1227 }
1228
1229 static void korina_cleanup_module(void)
1230 {
1231         return platform_driver_unregister(&korina_driver);
1232 }
1233
1234 module_init(korina_init_module);
1235 module_exit(korina_cleanup_module);
1236
1237 MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
1238 MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
1239 MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
1240 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1241 MODULE_LICENSE("GPL");